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Abstract
What explains the dramatic progress from 20th-century to 21st-century AI, and
how can the remaining limitations of current AI be overcome? The widely
accepted narrative attributes this progress to massive increases in the quantity
of computational and data resources available to support statistical learning in
deep artificial neural networks. We show that an additional crucial factor is
the development of a new type of computation. Neurocompositional computing
adopts two principles that must be simultaneously respected to enable human-
level cognition: the principles of Compositionality and Continuity. These have
seemed irreconcilable until the recentmathematical discovery that composition-
ality can be realized not only through discrete methods of symbolic computing,
but also through novel forms of continuous neural computing. The revolutionary
recent progress in AI has resulted from the use of limited forms of neurocompo-
sitional computing. New, deeper forms of neurocompositional computing create
AI systems that are more robust, accurate, and comprehensible.

INTRODUCTION

Artificial Intelligence (AI) has been a long time coming
of age. It was Ada Lovelace who recognized in 1843 the
profound implications, extending far beyond numerical
calculation, of Charles Babbage’s design for a general-
purpose numerical computer: “in enabling mechanism
to combine together general symbols, in successions of
unlimited variety and extent, a uniting link is established
between the operations of matter and . . . abstract mental
processes” (Bowden 1953, Note A, p. 368). Now, more than
a century and a half later, the widespread deployment of
AI has become a landmark achievement of the 21st cen-
tury, a turning point that has been likened to the industrial
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revolution of the 18th century (Thomas 2020). Properly
understanding this breakthrough is critical for controlling
how AI develops in the remainder of the century, both for
maximizing its benefits andminimizing its hazards (Grosz
and Stone 2018). Here we present a new analysis of this
progress, an analysis which is yielding a new generation
of AI systems.
The recent progress in AI—specifically, AI based on

artificial neural networks exploiting deep learning—has
typically been attributed to merely quantitative tech-
nological improvements: greatly increased computing
power and data quantity (Sejnowski 2018, p. ix). Cor-
rect as far as it goes, this view overlooks a major fac-
tor, namely the advent of neurocompositional computing
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(Smolensky et al. 2022), which, according to a contempo-
rary theory in cognitive science (Smolensky and Legendre
2006), is the form of computing underlying human intelli-
gence. We argue that, in addition to the critical expansion
of computing resources, it is the unrecognized emergence
of neurocompositional computing—albeit only implicitly,
in an acutely restricted form—that has powered the most
dramatic recent advances in AI.
Despite the unprecedented progress, it is generally

recognized that contemporary AI systems still suffer seri-
ous deficiencies, including extreme opacity and weakness
in learning general knowledge from limited experience.
Here, we show how these problems are being addressed
through a deeper development of neurocompositional
computing, deployed in the new AI systems we review.
In addition to learning more robustly, these new systems
aremore comprehensible than standard deep learning net-
works, diminishing the opacity which limits both their
utility (Turek 2016) and our ability to control their some-
times societally deleterious behaviors (Bender et al. 2021).
The original contributions of this article, presented in

successive sections, are these: identifying key contributors
to the power of human intelligence—the Continuity and
Compositionality Principles—which together define neu-
rocompositional computing; diagnosing the limitations
of 20th-century AI as rooted in the use of computing
architectures that failed to respect both these princi-
ples; elucidating the recent progress in AI as resulting
in significant part from simultaneous adherence to both
principles—achieving neurocompositional computing to
a limited degree; presenting a general formalism from
cognitive science that allows considerably deeper realiza-
tion of neurocompositional computing: neurally encoded
compositionally structured tensor (NECST) computing;
showing how new NECST AI models harness the power
of neurocompositional computing to mitigate limitations
of previous AI systems; illustrating how NECST com-
puting substantially improves both the generalization
capacity and the comprehensibility—and consequently
the controllability—of AI systems.

THE CENTRAL PARADOX OF COGNITION
AND THE PRINCIPLES DEFINING
NEUROCOMPOSITIONAL COMPUTING

What type of computing enables human intelligence?
Because human intelligence arises from the brain, the
obvious answer is: neural computing (Churchland and
Sejnowski 2016), in which information is encoded in
numerical activation vectors—patterns of activation over
groups or layers of neurons (Figure 1A). These encodings
form a vector space; the coordinates of an encoding in this

space are the numerical activation values of the neurons
hosting the activation pattern (Figure 1B). The activation
vector that encodes an output results from spreading the
activation that encodes an input among multiple layers
of neurons through connections of varying strengths or
weights. In a typical neural network AI model, the values
of these weights are set by training the model on examples
of correct input/output pairs. After seeingmany suchpairs,
the model will ideally converge to connection weights that
produce the correct output when given an input, not only
for the inputs seen during training, but also for novel
inputs in a test set.
Once a computational task is encoded in numerical vec-

tors, solving it becomes a problem in statistical inference.
A neural network is a complex statistical model withmany
parameters that are estimated from the statistics of the
training data. During learning, the model can compute,
and store in its weights, the relations between the num-
bers in the vector encodings producedwhen processing the
training examples; after learning, during testing, it can use
these learned relations to infer an output vector given an
input vector that encodes a novel input.
Neural computing respects the Continuity Principle:

the encoding and processing of information is formal-
ized with real numbers that vary continuously, that is, by
amounts that can be arbitrarily small. Continuity means
that knowledge about information encoded in one vector
automatically generalizes to similar information encoded
in nearby vectors (Hinton, McClelland, and Rumelhart
1986). For instance, standard neural systems can readily
generalize their knowledge about theword lock to theword
fasten (Figure 1B): these words appear in similar contexts
within texts used for training (they have similar “distribu-
tional meaning”), so neural-network learning algorithms
will encode them as vectors that are close together; as
a result, neural processing of these two encodings will
produce similar results—similarity-based generalization.
The structure of the vector space can capture other

types of relationships as well, such as having a consis-
tent offset that represents a systematic difference between
pairs of sentences (Figure 1C). Most importantly, continu-
ity enables deep learning, in which a model’s connection
weights—even those deeply buriedwithin the network, far
from the input and output encodings—can be modified
gradually to smoothly improve themodel’s statistical infer-
ence of outputs from inputs in its training set (Rumelhart,
Hinton, and Williams 1986).
Although it appears obvious that cognition deploys

neural computing, virtually all aspects of human intel-
ligence have been formally and precisely described
since antiquity (Kiparsky and Staal 1969) in terms of a
very different type of computing: compositional-structure
processing (Janssen 2012). In this type of computing
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F IGURE 1 Neural computing—encoding information in numerical vector spaces

F IGURE 2 Symbolic compositional-structure computing—encoding information in symbol structures

(Figure 2), complex information is encoded in large
structures—compositional encodings—which are built by
composing together smaller structures that encode simpler
information. To process the complex information encoded
in a large structure, it suffices to compose together the
results of processing the simpler information encoded
in its smaller substructures. This is the Compositionality
Principle (Szabó 2012).
Compositionality has long been seen as key to the

power of human cognition: it enables strong compositional
generalization, enabling us to understand any one of a
potentially infinite number of novel situations by encoding
the situation internally as a novel composition of familiar,
simpler parts, and composing together our understanding
of those parts. In virtually all domains of cognition—from
vision and speech to reasoning and planning—empirical
investigation over millennia has consistently shown how
cognitive functions can be well-approximated as compu-
tation over appropriate compositional structures, struc-
tures with respect to which human cognition exhibits
strong compositional generalization (Hinzen, Machery,
andWerning 2012). The parts which compose to form such
encodings are sometimes familiar elements like objects,
words, concepts, and actions, and sometimes scientifi-
cally discovered units like phonemes—the basic sounds
of speech which combine to form words, each of which
is typically denoted by a single letter in alphabetic writ-
ing systems.
Robust compositional generalization is all-pervasive

in cognition: it underlies the power of both fast, auto-

matic, intuitive, largely unconscious cognition (e.g., visual
processing of novel arrangements of familiar objects), as
well as slow, controlled, deliberative, conscious cognition
(e.g., playing chess with a novel initial arrangement of
pieces) (Kahneman 2011).
In sum: human cognition gets tremendous power by

understanding that the world is strongly compositional.
Compositional encodings have for centuries been for-
malized as intricate arrangements of symbols—symbol
structures like those we use to represent expressions in
algebra or formal logic (Newell 1980). To take a simple
example, the two symbol structures [𝗎𝗇 [𝗅𝗈𝖼𝗄 𝖺𝖻𝗅𝖾]] and
[[𝗎𝗇 𝗅𝗈𝖼𝗄] 𝖺𝖻𝗅𝖾] formalize compositional word encodings
that correspond to the two meanings of unlockable: not
able to be locked (un-lockable), and able to be unlocked
(unlock-able), respectively.
Figure 2 illustrates symbolic compositional-structure

processing with three functions (notated “input ↦ out-
put”). In the domain of language, Figure 2A shows the Tree
Adjoining function, which here takes as input the phrase-
structure trees for the sentence Kim hates symbols and
the adverb really and inserts the latter into the middle of
the former to produce as output the phrase-structure tree
for Kim really hates symbols. This is an operation that is
known to give grammars sufficient power to achieve the
level of complexity displayed by the syntax of sentences
in human languages (Joshi 1985). In the domain of math-
ematics, Figure 2B shows a function that simplifies a ratio
of ratios into a product of ratios. In the domain of logical
reasoning, Figure 2C shows a function that chains if-then
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implications: it reads q implies r and r implies s entails q
implies s, for example, knowing that if it rains then I will
drive (𝑞 → 𝑟) and if I drive then I will need to charge my car
(𝑟 → 𝑠) allows us to conclude if it rains then I will need to
charge my car (𝑞 → 𝑠).
The symbols in these structures are abstract entities that

are by definition inherently discrete: unlike real numer-
ical values, they cannot be modified by arbitrarily small
amounts (although physical drawings of what we perceive
as symbols can be). The identity of a symbol, and its posi-
tion in a symbol structure, are all-or-none: a symbol either
is an A or it is not; it either occupies the first position of a
symbol sequence or it does not.
As the contrast between Figures 1 and 2 vividly

illustrates, discrete symbolic compositional-structure-
processing computers and continuous neural computers
are profoundly different. Yet, somehow, the computer in
our heads apparently is simultaneously a neural computer
and a compositional-structure computer (Marcus 2001).
How can this be? We call this the Central Paradox of
Cognition (Smolensky 1988).
One tempting approach for resolving this paradoxwould

be to posit a hybrid system that combines separate sym-
bolic and neural machines (Andreas et al. 2016; Marcus
and Davis 2019; Wang et al. 2020). However, such an
approach is only viable if the various components of
cognition can be cleanly separated into those that are com-
positional and those that are continuous. As discussed
below, this is not the case: in central cognitive domains,
individual encodings respect both the Compositionality
and the Continuity Principles. Therefore, a true resolution
of the Central Paradox requires a new type of computing—
neurocompositional computing—that simultaneously sat-
isfies both theContinuity andCompositionality Principles.

20TH-CENTURY AI LIMITATIONS:
VIOLATING THE PRINCIPLES

Evidence that human intelligence requires simultane-
ously respecting both theContinuity andCompositionality
Principles comes from a perhaps surprising place: 20th-
century AI.
Despite impressive advancements that inspired recur-

rent optimism, the AI systems built on symbolic comput-
ing have consistently fallen far short of human general
intelligence (Minsky 1991). The discrete material of sym-
bolic encodings—for example, symbols denoting words—
have often proved overly rigid to meet the subtle demands
of human cognition; for instance, while such systems can
easily generalize from lock and -able to lockable, they can-
not easily generalize from lock to fasten because those
two words must be encoded as entirely independent dis-

crete symbols. And the discreteness of the structures
themselves also made them insufficiently flexible: even a
simple discrete sequential structure for the basic sounds
of speech—roughly corresponding to individual letters—
turns out to be too rigid, as some sounds cannot be pinned
down to a single sequential position but rather simulta-
neously occupy, to continuously varying degrees, a blend
of multiple positions (Smolensky and Goldrick 2016). The
strengths and weaknesses of AI systems deploying sym-
bolic computing (Figures 3E–H) arise from these systems
respecting the Compositionality Principle, but not the
Continuity Principle.
The AI systems (and cognitive models) of the 20th

century that employed neural computing typically did
the reverse: they respected the Continuity Principle but
violated the Compositionality Principle. Continuous vec-
tor processing endowed these models with the power to
approximate arbitrarily closely any vector-to-vector func-
tion (Hornik, Stinchcombe, and White 1989); this suffices
for tasks that do not demand a high degree of composi-
tional processing, such as classifying the texture of a single
image patch. But violating the Compositionality Princi-
ple brought serious limitations which were prominently
emphasized by Fodor and Pylyshyn (1988) as well as Mar-
cus (2001). Althoughneural networks are far less rigid than
their symbolic counterparts (Figure 3A,B), they typically
suffer from complementary weaknesses (Figure 3C,D),
including striking failures of compositional generaliza-
tion (Baroni 2020; Kim and Linzen 2020). For instance,
as noted above, standard neural systems can easily gen-
eralize their knowledge about lock to fasten, but these
networks cannot readily generalize to novel compositional
structures involving lock, such as lockable: they lack the
compositional encodings that support such generalization.
In sum: traditional neural AI systems suffer because they

donot understand that theworld is strongly compositional—
they cannot, because they lack the compositional encod-
ings needed to realize such understanding.
Both symbolic- and neural-based 20th-century AI sys-

tems were non-neurocompositional because they violated
either the Continuity or the Compositionality Principle—
resulting in serious deficiencies. Human intelligence is
possible because it deploys a type of computing that
simultaneously respects both principles: neurocomposi-
tional computing.

21ST-CENTURY AI SUCCESSES:
FIRST-GENERATION (1G)
NEUROCOMPOSITIONAL COMPUTING

The unprecedented surge in machine intelligence we have
witnessed in the 21st century is due largely to progress inAI
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F IGURE 3 Neural and symbolic compositional-structure computing afford complementary strengths

systems exploiting neural computing. The field has been
growing exponentially, and the diversity of network archi-
tectures is enormous. However, we can gain insight into
the roots of the progress by focusing on two of themost suc-
cessful and widely used types of networks: Convolutional
Neural Networks (CNNs) and Transformers.
CNNs (Fukushima and Miyake 1982; LeCun et al. 1998)

have been enormously important in systems operating on
visual input. Inspired by the neural structure of mam-
malian visual systems, CNNs process an input image
by analyzing patches of the image with feature detec-
tors. There are multiple layers of feature detectors, each
computed by a set of neurons with a preferred stimu-
lus implicitly encoded in its weights. Taking advantage
of the Continuity Principle, a CNN’s feature detectors
are learned by slowly tuning the continuous connection
weights that implement them. Each layer is structured
as a 2-d grid that mirrors the 2-d spatial structure of the
image patches being processed. Within a given layer, each
feature detector analyzes all patches; processing is, by
design, position-invariant.
Critically, CNNprocessing also incorporates theCompo-

sitionality Principle using spatial structure. At each layer,
the analysis of the whole image is gotten by composing
together—spatially arranging—analyses of larger patches
of the previous layer’s analysis of its smaller patches.
Another, more recent, architecture for neural comput-

ing, the Transformer (Vaswani et al. 2017), has given rise to
a quantum leap inmachine language processing (Qiu et al.
2020). A Transformer takes an entire sequence of symbols
as input and produces a sequence of symbols as output.
To compute the activation vector for a given symbol at a
given layer, the Transformer calculates a weighted sum of
information fromvectors encoding other symbols. It can be
shown that this is equivalent to a graphwithweighted links
between symbols: links along which data flows. In state-
of-the-art models, these links partially align with abstract

interword relations posited in linguistic theory (Manning
et al. 2020).
Thus both of these truly seminal network types—CNNs

and Transformers—derive much of their power from their
additional compositional structure (Henderson 2020): spa-
tial structure and a type of graph structure. However,
these first-generation (1G) neurocompositional computing
architectures are insufficient for general higher cognition
(e.g., reasoning, language). In these domains, composi-
tional structure is not physical but abstract, like a planning
structure in which plans contain subplans, which con-
tain sub-subplans (Hendler, Tate, and Drummond 1990).
CNNs, limited to spatial structure, are clearly unable to
capture such structure.
Transformers, on the other hand, use graphs, which in

principle can encode general, abstract structure, includ-
ing webs of inter-related concepts and facts. However,
in Transformers, a layer’s graph is defined by its data
flow, yet this data flow cannot be accessed by the rest
of the network—once a given layer’s data-flow graph
has been used by that layer, the graph disappears. For
the graph to be a bona fide encoding, carrying infor-
mation to the rest of the network, it would need to be
represented with an activation vector that encodes the
graph’s abstract, compositionally-structured internal
information. The technique we introduce next—NECST
computing—provides exactly this type of activation
vector.

DEEPENING
NEUROCOMPOSITIONALITY THROUGH
A SOLUTION TO THE CENTRAL
PARADOX: NECST COMPUTING

1G neurocompositional computing, illustrated by the CNN
and Transformer architectures, has contributed greatly
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F IGURE 4 Successive increases in a model’s degree of neurocompositional structure bring improvements in compositional
generalization

to the progress of AI in the 21st century. The work we
nowpresent pursues neurocompositional computingmore
aggressively, aiming for stronger incorporation of theCom-
positionality Principle by instilling network capabilities
that enable explicit construction and processing of gen-
eral, abstract, compositionally structured activation-vector
encodings—while staying strictly within the confines of
neural computing to respect the Continuity Principle. This
is 2G neurocompositional computing.

Neurocompositionality and compositional
generalization

Increasingly deep implementation of neurocomposition-
ality brings increasingly robust compositional generaliza-
tion. To provide a straightforward initial example, we
consider an extremely simple task: taking as input a
sequence of five digits (e.g., ⟨𝟹, 𝟿, 𝟽, 𝟺, 𝟽⟩), encoding the
entire sequence internally, and then reproducing that
sequence as the output (Figure 4). This copying task
demands compositional generalization because it requires
learning that if the digit𝟺 appears in positionn in the input,
then 𝟺must be placed in position n of the output, for every
possible position n. Similarly, if the digit 𝚗 appears in posi-
tion 4 in the input, then 𝚗 must be placed in position 4 of
the output, for every possible digit 𝚗.
We test such compositional generalization by withhold-

ing from training all sequences of a certain type: “𝚗-in-n”
sequences, in which there is a 𝟷 in position 1, or a 𝟸 in

position 2, and so forth. After training, correctly copying
the unseen 𝚗-in-n sequences requires compositional gen-
eralization because digit 𝚗 has never been seen in position
n before.
To see how increasing the degree of neurocomposition-

ality improves compositional generalization, we train a
sequence of successively more neurocompositional net-
works on the copying task (withholding 𝚗-in-n examples):
CopyNet-0, a pre-Transformer (long-short-term mem-
ory, LSTM) neural network (Hochreiter and Schmidhuber
1997), which has little built-in neurocompositional struc-
ture; CopyNet-1G, a Transformer, which uses a mildly
neurocompositional data-flow-graph structure (1G neu-
rocompositional computing); and CopyNet-2G, a more
thoroughly neurocompositional NECSTmodel (2G neuro-
compositional computing: a NECSTransformer, described
below).
Figure 4 gives several illustrations of the improved com-

positional generalization that comeswith increased neuro-
compositional structure. Figures 4A,B show how models
with greater degrees of neurocompositionality perform
better with less data—in Figure 4B, when compositional
generalization is required, and in Figure 4A when it is not.
In the latter case, all models eventually reach 100% correct,
but we see that CopyNet-2G reaches this with an order of
magnitude fewer training examples. Figure 4C shows that
CopyNet-0 does progressively worse on sequences with
more andmore digits in positions they never occupied dur-
ing training, while CopyNet-1G and CopyNet-2G show
little degradation in performance. Given an 𝚗-in-n input,
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for example, ⟨𝟹, 𝟿, 𝟽, 𝟺, 𝟽⟩ (with 𝟺 in position 4), CopyNet-
0 is prone to produce an erroneous output in which
neighboring digits are flipped to move 𝚗 out of position
n, for example, ⟨𝟹, 𝟿, 𝟺, 𝟽, 𝟽⟩ (with 𝟺 now in position 3). In
contrast, CopyNet-1G andCopyNet-2Ghave no difficulty
performing the compositional generalization required to
produce 𝚗-in-n outputs.
How do these neural learners’ final performance levels

compare to a symbolic learner, whichwould be expected to
reach perfect accuracy? We trained 100 distinct instances
of each type of model and measured how many of the 100
instances learned the task perfectly (scoring 100% on the
set of all possible digit sequences of length 5—including
all 𝚗-in-n sequences). As Figure 4D shows, no CopyNet-0
instance performedperfectly; about one third ofCopyNet-
1G instances reached perfect performance; and over two
thirds of CopyNet-2G instances attained perfection.
In sum, greater neurocompositionality brings faster

learning (Figure 4A,B), more robust compositional gener-
alization (Figure 4C), and an increased chance of learning
the task perfectly (Figure 4D). All of these improve-
ments lie in areas that have traditionally been strengths
of symbolic systems yet weaknesses of neural systems
(as exhibited by CopyNet-0). These results, along with
findings on more complex tasks reported below, support
the conclusion that neurocompositionality endows neu-
ral models with some of the strengths of symbolic models
while retaining the power of deep learning.
So how, exactly, has neurocompositional computing

progressed to 2G?

NECST computing defined

At the foundation of 2G neurocompositional computing
is the question: How can fully general, abstract composi-
tional structures be encoded in neural activation vectors
so that compositional-structure processing can be car-
ried out on these encodings using only continuous neural
computing? The answerwe adopt fromcognitive science—
NECST (Smolensky and Legendre 2006)—is a solution to
the Central Paradox of Cognition: How can our own cog-
nitive encodings simultaneously be neural encodings and
compositional encodings (Hofstadter 1979)?
The first insight exploited by NECST is that buried

within compositional structures are two distinct types of
information that are tightly bound together: what infor-
mation and where information. Crucially, where refers to
a position in an abstract structure, not literally a position
in physical space.
Consider a simple, discrete compositional structure: a

sequence of two symbols, that is, an ordered pair. In
[𝗅𝗈𝖼𝗄 𝖺𝖻𝗅𝖾], the what comprises two symbols, 𝗅𝗈𝖼𝗄 and 𝖺𝖻𝗅𝖾;

the where comprises two abstract positions: L (left) and R
(right). L andR are structural roles, and they define a struc-
tural type: the ordered pair. We can visualize L as [ —]
and R as [— ]. In [lock able], role L is filled by lock
and role R is filled by able. This structure comprises two
filler-role bindings, each of whichwewrite as filler:role. Our
pair can be written as 𝗅𝗈𝖼𝗄:L & 𝖺𝖻𝗅𝖾:R and visualized as
[ 𝗅𝗈𝖼𝗄 —] & [— 𝖺𝖻𝗅𝖾 ]; the two bindings are aggregated
(by the & operator) to form a single structure. In NECST
computing, this formal characterization of the structure is
neurally encoded as a kind of vector, as follows.
Each filler symbol is encoded by an activity vector, a

list of real numbers (potentially resulting from deep learn-
ing). This is commonplace in neural network modeling:
as previously observed, replacing discrete symbols with
continuous vectors is at the heart of the 21st-century rev-
olution in machine language processing. A key innovation
of NECST is that each structural role is similarly encoded
by an activity vector. Then the two operations, : for bind-
ing each filler to its role and& for aggregating the bindings,
are realized as operations on vectors. The aggregation oper-
ation& becomes the summation of vectors,+. The binding
operation : is a little more complex; it becomes the tensor
product⊗ (possibly compressed).1
The resulting neural encoding is called the ten-

sor product representation (TPR) of the compositional
structure (Smolensky 1990). Hence the name, neurally-
encoded compositionally-structured tensor (NECST) com-
puting. There are several neurocompositional architec-
tures known by different names (Eliasmith 2013; Garcez
et al. 2019; Gayler 2003), but many of these turn out
to be based on TPRs that have been compressed by a
linear transformation (Smolensky and Legendre 2006,
Ch. 7).
Crucial to the power of symbol structures is that sym-

bols maintain their identity as they play different roles
(Mitchell and Lapata 2010, p. 1394). The role R of [𝗎𝗇 𝗅𝗈𝖼𝗄]
and the role L of [𝗅𝗈𝖼𝗄 𝖺𝖻𝗅𝖾] are filled by the same
symbol, 𝗅𝗈𝖼𝗄; in a symbolic language-processing model,
this is why lock contributes the same meaning to both
unlock and lockable—making compositional generaliza-
tion possible. This critical property also holds for the
continuous, explicitly compositional vector encodings pro-
vided by TPRs, because the same vector that encodes 𝗅𝗈𝖼𝗄
appears in the vectors that encode the binding lock:R
and the binding lock:L. TPRs successfully disentangle the
what and the where information carried by compositional
structure; these very different types of information are
thoroughly fused in traditional noncompositional neural
models.
All types of compositional structures comprise a set

of filler:role bindings (Newell 1980): TPRs provide a fully
general method for neurally encoding compositional
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structure. Further, the mathematical operations that
underlie TPRs enable systematic, compositional gener-
alization, so that TPRs do not just encode compositional
structure but specifically do so in a way that facilitates
the behavioral benefits of compositional structure. In fact,
mathematical results show that with inputs and outputs
encoded as TPRs, neural networks can be designed to
precisely compute many complex compositional-structure
processing functions—including the types of functions
shown in Figure 2 (Smolensky 2012). Thus, the intricate
structure-sensitive processing that empowers symbolic
computing (Fodor and Pylyshyn 1988) can be performed
by networks using TPR encodings. In cognitive science,
theories of language based on TPRs have given rise to new
computational architectures for grammars; these have
significantly advanced linguistic theories explaining the
compositional structure of language (Pater 2009; Prince
and Smolensky 1997). Networks processing TPRs can
enforce the strong kind of constraints on compositional
processes that are imposed by grammars.
Thus NECST does indeed provide an answer to the Cen-

tral Paradox: it provably allows neural computing to carry
out important types of compositional-structure processing
previously only computable by discrete symbolic comput-
ing. But NECST goes beyond symbolic computing, reaping
the benefits of the Continuity Principle. TPRs provide a
new type of encoding: continuous compositional struc-
ture (Goldrick, Putnam, and Schwarz, 2016; Smolensky,
Goldrick, and Mathis, 2014). Returning to the example of
the ordered pair structure, halfway between the two vec-
tors encoding the discrete roles L and R is a vector which
encodes a continuous role; this blend of the L and R roles
can be bound to a filler such as t to produce the TPR for
a binding we can visualize as [

t
]. Here, t fills a weak,

half-strength role that spans both the left and right halves
of the pair: t is half-present in both places at once. More-
over, TPRs enable a single role like L to be filled with a
blend of symbols, each simultaneously present (or active)
to a continuously variable degree. Such continuous struc-
tures may seem odd, but recent work in linguistics (e.g.,
Rosen, 2019; Zimmermann, 2019) has shown how they
make possible theories that cover bodies of data that no
single theory using discrete structure can. For example,
basic speech sounds can fill continuous roles: the t sound
appearing in themiddle of the French phrase petit ami (lit-
erally, ‘small friend’) simultaneously resides both at the
end of the first and the beginning of the second word
(Smolensky, Rosen, and Goldrick, 2020): exactly a case
of [

t
]. Such continuous compositional structure can

explain observed complex sound patterns that can be
explained by no single theory—even a probabilistic one—
that forces such sounds into discrete roles.

PROGRESS FROM EARLY NECST AI: 2G
NEUROCOMPOSITIONAL COMPUTING

To illustrate 2G neurocomputing, we present the NEC-
STransformer (Schlag et al. 2019). Recall that the original
Transformer constructs its own implicit data-flow graph
for each input symbol sequence, for each layer; this deter-
mines, for a given symbol, the extent to which other
symbols are consulted for information to determine the
vector that encodes the given symbol at that layer. In
the NECSTransformer, this vector has explicit composi-
tional structure: it is the TPR for a continuous structure
composed from a given number—𝑛𝑟—of parts determined
by 𝑛𝑟 roles, roles which vary across symbols, layers, and
inputs, and result from deep learning. To create its TPR at
a given layer, each symbol generates 𝑛𝑟 vectors to encode
its roles, and computes a filler for each of these roles. Each
filler is a weighted sum of encodings of other symbols in
the same layer.
This model generates a graph at each layer, but goes

beyond the plain Transformer by labeling each link with
a vector that encodes a relation: a relation that holds
between the symbol that sends a filler and the sym-
bol receiving it, which binds it to the corresponding
role vector it has generated. Crucially, this relationship
is no longer merely implicit in the information flow: it
is inserted explicitly into the TPR activation vector that
encodes the symbol, making it information that is fed
directly to subsequent layers for further processing. For
example, in a math-problem-solving application, the TPR
created to encode a digit in a divisor includes a role inter-
pretable as “denominator,” bound to a filler sent from a
numerator digit.

Interpreting structural relations invented
through deep learning

The explicit encoding of relations computed by the NEC-
STransformer enables it to learn general abstract graph
structures; in fact, each NECSTransformer model uses
deep learning to invent its own type of compositional struc-
ture to optimally perform its task. On math problem solv-
ing,when encoding a ratio of ratios, the invented structures
implicitly exploit the inference rule in Figure 2B, assign-
ing the same role to the denominator-of-a-denominator
as to a numerator-of-a-numerator (respectively v and x in
Figure 2B) (Schlag et al. 2019).
Two other NECST models that process English invent

structures that are partially interpretable in grammatical
terms, although no information is given to the models
about grammar in general or the structure of English in
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F IGURE 5 NECST models showing improved compositional generalization over previous models from designed, symbolically
motivated inductive biases—ProgNet: Chen et al. (2020); StoryNet: Schlag and Schmidhuber (2018)

particular. In a model that learns to answer questions
about Wikipedia articles, QANET, the roles learned for
TPR encodings of English questions partially align with
recognizable linguistic structural properties, at levels rang-
ing from small features of words (such as plural), to
general semantic categories like predicate (expressed by
verbs and adjectives) to an invented type of multiword
sequence that could be called a wh-restrictor-phrase,
like what famous event in history (Palangi et al. 2018).
Another model, CaptionNet, learns to generate image
captions, in the process inventing roles that are highly pre-
dictive of the sequence of parts of speech (noun, adjective,
etc.) in the captions it generates (Huang et al. 2018; 2019).

Improved compositional generalization

StoryNet (Schlag and Schmidhuber 2018) is a NECST
model that answers questions about short synthetic nar-
ratives (Weston et al. 2015), such as the one shown in
Figure 5B. To test compositional generalization, during
training certain character nameswere allowed to appear in
only some fraction of the multiple subtasks in this dataset;
the model was then tested on all subtasks using these

withheld character names. The smaller the fraction of sub-
tasks in which a given name was seen during training,
the more compositional generalization is required, and
as the plot shows, the more StoryNet decisively domi-
nates the previous state-of-the-art system.
On two highly challenging natural tasks involving

much more than simple compositionality, NECST mod-
els achieved new state-of-the-art performance. One is
CaptionNet: image captioning requires learning an
extremely complex relationship between the two very dif-
ferent, approximately compositional, natures of images
and sentences. Another is a NECSTransformer model that
generates text summaries (Jiang et al. 2021), Summa-
ryNet. Without being told to do so, the model invents
structure that parcels syntax—sentence structure—into
roles, and semantics—meaning—into fillers.

BENEFITS OF IMPROVED
COMPREHENSIBILITY FROM 2G
NEUROCOMPOSITIONAL COMPUTING

In addition to improved compositional generaliza-
tion, closer alignment with the type of computing



AI MAGAZINE 317

underlying human cognition renders NECST AI systems
more human-comprehensible, as already illustrated by
QANET and CaptionNet. Because 2G neurocompo-
sitional AI systems are significantly less opaque than
previous neural models, they deliver several important
benefits for overcoming serious problems facing the devel-
opment of more explainable, trustworthy, and controllable
AI systems (Adadi and Berrada 2018).

Informing deep structure learning

Centuries of successful analysis of cognition as
compositional-structure processing have given cog-
nitive science and traditional symbolic AI powerful
symbolic theories for computing cognitive functions,
but the computational chasm separating symbolic
compositional processing from traditional noncompo-
sitional neural computing has rendered this wealth of
insight largely unusable for constructively informing the
development of contemporary, deep-learning-based AI.
Neurocompositional computing opens the door to using
such theories to inform—that is, improve the inductive
bias of—neural learning.
An example is provided by the NECST-generation AI

model, ProgNet (Figure 5A), which learns to take a prob-
lem stated in English and produce a computer program
that solves the problem; one version solves math word
problems, another, Lisp-programming problems (Chen
et al. 2020). Like CaptionNet and SummaryNet above,
ProgNet solves a task requiring far more than identifying
compositional structure. Computing the linguistic sub-
parts of the English problem statement (e.g., in Figure 5A,
the number in the range from 1 to b inclusive that has
the maximum value when its digits are reversed) is an
important first step, but translating such English expres-
sions into the corresponding sequence of Lisp commands
requires rich knowledge of how the syntax and seman-
tics of English expressions correspond to the syntax and
semantics of Lisp operations, and knowledge of how com-
position of the English subparts relates to composition of
the Lisp subparts.
Previousmodels for such program-generation tasks pro-

duce the output program one symbol at a time, but NECST
enables models that take advantage of the structure inher-
ent in the programs: a sequence of commands, each a
tuple consisting of an operation and the arguments it oper-
ates upon, such as (add, x, 5) or (append, list1, list2).
ProgNet is designed to bias learning towards producing
not a sequence of individual symbols, but a sequence of
TPRs, each decodable as such a tuple of symbols compris-
ing a command. Informing the model in this way about
the structure of its outputs allowed it to set a new state of

the art for both problem-solving tasks, generating Lisp pro-
grams as long as 55 commands perfectly. And the similarity
structure of the learned vector encodings of symbols can
be partially interpreted: for example, arithmetic operators
cluster together, as do geometric functions like area, and
operations for processing character sequences.
A second example, already introduced, is StoryNet

(Schlag and Schmidhuber 2018), which was provided
with valuable biases for compositional learning (recall
Figure 5B). This network learned to encode abstractions of
entities and relations as vectors and to use built-in oper-
ations to bind them together into a TPR that explicitly
encodes a continuous graph structure capturing knowl-
edge of the events in the narrative. The learning bias
provided to this network was a set of useful built-in oper-
ations for updating, as each sentence of the narrative
arrives, the vector encoding the continuous knowledge
graph, and for sequentially extracting information from
the graph to answer questions. The model successfully
learned how to use these operations.

Diagnosing errors

Recall that the NECST model QANET, in the service of
learning to answer questions about Wikipedia articles,
invents a number of roles that can be interpreted grammat-
ically. In addition, some learned fillers can be interpreted
semantically (Figure 6B). ThewordWho has severalmean-
ings, and which filler is assigned to a particular instance
of Who correlates with which meaning is appropriate for
the specific context of that instance. In the articles’ many
mentions of the TV character named Dr. Who, the model
sometimes assigns Who the filler that would be appro-
priate for a question word, as in Who died? (although
QANET made this error at a considerably lower rate than
a state-of-the-art probabilistic symbolic system designed
for analyzing English sentences, Manning 2017). When
the model made this internal filler error, it was five times
more likely to produce an incorrect output—an output that
would have been appropriate had Who actually been a
question word rather than a character name (Palangi et al.
2018).

Controlling output

The incomprehensibility of contemporary black-box non-
compositional neural AI models severely limits our ability
to control them. This lack of control is problematic;
for example, it makes it challenging to address the
socially toxic biases the outputs of these models often
display (Bender et al. 2021). In contrast, the relative
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F IGURE 6 Example NECST analyses demonstrating new capabilities enabled by greater comprehensibility: controlling output and
diagnosing errors—RoboNet: Soulos et al. (2020); QANET: Palangi et al. (2018)

comprehensibility of NECST encoding vectors can enable
direct intervention—precision surgery—on internal acti-
vation patterns in order to control the output of a network.
Our illustration of this introduces a discovery revealed

by NECST analysis techniques about the internal encod-
ings learned by standard neural networks (McCoy et al.
2019). (For a demo, see http://rtmccoy.com/tpdn/tpr_
demo.html.) One case study concerned a simple hypothet-
ical robot: given an input description of a maneuver in
highly simplified English, the task of the network (which
we dub RoboNet) is to produce an appropriate output
sequence of basic commands to carry out that maneuver
(Lake and Baroni 2018).
When RoboNet is given extensive training data that

widely exemplifies the compositional possibilities inher-
ent in its highly compositional artificial task, it achieves
good compositional generalization. ANECST-based analy-
sis revealed that in this case, the key internal encoding can

be extremely well-approximated by a TPR encoding of the
input, with appropriate role assignments to input words
and appropriate vector encodings of these words and their
roles (Soulos et al. 2020). As depicted in Figure 6A, this
understanding of RoboNet’s learned encodings as TPRs
of approximately discrete structures allows us to write a
closed-form expression for the learned vector [2] that inter-
nally encodes any given input [1], which in turn tells us
exactly how to take the internal encoding of an input such
as jump twice and directly modify it into the encoding that
would be produced by jump thrice: we subtract the vector
hidden in this encoding that encodes twice and add the
vector that encodes thrice [4]—in the process, changing
the activation level of every neuron by a precisely deter-
mined amount. Now the output of themodel changes from
jump jump [3] to jump jump jump [5]; that is, the alter-
ations thatwe havemade to themodel’s internal encodings
produce exactly the behavioral alteration we intended to

http://rtmccoy.com/tpdn/tpr_demo.html
http://rtmccoy.com/tpdn/tpr_demo.html


AI MAGAZINE 319

make, illustrating how the interpretable structure of TPRs
facilitates control of a model’s behavior.
Considerably more complex modifications, and

extended sequences of successive modifications, can also
be successfully effected in this way. The eight-word input
in [6] produces the encoding vector [7] and output [8].
We can change this encoding to match that of a virtual
input that differs from it in five words [12] by taking five
steps of subtracting the encoding of an existing word
and adding in the encoding of a new virtual word [9].
(TL, TR denote Turn-Left and Turn-Right;

−−−−−−→
𝗍𝗐𝗂𝖼𝖾𝟪 is the

vector encoding of twice:8, the binding of filler twice to
role 8.) The resulting encoding produces the output [11]
that correctly corresponds to the virtual new input [12]:
the original 13 output commands have been replaced
by 30 new ones. The plot shows how, even after many
such successive substitutions, the internal modifications
specified by our NECST analysis continue to control
behavior with high accuracy.

CURRENT LIMITATIONS: THE ROAD TO
3G NEUROCOMPOSITIONAL
COMPUTING

The deployment of TPRs in AI has already led to sig-
nificant progress, but the gains are clearly still short of
those expected from full compositional abilities. Why is
that? The work to date is only the first step towards
fully achieving NECST computing, falling short in several
respects. Identifying these shortcomings, and proposing
techniques for addressing them, provides a road to 3G
neurocompositional computing.
First, while the TPRs of 2G systems successfully

disentangle the what and where aspects of composi-
tional structure, there is nothing to explicitly bias the
model to learn processing that takes advantage of this
disentanglement to promote compositional generaliza-
tion. Building such a bias into the network structure
will be a key component of 3G neurocompositional
computing.
Second, the mathematics of TPRs allows them to embed

inside one another just as [𝗅𝗈𝖼𝗄 𝖺𝖻𝗅𝖾] can be embedded
within [𝗎𝗇 [𝗅𝗈𝖼𝗄 𝖺𝖻𝗅𝖾]]. The corresponding neural opera-
tions are beyond 2G NECST computing, but are now in
development, and will be integral to 3G.
Third, the transformative advances in grammatical the-

ory derived from NECST center on the innovation that
grammatical expressions are encoded in activation vectors
that optimally satisfy grammatical constraints, which are
encoded in the strengths of connections joining neurons
(Prince and Smolensky, 1993/2004, 1997). To go beyond
the relatively modest gains in natural language processing

observed in 2G neurocompositional computing, incorpo-
rating such optimization-based processing into 3G neu-
rocompositional computing may set the stage for major
breakthroughs in language processing, as it did in lin-
guistic theory. An initial step in this direction shows
how NECST can strengthen inference ability by enabling
the meaning of symbols denoting particular entities and
relations to adapt continuously to—to be optimized for—
their structural context within a knowledge graph of facts
(Lalisse and Smolensky 2019).
The research program reviewed here aspires to a recon-

vergence of AI and cognitive science through a unified
theory of the computing underlying both human and
machine intelligence. Recognizing the importance of such
a synergy is not new: it was already envisioned nearly two
centuries ago by Ada Lovelace, who saw that in the general
purpose computer, “not only the mental and the mate-
rial, but the theoretical and the practical, are brought into
more intimate and effective connexion with each other”
(Bowden 1953, Note A, p. 369). It is our hope that the devel-
opment of neurocompositional computing will ultimately
contribute to the realization of her remarkably prescient
vision of intelligent machines.

ACKNOWLEDGMENTS
We gratefully acknowledge, for support and valuable
conversations, Johannes Gehrke, Li Deng, Qi Lu, Yi-
Min Wang, Harry Shum, Eric Horvitz, Susan Dumais,
Xiaodong He, Aslı Çelikyılmaz, Chris Meek, Hamid
Palangi, Qiuyuan Huang, Nebojsa Jojic, Imanol Schlag,
Kezhen Chen, Shuai Tang, Laurel Brehm, Najoung Kim,
Matthias Lalisse, Paul Soulos, Eric Rosen, Caitlin Smith,
Coleman Haley, Géraldine Legendre, Jason Eisner, Ben
Van Durme, Alan Yuille, Hynek Hermansky, Tal Linzen,
Robert Frank, Jürgen Schmidhuber, Ken Forbus, Gary
Marcus, Yoshua Bengio, Steven Pinker, Jay McClelland,
Alan Prince, Ewan Dunbar, Dapeng Wu, Randy O’Reilly,
François Charton, Guillaume Lample, Peter beim Graben,
Daniel Crevier, and all our collaborators on the papers
reviewed here. The work reported here was supported in
part by NSF (GRFP 1746891, BCS-1344269, DGE-0549379)
and by Microsoft Research. Any opinions, findings, and
conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect
the views of the National Science Foundation orMicrosoft.

CONFL ICT OF INTEREST
Paul Smolensky, Roland Fernandez and Jianfeng Gao
declare a financial interest in Microsoft Corporation. The
remaining authors declare there is no conflict of interest.

ORCID
Paul Smolensky https://orcid.org/0000-0003-2420-182X

https://orcid.org/0000-0003-2420-182X
https://orcid.org/0000-0003-2420-182X


320 AI MAGAZINE

ENDNOTE
1The tensor product yields encodings that are a special kind of vector:
a tensor, which we can take to be a set of real numbers that can be
visualized as forming a multidimensional grid. For the tensor prod-
uct of a filler vector 𝐟 = (𝑓1, 𝑓2,⋯) and a role vector 𝐫 = (𝑟1, 𝑟2,⋯),
this is a 2-D grid; the number in the 𝑖th row and 𝑗th column is simply
𝑓𝑖𝑟𝑗 .
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