
■ Induction and deduction are two opposite opera-
tions in data-mining applications. Induction
extracts knowledge in the form of, say, rules or
decision trees from existing data, and deduction
applies induction results to interpret new data. An
intelligent learning database (ILDB) system inte-
grates machine-learning techniques with database
and knowledge base technology. It starts with
existing database technology and performs both
induction and deduction. The integration of data-
base technology, induction (from machine learn-
ing), and deduction (from knowledge-based sys-
tems) plays a key role in the construction of ILDB
systems, as does the design of efficient induction
and deduction algorithms. This article presents a
system structure for ILDB systems and discusses
practical issues for ILDB applications, such as
instance selection and structured induction.

Over the past 30 years, database research
has developed technologies that are
now widely used in almost every com-

puting and scientific field. However, many new
advanced applications, including computer-
aided design (CAD) and computer-aided manu-
facturing (CAM), have revealed that traditional
database management systems (DBMSs) are
inadequate, especially in the following cases:

Conventional database technology has laid
particular stress on dealing with large amounts
of persistent and highly structured data effi-
ciently and using transactions for concurrency
control and recovery. For some applications,
such as CAD and CAM where the data schema-
ta need to vary frequently, new data models are
needed.

In some applications, such as geographic
data and image data, the semantic relation-
ships among data (such as the variations and
developments of real-world entities in func-
tion, performance, structure, and status, with
time and external variables’ variations) need to
be represented as well as the data itself. Con-
ventional data models in database technology

cannot support any representation facility for
complex semantic information.

Traditional database technology can only
support facilities for processing data. Along
with the developments of other subjects, such
as decision science and AI, more and more
applications need facilities for supporting both
data management and knowledge manage-
ment (such as rules for automatic data infer-
ring and management of integrity constraints
between data).

To widen the applicability of database tech-
nology to these new kinds of application,
object-oriented approaches are currently pop-
ular in processing structurally complex objects,
and deductive databases or logic databases
have been expected to support a solution to
those applications where both knowledge and
data models are needed. However, the knowl-
edge bases (which contain deductive rules
and/or semantic information such as the con-
ceptual hierarchy among data) in existing
deductive database systems can only be built
up manually with known technology. Auto-
matic knowledge acquisition or learning from
databases directly in deductive database sys-
tems has become a central and difficult prob-
lem in deductive database systems research.

Existing work relevant to knowledge acqui-
sition falls into the following four categories:
(1) adding an induction engine to an existing
database system in an ad hoc way to imple-
ment rule induction from (or data mining in)
databases, (2) designing a specific engine to
learn from a domain-specific data set, (3)
building ontologies and knowledge bases for
expert systems, and (4) designing various
learning algorithms that have no direct con-
nections with existing database technology.
However, when we integrate machine-learning
techniques into database systems to imple-
ment data mining or knowledge acquisition
from databases, we face many problems, such
as (1) efficient learning algorithms because
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exchanges information with users in the form
of pull-down menus. KBMS and DBMS are facil-
ities to support knowledge base and database
management functions. DB and KB denote
databases and knowledge bases, respectively,
and OS indicates operating system facilities.
The knowledge-acquisition engine, K.A. Engine,
implements induction from databases. I/D
Engine is an inference and deduction engine.
Utility contains a set of common procedures
that are shared by K.A. Engine, KBMS, and
DBMS. Access Storage Interface is composed of
the basic knowledge and data operators.

KBMS
The KBMS module supports facilities for inter-
actively building, adapting, and displaying
knowledge bases; checking for semantic incon-
sistencies; sorting knowledge bases to imple-
ment efficient chaining (Wu 1993a); and edit-
ing knowledge base files.

DBMS
The DBMS module is based on a commercial
relational DBMS. Users can do conventional
database operations by simply calling the com-
mercial system. However, a new function, List
a Relation, is developed here to translate rela-
tional files into the Prolog-based representa-
tion (Wu 1993b) suitable for use by the K.A.
Engine. This representation relates to the prob-
lem of expressive representations for both data
and knowledge. It binds actual relational data
and the data schema together in an explicit
way and can represent semantic information
(such as logic implication and constraints
between attributes or fields in entities) as well
as all the information that can be represented
in the widely adopted entity-relationship (E-R)
model.

K.A. Engine
There are two submodules in the K.A. Engine:
(1) semantic information, which generates
semantic networks from relational database
schemata in an interactive manner, and (2) rule
induction, which constructs decision trees and
generates rules.

I/D Engine
The I/D Engine tests the knowledge produced
by the K.A. Engine on new data sets and inter-
prets it to solve users’ problems.

Induction from Databases
Among the functions shown in figure 1, the
K.A. Engine is the central module in an ILDB
system. The K.A. Engine relates to the design of

realistic databases are typically large and noisy
and (2) expressive representations for both
data (for example, tuples in relational databas-
es, which represent instances of a problem
domain) and knowledge (for example, rules in
a rule-based system, which can be used to solve
users’ problems in the domain, and the seman-
tic information contained in the relational
schemata).

Meanwhile, although some commercial suc-
cesses have been found in existing learning sys-
tems, there are limitations on current machine-
learning techniques for both research and
applications. The limited industrial support to
the machine-learning community is an exam-
ple of such limitations. Because database tech-
nology has found wide applications in various
fields, it will surely generate significant effect
on machine-learning research if we can couple
them well. Therefore, research on knowledge
acquisition from databases can be viewed as an
important frontier for both database and
machine-learning technology (Wu 1993c).

This article discusses issues in integrating
machine learning with database and knowl-
edge base technology to construct intelligent
learning database (ILDB) systems. In the fol-
lowing section, I outline the system structure
of an ILDB system that I have developed. In
Induction from Databases and Deduction of
Induction Results, I survey existing induction
and deduction techniques, respectively, for
ILDB systems. I follow these sections with a dis-
cussion of some essential problems in practical
systems construction.

System Structure
An ILDB system (Wu 1995) supports database
and knowledge base management functions as
well as learning facilities. It provides mecha-
nisms for (1) preparing and translating stan-
dard (for example, relational) database infor-
mation into a form suitable for use by its
induction engines, (2) using induction tech-
niques to extract knowledge from databases,
and (3) interpreting the knowledge produced
to solve users’ problems. With an ILDB system,
one can, for example, produce 100 to 200 con-
junctive rules for 50 diseases from 2 million
medical cases of the 50 diseases. Then, the
ILDB system can use the rules in two different
ways: (1) keep these rules instead of the origi-
nal cases because the original cases might take
a large space and (2) use these rules to diagnose
new cases.

Figure 1 shows the system structure of my
KESHELL2 system (Wu 1995). In the diagram,
Monitor is a man-machine interface that
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efficient learning algorithms, which can gener-
ally be divided into three categories:1 (1) super-
vised classification, (2) unsupervised cluster-
ing, and (3) association analysis. This section
provides a review of existing techniques in
these categories, all of which can be integrated
into the system structure in figure 1.

Let E = D1 × … × Da be a finite attribute space
of a dimensions, where each Dj (j = 1, …, a) is a
finite set of symbolic values or a numeric inter-
val. An instance e = (v1, …, va) is an element of
E means vj � Dj. Each instance in a classifica-
tion belongs to a known class that, say, has a
specific name in E. The classification task is to

generate a description, say, production rules or
a decision tree, that distinguishes instances of
each class from other classes.

Attribute-based induction algorithms (such
as ID3 [Quinlan 1986], c4.5 [Quinlan 1993]; AQ,
CN2 [Clark and Niblett 1989]; AE1 [Hong 1985],
and HCV [Wu 1993d]), incremental induction
algorithms (such as ID5R [Utgoff 1989], and the
version-space method [Mitchell 1977]) fall into
the supervised classification category.

Unsupervised clustering (or concept forma-
tion [Langley 1987]) deals with the discovery of
new concepts from unclassified data. The data
input for clustering is similar to that for classi-
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existing database technology. When the avail-
able data sets are not well organized or contain
too much noise, both attribute-based induc-
tion and inductive logic programming perform
poorly, although they can sometimes deal with
a small amount of noise. Connectionist and
statistical methods are able to show their sig-
nificance in these environments. When exam-
ples in a data set are not classified with distinc-
tive concepts, only connectionist and
statistical clustering methods can be adopted
to carry out unsupervised learning. In practical
ILDB systems, we would need to construct an
algorithm library containing learning algo-
rithms of different paradigms and correspond-
ing documentation for the user to refer to, and
choose among, the algorithms.

Deduction of Induction Results
Because real-world databases are typically
incomplete and noisy, induction results cannot
be assumed to be perfect. When induction
results take the form of rules, interpreting them
to classify a new instance needs to face three
possible cases that demand different actions.
First is no match: No rules match the instance.
Second is single match: One or more rules indi-
cate the same class match. Third is multiple
match: More than one rule matches the
instance and indicates different classes.

The third case does not apply to decision
trees produced by ID3-like algorithms, but
when the trees are decompiled into production
rules (Quinlan 1993), the production rules will
face the same problems.

In the single-match case, the choice of class
to the instance is naturally the class indicated
by the rules. Deduction-time processing deals
mainly with the conflict resolution in the third
case and class estimation for the first case. Exist-
ing techniques for dealing with the first and
third cases are both exclusively based on prob-
ability estimation. Among them, the measure of
fit for dealing with the no match case and the
estimate of probability for handling the multiple-
match case developed in AQ15 (Michalski et al.
1986) have been adopted widely in knowledge
discovery and data mining.

The measure-of-fit and estimate-of-probabil-
ity methods perform well with problem
domains where no real-valued attributes are
involved. However, when a problem contains
attributes that take values from continuous
domains (that is, real numbers or integers),
their performance, especially in terms of accu-
racy, decreases. In existing induction algo-
rithms, dealing with continuous domains is
based on the discretization of them into a cer-

fication, but the significant difference is that
no class information is available for each
instance. Well-known algorithms in unsuper-
vised clustering are CLUSTER/2, UNIMEM, COBWEB

(Fisher 1996), CLASSIT, AUTOCLASS, BIRCH (Zhang,
Ramakrishnan, and Livny 1997), and the con-
nectionist Kohonen self-organizing map and
backpropagation (Dayhoff 1990).

Association analysis (Han, Pei, and Yin 2000;
Agrawal and Srikant 1994; Agrawal, Imielinksi,
and Swami 1993) starts with a different data
environment. Let I = {i1, i2, …, iN} be a set of N
distinct literals called items and D a set of
transactions over I. Each transaction is a set of
items i1, i2, …, ik � I. An association rule is an
implication of the form A → B, where A, B � I,
and A � B = �. A is called the antecedent of the
rule, and B is called the consequent.

A set of items (such as the antecedent or the
consequent of a rule) is called an item set. The
number of items in an item set is the length (or
size) of the item set. An item set of some length
k is referred to as a k–item set. Each item set has
an associated statistical measure called support,
denoted as supp. For an item set A � I, supp(A)
= s, if the fraction of transactions in D contain-
ing A is equal to s. A rule A → B has a measure
of strength called confidence (denoted as conf),
which is defined as the ratio supp(A �
B)/supp(A). The problem of association analy-
sis is to generate all rules A → B that have both
support and confidence greater than or equal
to some user-specified thresholds, called mini-
mum support (minsupp) and minimum confi-
dence (minconf), respectively.

Association analysis from large databases has
received much attention recently. To discover a
useful and interesting association analysis, a
wide range of problems have been investigated
over such diverse topics as generalized associa-
tion rules (Aggarwal and Yu 1998; Tsur et al.
1998; Agrawal and Srikant 1994; Agrawal,
Imielinksi, and Swami 1993), measurements of
interestingness (Aggarwal and Yu 1998), quan-
titative association rules (Srikant and Agrawal
1996), multiple-level association rules (Han
and Fu 1999), and association with sequential
patterns (Agrawal and Srikant 1995).

Every learning paradigm has its own advan-
tages and disadvantages. For example, attri-
bute-based induction algorithms cannot pro-
duce first-order rules on their own. Inductive
logic programming research can contribute in
this regard, although it is in general less effi-
cient for problems where attribute-based
induction works. However, because it requires
background knowledge before learning can be
carried out, inductive logic programming has
not found much realistic application with
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tain number of intervals. There are quite a few
strategies available for discretization, such as
the information gain–based methods
(Dougherty, Kohavi, and Sahami 1995; Quin-
lan 1993; Fayyad and Irani 1992). Once each
continuous domain has been discretized into
intervals, the intervals are treated as discrete
values in induction and deduction. Discretiza-
tion is the standard way existing induction sys-
tems have taken. However, discretization of
continuous domains does not always fit accu-
rate interpretation. To say an age greater than
50 is old or a temperature above 32 degrees
Centigrade is high is fuzzy. In such cases, fuzzy
interpretation of the discretized intervals at
deduction time could be valuable. Rather than
taking the cut points decided by a discretiza-
tion method as sharp borders for intervals, we
can instead place some kind of curve at each
cut point as a fuzzy border. With these fuzzy
borders, a value can be classified into a few dif-
ferent intervals at the same time, with varying
degrees. Thus, a single-match case could
change to a multiple match, and a no-match
case could change to a single or even multiple
match. Deduction with fuzzy borders of dis-
cretized intervals is called fuzzy matching. In
the multiple-match case, we can take the inter-
val with the greatest degree as the value’s dis-
crete value. Wu (1999) describes an implemen-
tation of the fuzzy matching techniques.

Practical Issues
When building practical ILDB systems, we
need to face the following important problems,
in addition to noise handling and dealing with
both numeric and nominal data, which have
received wide attention in the design of various
data-mining systems.

Instance selection: Dealing with very large
databases is one of the defining challenges in
data-mining research and development. No
matter how powerful computers are or will be
in the future, data-mining researchers and
practitioners must consider how to manage
ever-growing data that can be too large (for
example, with terabytes of data) to be
processed at one time. Instance selection is about
approaches that select or search for a portion of
a large database that can be used in data min-
ing instead of the whole database. One of the
major approaches for instance selection is sam-
pling, in which a sample is selected for testing
and analysis. Other major approaches include
windowing, data reduction, and selection of
representative instances.

Structured induction: The basic idea of
structured induction (Shapiro 1987) is to decom-

pose a complex problem that might be very
large in size into a number of subproblems by
using domain knowledge and apply an induc-
tion algorithm to each of the subproblems.
When induction results from all these subprob-
lems are put in a single knowledge base, we
need chaining mechanisms to perform deduc-
tion on examples from the complex problem.
There has been some significant work in the
design of efficient chaining algorithms for
expert systems (Wu 1993a), but dealing with
no match and multiple match cases needs
more attention in the data-mining context.

Constructive induction: None of the AQ-
like, ID3-like and HCV-like algorithms (Wu
1993c) need explicit, built-in background
knowledge, which is why they are sometimes
called empirical learning methods. Such learning
methods are different in nature from the
knowledge-rich learning methods, such as AM

and EURISKO developed by Lenat (1983, 1979),
explanation-based learning, and inductive log-
ic programming.

However, there is always implicit back-
ground knowledge embedded in the formula-
tion of solution spaces and in the representa-
tion of examples. When a solution space turns
out to be inadequate, representation modifica-
tion is needed, and the modification process
typically involves searching for useful new
descriptive features (constructive induction) in
terms of existing features or attributes. AQ17
(Wnek and Michalski 1994) of the AQ-like fam-
ily has been developed to implement iterative
construction of new attributes based on exist-
ing ones. Zheng (1995) has also tried a method
called X-of-N attributes in constructive deci-
sion-tree construction.

Constructive learning has become a strong
theme in inductive learning research. One of
the difficulties in constructive learning is that
the complexity in some cases (such as iterative
feature construction) is extreme, but there are
situations in which it is a necessary part of
learning.

Integration of object-oriented design to
learn semantic information from relational
schemata involving complex objects: The
entity-relationship (E-R) model is one of the
most successful methods of formulating useful
abstract models in the conceptual structure
design of databases and the key design aid for
conventional databases implemented under a
wide variety of commercially available systems.
By focusing on the entities and their relation-
ships, the E-R model structures the way design-
ers approach the problem of creating extensi-
ble databases. However, there are two
substantial problems here. One is that trans-
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mining techniques with existing database tech-
nology has been a popular topic for both com-
munities. Knowledge discovery and data min-
ing can augment the ability of existing
database systems to represent, acquire, and
process a collection of expertise such as those
that form part of the semantics of many
advanced applications. In the meanwhile,
there should be ways to further explore new
information from data processing. For example
(Wu and Craske 1997), query results from data-
bases with existing DBMSs could be a good
source of information for providing hypothe-
ses for knowledge discovery and data mining.

Conclusions
Knowledge acquisition from databases has
been worked over by researchers in several dis-
ciplines, including AI and databases, for a
decade and is still an important research fron-
tier for both machine learning and database
technology.2 Although a lot of work has been
done and some commercial data-mining pack-
ages are available already, existing work has not
paid enough attention to the integration of
database and knowledge base technology with
machine-learning techniques.

With the World Wide Web’s emergence as a
large, distributed data repository and the real-
ization that online transaction databases can
be analyzed for commercial gains, data mining
in large databases has attracted wide interest
from both academia and the industry and, in
the meanwhile, has also uncovered new chal-
lenges (Ramakrishnana and Gramam 1999).
Data mining has its distinctive goal from relat-
ed fields such as machine learning, databases,
and statistics and accordingly requires distinc-
tive tools. An ILDB system is one such tool to
implement automatic knowledge acquisition
from databases.
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Notes
1. The discovery of quantitative laws among features-
parameters can possibly be listed as a fourth category,
but this discovery is more on the statistical side than
AI-related data mining.

2. The First Knowledge Discovery and Data-Mining

forming an E-R model into a relational model
during the logical design of databases results in
the loss of some semantic information that
exists in the E-R model. In other words, the
entities and relationships are not distinguished
in the relational data model. The other prob-
lem is that the relationship types of the E-R
model are too simple to express complex
semantic features of relationships among and
within entities. It is impossible for the relation-
al data model to describe the changes in rela-
tionship(s) and other entities caused by an
entity in an E-R model. The integration of
object-oriented design is expected to provide
facilities for expressing and acquiring these
kinds of semantic information. The semantic
information can be used to guide and facilitate
knowledge discovery in ILDB systems.

Incremental induction in the case of
large, dynamic real-world databases: There
are several common problems in all kinds of
inductive learning algorithm: (1) When a data-
base is very large, how can these algorithms
speed up their learning processes? (2) When a
database is not a static repository of data—for
example, examples can be added, deleted, or
changed—the induction on the example set
cannot be a one-time process, so how can
induction algorithms deal with the changing
examples? (3) When some inconsistency (for
example, noise) is found in a database or a
knowledge base just produced, how can they
remove it?

One possible way to solve those problems is
incremental learning, which means dividing a
large example set into a number of subsets and
treating each subset each time. Although no
existing algorithms have found a complete
solution to these problems, many research
efforts have been made along this direction.
For example, AQ15, AE5, ID5R (Utgoff 1989), and
the windowing technique in ID3 can be viewed
as good examples of research in incremental
learning. However, how to deal with the incon-
sistency between new data and the data previ-
ously used is still an open question. The incon-
sistency might be caused by dynamic changes
of the data attributes.

Generally speaking, incremental induction
can take more time (but less run-time space)
because it needs to restructure decision trees or
rules when some new examples do not fit the
decision trees or rules developed so far.

Stronger integration of database technolo-
gy and data mining. One of the criticisms
from the database community about current
data-mining research is that database technol-
ogy can contribute more than just data prepa-
ration for data mining. How to integrate data-
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Workshop was held in Detroit, Michigan,
in August 1989 in conjunction with the
1989 International Joint Conference on
Artificial Intelligence.
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