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Abstract
Stickers are popularly used while messaging to visually express nuanced
thoughts. We describe a real-time sticker recommendation (SR) system. We
decompose SR into two steps: predict the message that is likely to be sent, and
substitute that message with an appropriate sticker. To address the challenges
caused by transliteration of message from users’ native language to the Roman
script, we learn message embeddings by employing character-level CNN in an
unsupervised manner. We use them to cluster semantically similar messages.
Next, we predict the message cluster instead of the message. Except for valida-
tion, our system does not require human labeled data, leading to a fully auto-
matic tuning pipeline. We propose a hybrid message prediction model, which
can easily run on low-end phones. We discuss message cluster to sticker map-
ping, addressing the multilingual needs of our users, automated tuning of the
system and also propose a novel application of community detection algorithm.
As of November 2020, our system contains 100k+ stickers, has been deployed for
15+months, and is being used by millions of users.

INTRODUCTION

Inmessaging apps such as FacebookMessenger, Hike, etc.,
new modalities are extensively used to visually express
thoughts and emotions (e.g., emojis, gifs, and stickers).
Emojis are used alongwith text to convey emotions inmes-
sages (Donato and Paggio 2017). Unlike emojis, stickers
provide a graphic alternative to text messages. Hike stick-
ers are composed of an artwork (cartoonized characters
and objects) and a stylized text (Figure 1). They convey
rich expressions along with the message. 100k+ stickers
are available for download in popular messaging apps.
Once a user downloads a sticker pack, it gets added to a

palette, which can be accessed from the chat box. However,
discovering the right sticker while chatting can be cum-
bersome because it is not easy to think of the best sticker
that can substitute your utterance. Apps likeHike and Line

offer type-ahead sticker recommendation (SR) while typ-
ing (Figure 1) to alleviate this problem. Compared to emoji
prediction which predicts a few set of emotions, there are
tens of thousands possible utterances in text and their cor-
responding stickers which makes SR problem more com-
plex (Barbieri, Ballesteros, and Saggion 2017).
The latency of generating such SR should be in tens of

milliseconds to avoid perceivable delay during typing. This
is possible only if the system runs end-to-end on themobile
without any network calls. Furthermore, a large fraction
of Hike users use low-end phones, so we need a solution
which is efficient both in terms of CPU load and memory
requirements.
Before this work, SR on Hike app used string matching

of the typed text to the tags that were manually assigned to
each sticker. Recall of stringmatching is limited by exhaus-
tiveness of tagging. However, there are many ways of
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F IGURE 1 Sticker recommendation (SR) UI on hike and a
high level flow of our 2 step SR system

expressing same message. For instance, people often skip
vowels as they type, for example, “where are you”→ “whr
r u,” “ok’’ → “k. ” This is further exacerbated when peo-
ple transliterate messages from their native language to
Roman script, for example, phrase “acchha” (Hindi for
“good”) is written in many variants – “accha,” “acha,”
“achha, ” etc. such variants proliferate because pronunci-
ation of certain words varies with region. We observe 343
variants of “kya kar raha hai” (“What are you doing”) in
our dataset. Hence, capturing all variants of an utterance
as tags is hard.
Decomposing SR: SR can be formulated as a supervised

task by learning the most relevant stickers for a given con-
text defined by the previous message and the text typed
by the user. However, due to frequent updates in the set
of available stickers and a massive skew in historical usage
toward a handful of popular stickers, it becomes difficult to
collect unbiased data to train an end-to-end model. More-
over, an end-to-end model requires frequent retraining to
support new stickers and the updatedmodel would have to
be synced across devices. Such regular updates, which are
>10 MB in size, will be prohibitively expensive in terms
of data costs. Thus, we decompose the SR task into two
steps. First, we predict the message that a user is likely
to send based on the chat context and what the user has
typed. Second, we recommend stickers by mapping the
predicted message to appropriate stickers. We automati-
cally update the mapping frequently based on relevance
feedback observed on recommendations and incorporate
new stickers as they are launched.
We have launched the SR model in various geographies

by taking care of the multi-lingual expression needs of our
user base.
In this article, we discuss themajor aspects of our sticker

recommendation model and how we scale to our diverse
user base. We propose the following solutions:

Chat message clustering: As mentioned, many chat
messages are simply variants of each other. Simi-

lar to SmartReply (Kannan, Kurach, and Ravi 2016)
which clusters the short responses having sim-
ilar intent, we cluster frequent messages which
are orthographic variants or semantically similar.
Unlike their approach to apply semi-supervised
learning for clustering, we learn embeddings of
chat messages in an unsupervised manner. Then
we cluster the representations with HDBSCAN
(McInnes, Healy, and Astels 2017). We investigate
various encoders to learn the embeddings and show
that the use of charCNN (Kim et al. 2016) with
transformer (Vaswani, Shazeer, and Parmar 2017)
is highly effective to capture semantics of chat
phrases. The clusters obtained are used as classes
for our message prediction model. This helps us to
drastically reduce the number of classes in the clas-
sifier while keeping most frequent message intents
of our corpus.

Hybrid message prediction model for low-end smart-
phones: Running inference with a neural network
(NN) model for message prediction is challenging
on low-end mobile devices with severe memory
limitations. (Gysel, Motamedi, and Ghiasi 2016).
The size of an NN model trained for message pre-
diction exceeds the memory limitation even after
quantization. We present a novel hybrid model,
which runs efficiently on low-end devices without
significantly compromising accuracy. Our system is
a combination of an NNmodel (on the server), that
processes chat context and predicts message clus-
ter, and a Trie-based model that processes typed
text on the client. The first component is not lim-
ited bymemory and CPU. Trie search is efficient for
retrieving message cluster based on typed text and
can be executed for each character typed. Hence,
the system satisfies the latency constraints. Scores
from these two components are combined for final
message prediction.

Sticker Mapping and Scoring: We effectively man-
age stickers in the system by mapping and scor-
ing them against message intents. The mentioned
approaches help us overcome limitations of tag-
ging process, continuously rank relevant stickers
and deal with new stickers.

A graph-based joint message clustering approach: To
address expression needs of a multi-lingual user
basewithout introducing complexities inmanaging
message clusters in the system implementation, we
need consistent message clustering across models
in different geography. We do not have a univer-
sal embedding model that appropriately captures
the semantics of phrases across geographies, but we
have effective embedding models that capture the
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semantics of phrases in different geographies. We
prepare a unified phrase similarity network from
each model’s similarity information. Then we use
community detection on the graph to build a set of
globally relevant message clusters.

Lastly, we demonstrate the efficacy of our system on
both offline evaluation and real world deployment perfor-
mance.We discuss other challenges in deployment such as
multiple languages in India, serving and update frequency
of models.
In summary, we make the following contributions:
First, a novel system for large-scale multi-lingual type-

ahead SR within a messaging application. Our deployed
system automatically updates and tunes itself using
updated online chat corpus. We decompose the SR task
into two steps: message prediction, sticker substitution.
Second, we describe an unsupervised approach to cluster
semantically similar chat messages. We evaluate different
encoders to learn message embeddings. Next, we define
a novel hybrid message prediction model, which can run
efficiently with low latency and low memory footprint on
low-end smart-phones. We demonstrate that this hybrid
model has comparable performance with a server-only
NN-based message prediction model. Finally, we describe
a novel application of community detection on graphs to
simplify the joint clustering of messages across geogra-
phies.
This article is extension of the work Laddha et al. (2020).

RELATEDWORK

Emojis are widely used in social media. Barbieri et al.
(2018) predict which of the top-20 emojis are likely to be
used in an Instagram post based on the text and image.
Emojis are majorly used along with text, whereas stick-
ers are independent messages that substitute text. Thus,
to have effective SR, we need to predict the likely utter-
ance, not just the emotion. Since the possible utterances
are more than emotions, our problem is harder than emoji
prediction.
There exists a large body of research on conversational

response generation. Xing, Wu, and Wu (2017) design an
end-to-endmodel leveraging a hierarchical RNN to encode
the input utterances and another RNN to decode possi-
ble responses. Zhang, Galley, and Gao (2018) describe a
model that explicitly optimizes for improving diversity of
responses. Yan, Song, and Wu (2016) proposed a retrieval-
based approach using a DNN-based ranker that combines
multiple evidences around queries, contexts, candidate
postings, and replies. Smart Reply (Kannan, Kurach, and
Ravi 2016) proposed a system that suggests short replies to
e-mails which are high quality as well as diverse.

Akin to our system, Smart Reply generates clusters of
responses with same intent. They apply semi-supervised
learning to expand the set of responses starting from few
manually labeled responses for each semantic intent.How-
ever, we follow an unsupervised approach to discover mes-
sage clusters. A unique aspect of our system is that we
update the message prediction by incorporating whatever
the user has typed so far.
There is a parallel research thread around learning effec-

tive representations for sentences that can capture sen-
tence semantics. Skip Thought (Kiros, Zhu, and Salakhut-
dinov 2015) is learns to generate the context sentences for a
given sentence. It includes sequential generation of words
of the target sentences, which limits the target vocabulary
and increases training time. Quick Thought (Logeswaran
and Lee 2018) circumvents this problem by replacing the
generative objective with a discriminative approximation,
where the model attempts to classify the embedding of
a correct target sentence given a set of sentence candi-
dates. BERT (Devlin et al. 2018) predicts the bidirectional
context to learn sentence representation using transformer
(Vaswani, Shazeer, and Parmar 2017). Yang, Yuan, and Cer
(2018) propose the Input-Response model that we evalu-
ate in this paper. Unlike these works, we add CharCNN
(Zhang, Zhao, and LeCun 2015; Kim et al. 2016) in our
encoder to learn similar representations for phrases that
are orthographic variants of each other.

CHATMESSAGE CLUSTERING

As mentioned, we cluster frequent messages in our chat
and use them as classes in the message prediction model.
For covering large fraction of messages in our chat corpus
with few clusters, we need to group all messages having
same intent into a single cluster. This should done without
compromising the semantics of each cluster. For efficiently
clustering, obtainingmessages embeddings that effectively
capture their meaning is critical.

Encoder

The architecture of the encoder is shown in Figure 2. Input
to the encoder is a message and the output is a dense vec-
tor. To represent a word, we use an embedding composed
of two parts; a character-based embedding aggregated from
character representations, and a word-level embedding to
learn context representation. To generate the character-
based embedding,weuse a character CNN (Kimet al. 2016)
that leverages sub-word information to learn similar rep-
resentations for orthographic variants of the same word.
For a word, the character representation can be obtained
by stacking the character-level embeddings in amatrix and
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F IGURE 2 Encoder which comprises of a character based
CNN layer for each word and GRU/transformer layer at word-level

applying a narrow convolution with a filter of k width. A
k width filter is assumed to capture k-gram features of a
word. We have multiple filters for particular a width k,
that are concatenated to obtain a character-level embed-
ding for a word. The character-level representation of the
word is concatenatedwith theword-level embedding to get
the final word representation.
To capture the sequential properties of a message, we

explore two architectures:

Gated Recurrent Unit (GRU) (Chung et al. 2014), an
improved RNN to solve the vanishing gradient
problem. We take the final step representation in
the GRU to be the message embedding.

Transformer is an architecture solely based on atten-
tion to curb the recurrence step in RNN (Vaswani,
Shazeer, and Parmar 2017). It uses multi-headed
attention to capture various relationships among
the words. We compute the message embedding by
averaging the representations in the final layer of
the transformer.

Model architecture

Akin to Yang, Yuan, and Cer (2018), we use the model
architecture shown in Figure 3. The input to our model is
a tuple, (mi,mi+1), extracted from a conversation between

F IGURE 3 Model architecture for learning message
embedding

two users. Messages mi and mi+1 are encoded using the
encoder and represented as ei and ei+1, respectively. The
parameters of both the encoders share weights. Hence,
both ei and ei+1 represent the encoding of message in
same space. We transform embedding ei+1 to reply space
by applying two fully connected layers to obtain the
response embedding ei+1. Finally, the dot product of the
input and output message embedding is used to score
the replies. It maximizes the score of gold reply message.
Within a batch, each mi+1 serves as the correct response
to its corresponding input mi and all other instances are
assumed as negative replies. It is computationally efficient
to consider all other instances as negative because we do
not have to explicitly encode negative examples for each
instance.

Message clustering

We cluster frequent messages using the embeddings
learned as above. Our goal is to have a single cluster for
all the orthographical variations, acronyms of a message.
The variants of a phrase increases with the ubiquity of
that phrase. For example, “good morning” has ∼300 vari-
ants while less frequent phrases have fewer variants. This
poses a challenge when applying a standard density-based
clustering algorithm such as DBSCAN because it is diffi-
cult to decide a single threshold for drawing cluster bound-
aries. To handle this uncertainty, we choose HDBSCAN to
cluster chat messages. It builds a hierarchy of clusters and
handles the variable density of clusters in a time efficient
manner. After building the hierarchy, it condenses the tree,
extracts the useful clusters, and assigns noise to the points
that do not fit into any cluster. Further, it does not require
parameters such as the number of clusters or the distance
between pairs of points to be considered as a neighbor, etc.
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The only necessary parameter is the minimum number of
points required for a cluster. All the clusters including the
noise points are taken to be the different classes in ourmes-
sage prediction step.

MESSAGE CLUSTER PREDICTION

We use previous received message in chat as the only con-
text signal. Upon receiving amessage, we predict the likely
response. As the user starts typing, we update our mes-
sage prediction and SR in real time after every character
typed. The prediction latency should be in tens of millisec-
onds so that the user’s typing experience is not adversely
affected.
We pose message prediction as a classification prob-

lem where we train a model to score the response mes-
sages. An NN-based classification model that accepts the
last received message and the typed text as inputs could
be a solution, but running inference on such a model
on mobile devices is a challenge (Gysel, Motamedi, and
Ghiasi 2016). The size of the NN model that needs to
be shipped explodes since we have a large input vocabu-
lary and a large number of output classes. To overcome
this, we evaluate two orthogonal approaches: (1) quanti-
zation scheme to reduce the model size; and (2) hybrid
model, composed of an NN component and a trie-based
search.

Quantized message prediction model

We train an NN for message prediction task where the
input is the last received message and the typed text, the
output is the message cluster scores.
An active area of research is to reduce themodel size and

the inference times of NNmodels withminimum accuracy
loss so that they run efficiently onmobile devices (Howard,
Zhu, andChen 2017). One approach is to quantize the float-
ing point representations of theweights and the activations
of the NN from 32 bits to fewer bits. We use a quantization
scheme (Jacob, Kligys, and Chen 2018) that converts both
weights and activations to 8-bit integers and use a few 32-
bit integers for biases. This reduces themodel size by a fac-
tor of four. We employ quantize aware training to reduce
the effect of quantization on accuracy, that is, we use quan-
tized weights and activation to compute the loss function
during training as well. This ensures parity during training
and inference.While performing back propagation, we use
full precision float numbers because minor adjustments to
the parameters are necessary to effectively train themodel.
Finally, we obtain an ∼9 MB model.

F IGURE 4 Example of hybrid model message cluster
prediction. Message prediction from neural network (NN) based
reply model on server (1) is combined (3) with trie model prediction
on client (2) for final message prediction score

Hybrid message prediction model

We build a hybrid message prediction model, where a
resource intensive component is run on the server and its
output is combined with a lightweight on-device model to
obtain message predictions (Figure 4). The three compo-
nents in our hybrid model are:

Reply model: We build an NN model which takes the
last received message as input and outputs reply
probabilities for eachmessage cluster.When ames-
sage gets routed to its recipient, the reply model is
queried on the server and the response predictions
are sent to the client along with the message. The
message clusters that have a reply probability above
a threshold are sent to the clients.

Typed model: We retrieve the relevant message clus-
ters for a given typed text by querying a trie. It
stores <phrase> as key and <(message cluster id,
frequency)> tuple as value at leaf nodes. We add
the frequency of the phrases from our chat corpus
as additional information in the trie, for scoring
retrieved entries. We create a trie with top frequent
34k phrases and∼7500message clusters. In the seri-
alized form, the size of the trie is around 700 KB.
This is small enough for us to ship to client. Trie is
also interpretable and makes it easy for us to incor-
porate any new phrase.

Combiner: A final score for a message cluster is com-
puted by using a weighted combination of scores
from reply model, trie model, and typed string
length. The weighting of terms is designed such
that as a user types more characters, contribution
from the reply model vanishes unless the message
cluster is not predicted from the trie. The weights
are chosen by trial and error.
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MESSAGE CLUSTER TO STICKERS
MAPPING

We use a message cluster to sticker mapping to suggest
suitable stickers from the predictedmessage clusters.Quite
a few stickers are applicable to a message cluster. For pop-
ular message clusters, there are many of relevant stickers.
At a time users can only view four stickers in the recom-
mendation panel until they scroll. So, we need a ranking
system to keep appropriate stickers on the top. The ranking
should take care of discoverability of new and old stickers,
overall preference of the stickers by users over time. We
need a way to score stickers in a message cluster initially
when they are produced as and to update the score based
on user feedback.

Computing initial sticker mapping score

During production, stickers are tagged with phrases which
can replace a corresponding sticker (e.g., “good morning”)
andwith high level tags (e.g., “emotion lol”). The high level
tags are less precise then tag phrases but represent a larger
meaning associated with the sticker. We use both for map-
ping of message clusters to stickers.
The tags capture necessary sticker intent but do not

cover all themessage variations. Example, “goodmorning”
may be a tag of a sticker, but “gm”may not be there as a tag.
Also, as the stickers are produced at different times by dif-
ferent people, the tagging does not need to be consistent.
We can map stickers to message clusters by match-

ing their tags against phrases in these message clus-
ters. To overcome limitations of the tagging, while
matching the tags, we use phrase embedding com-
puted earlier. So a sticker S can be mapped to mes-
sage cluster M, with score s = maxt∈tags(S),p M et.ep∈

where et and ep are embedding of tag t and phrase p,
respectively.
We learn embeddings of higher level attributes of

stickers, just like embeddings of phrases, by keeping
those attributes as a message in the place of sticker.
We also use this to compute the sticker mapping score
s = maxt∈tags(S),p∈M et.ep where et and ep are embedding
of a higher level attribute t of the sticker S and phrase p,
respectively. This score is not as accurate as above one but
it helps map stickers which are not well represented using
their phrase tags.
We can also use embedding of a sticker directly tomatch

it against the message clusters, with score s=maxp∈Mes.ep
where es and ep are embedding of sticker S and phrase p,
respectively. But this approach works only for stickers that
have a large historical data available.

Updating sticker mapping score from usage
feedback

The sticker mapping score should reflect the users’ sticker
preference. We can pose the problem as computing
expected reward for pulling levers in a multi-arm bandit
problem (Agrawal andGoyal 2012) (MAB), where different
stickers in a message cluster represent different arms. For
each message cluster, the reward distribution from each
arm should be computed separately. We use Thompson
sampling (Agrawal and Goyal 2012) on each message clus-
ter to compute scores for each stickermapped to it. For this,
we collect the data < predicted message cluster, stickers
recommended, sticker selected by the user>. From this we
can derive # times sticker was shown and # times sticker
was used, for each message cluster. Thompson sampling
updates the reward distribution based on this data.
We make the sticker ordering more personalized by

maintaining the score distribution at a fine granularity.We
identify user segments having varying sticker taste. Then
we run the MABs per message cluster, per user segment,
per geography.
To introduce a new sticker, first, we find relevant the

message clusters to assign it into. Then we keep a prior
score in the reward distribution in those message clusters.
After a decent amount of exposure their scores will get
updated to required values.

Addressing multi-lingual user base

Many of our users speak more than one language. Though
they speakmultiple languages, extent of usage of each lan-
guage is different. First language may be used to convey
all types of messages, but second language may be used
in few contexts like greetings, usage of popular phrases,
formal talk, etc. The first language, second language (and
third) varies from user to user in different geographies.
Our embeddings and recommendation should honor these
mixed usage. We ensure this by preparing models for each
geography instead of for each language. The data observed
from individual users of a geography actually shows pre-
vailing usage ofmultiple languages in that region. So all the
models trained on this data invariably capture the required
mixing of languages in those geographies.
There are many users who in addition to the languages

prevailing in their preferred geography use phrases from
languages that are less used in that geography but com-
mon in another geography. For example, there are users
who like to speak bothMarathi and Bengali but such users
are not prominent in either of corresponding localities. If
such users were given the model from one geography, it
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would not complete their expression needs. If there were
models for each potential combination of languages used
by a user, we could have used that. However in practice, it
is difficult to train and manage so many models due to the
large number of such potential combinations, challenges
in segregating required corpora and availability of enough
data per combinations.
A potential approach is to shipmultiplemodels to a user,

depending on the user’s language preferences. This will
significantly increase the size of models shipped. As mul-
tiple models become active in SR, the recommendations
may get mixed up inappropriately many times.
Another approach is to ship a single model to the user

but augment it by the essential message clusters used by
the user from the second model. The trie and sticker map-
ping components used in our algorithms can be extended
with newmessage clusters by adding appropriate entries in
trie and by adding new entries in stickermapping. Thiswill
help the users send additional stickers through SR which
were not discoverable earlier. We can figure out the rele-
vant message clusters that need to be extended with exist-
ing model from the users’ sticker usage (through some
other sticker discovery channel) that were not present in
their model.
When we augment message clusters from one model to

another, there will be duplication of message clusters. For
example, top phrases (e.g., “hello”) used in one geography
will be present in another geography with high frequency
of usage, due to which the phrase has to be now assigned
with two message clusters. This will result in unneces-
sary duplication of phrases to different message clusters,
affecting score computation and size. It is difficult to avoid
such duplicates. As differentmodels are prepared indepen-
dently, there will be significant difference between mes-
sage clusters observed across models. For example, mes-
sage cluster of “hello” obtained from one geography could
contain the phrase “vanakkam,” whereas its message clus-
ter obtained from another geography need not have that
phrase. Keeping only one of these message will cause los-
ing some phrases, but keeping both will introduce dupli-
cate entries. Managing message cluster ids from multiple
models requires that we have to encode themodel specifier
along with each message cluster entry in the required data
structures. Apart from the extra memory needed to store
this, it brings additional complexities in deploying, main-
taining the system in the client and the server.
If the message clusters across models were consistent

(i.e., if a phrase p is present in two clusters in the two
models, then other members of the two clusters should
be same), then we need not worry about such complexi-
ties and we can avoid potential duplication of phrases. So,
we need a way to make the message clusters across models
to share a consistent grouping. To achieve this consistency

either we should adjust the message clusters across mod-
els post the individualmodel’smessage cluster preparation
or prepare the message clusters by clustering all phrases
across geographies together. In the overall flow, we do this
before training the message cluster prediction models. We
briefly cover these two approaches we tried to consolidate
clusters.

Post clustering consolidation

We developed a cluster merge algorithm to combine all the
clusters of different demographics. We chose one geogra-
phy as target and tried to merge clusters from each of the
other geographies. For each cluster built in one demogra-
phy, we check the nearest cluster in target global clusters.
If the similarity (number of common phrases) is above a
threshold, wemerge the two cluster (threshold is tuned for
each demographic). This algorithm gives us good consol-
idated clusters with reduced redundant words across all
languages and good quality clusters for both native and
global language. This approach works dealing with one or
a few additional geography, but the quality degrades when
working with more geographies.

Combined message clustering

If embedding of phrases learned from multiple models
were comparable, then we could have jointly clustered the
phrases. Unfortunately, embeddings obtained frommodels
from different geographies may not lie in the same space,
that is, embeddings of common phrases tend to have differ-
ent representations. Building a single embeddingmodel on
the combined corpus fails to capture semantics of regional
phrases as they get under represented in the combined cor-
pus.
Translation-based approach: Using translation approach

mentioned in (Artetxe, Labaka, and Agirre 2016; Joulin,
Bojanowski, and Mikolov 2018), we tried to align embed-
dings from different models to a single target embedding.
Common words present across geographies help us in this
regard. We treated the common words across geographies
as equivalencewords, whichwill be used to learn the trans-
formation.Wekept one location embedding to be the target
domain and transformed all other location embedding to
the target domain. We used training objective described in
(Joulin, Bojanowski, and Mikolov 2018) to train the trans-
formation matrix.
We used (Joulin, Bojanowski, and Mikolov 2018) train-

ing objective which is inspired by cross-domain similar-
ity local scaling (CSLS) retrieval criteria to reduce the
“hubness problem” (Artetxe, Labaka, and Agirre 2016).We
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F IGURE 5 A schematic graph representing universal phrase
similarity. Blue edges indicate that corresponding phrases are
similar in embedding model trained on one geography. Red edges
indicate phrase similarity in another model trained on another
geography. When we combine the edge scores across models and
put thresholds on them, only commonly agreeing edges will remain

transformed different geographically learned embeddings
to the same target global space. Although phrase embed-
dings are comparable and k nearest neighbors are simi-
lar, the scale of similarity scores of semantically similar
phrases are still different (similarity of “hey” and “hi” is
0.98 while similarity of “hey” from source language to
“hi” is 0.8). It caused difficulties in clustering them, so we
employ an alternate approach.
Graph-based approach: We create a graph (Figure 5)

where nodes are union of all phrases across all geogra-
phies. Two nodes are connected with an edge if they are
similar to each other in one or more embedding mod-
els. These edges are filtered by applying some threshold
on total weighted mean similarity score computed across
different models. The weighing is based on frequency of
the corresponding nodes in corresponding geography to
ensure that importance of the score increaseswith increase
in data points. If a set of messages are similar to each
other, then there is strong connectivity among correspond-
ing nodes in this graph. These set ofmessage should consti-
tute a message cluster. So, we can pose message clustering
problem as community detection problem in this graph.
There are several community detection techniques

(Clauset, Newman, and Moore 2004; Raghavan, Albert,
and Kumara 2007) available for graphs. We find k-clique-
community detection algorithm (Palla et al. 2005) useful.
As it discovers overlapping communities, it causes dupli-
cate entries for few phrases. But instead of severely affect-
ing the performance, overlapping nature helps us properly
capture the cluster semantics. By varying k from 5 to 3, we
capture highly precise followed by loosely precise clusters.
Clusters prepared this way on universal list of phrases are
comparable to those prepared in individual model.

EXPERIMENTS

We describe the dataset used for training the SR system.
Next, we quantitatively evaluate the message embeddings

on manually curated datasets. We show qualitative results
after clustering to show the effectiveness of the message
embeddings. Then, we present a comparison of the NN
model and the hybrid model for the message cluster pre-
diction.

Dataset and pre-processing

To ensure user privacy in data collection, we strip user
identity and replace it with anonymous ids. We randomly
sample 10 percent of anonymous ids to collect the dataset
for a period of 5 months, from a particular geography for
which we need to build a model. This will have a mix-
ture of languages used in that region. This dataset is then
pre-processed to extract useful conversations from the chat
corpus. After pre-processing the data, we create tuples of
the current and the next message for training the message
embedding models. We get 27million tuples. Since stickers
are used to convey shortmessages, we remove all the tuples
having at least onemessagewithmore than fivewords.Our
input vocabulary consist of top frequent 50k words in our
corpus. The dataset is randomly split into training and val-
idation sets with 520k examples in validation set.

Message embedding evaluation

We evaluate the embeddings generated from different
architecture on manually labeled data. First, we describe
the baselines.

Message embeddings models

We compare the embeddings obtained from architec-
ture (Figure 3) and its variants which are as follows: (1)
Trans+CharCNN – encoder as shown in Figure 2 with
transformer; (2) Trans – uses only word-level embed-
ding 𝑒𝑤𝑜𝑟𝑑𝑚 as input to transformer; (3) GRU+CharCNN –
encoder as shown in Figure 2 with GRU; and (4) GRU –
uses only word-level embedding as input to GRU.

Phrase similarity task

We create a dataset which consists of phrase pairs labeled
as similar or not-similar. For example (“ghr me hi,” “room
me h”), (“majak kr rha hu,” “mjak kr rha hu”) are labeled
as similar while (“network nhi tha,” “washroom gyi thi”),
(“it’s normal,” “its me”) are labeled as not-similar. Possi-
ble similar examples are sampled from top 50k frequent
phrases using two methods: (a) Pairs close to each other
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F IGURE 6 Performance of the message embedding models on
phrase similarity task

in terms of minimum edit distance. (b) Pairs having words
with similar word embeddings. Possible negative exam-
ples are sampled randomly. These pairs were annotated
by three annotators. Pairs with disagreement within the
annotators were dropped. Finally, the dataset has 3341 sim-
ilar pairs and 2437 non-similar pairs.
To evaluate the models, we calculate the cosine similar-

ity between the embeddings of phrases in a pair. The ROC
curves of the models are shown in Figure 6. We observe
that transformer has significant improvement over GRU.
This is due to better capturing of semantics of phrases
using self-attention. CharCNN improves the performance
of GRU and transformer. It is able to capture chat charac-
teristics which occur due to similar sounding sub-words.
Trans+CharCNN model performs the best and shows ≈6
percent absolute improvement in terms of AUC over the
GRU baseline.

Chat slang task

We manually labeled a set of words which are common
slangs or variants used in conversation and mapped them
to their corresponding correct form. We considered two
types of errors. (1) Spelling variants (spell) – in this class we
considered words which can be converted to their correct
form by either replacing the characters nearby in keyboard
(“hsn”→ “han”) or addition of vowels (“phn”→ “phone,”
“yr” → “yaar”). (2) Synonym words (syn) – we consid-
eredwordswhich have samemeaning and are phonetically
similar but cannot be converted into their correct form
by spelling correction. For example (“plzz” → “please,”
“n8”→ “night”). Most users widely use such transforma-
tions of words. We labeled 213 words for spelling variants
and 78 synonym words.

To evaluate the message embedding, we retrieve top 10
nearest neighbors from top frequent phrases for each query
of labeled dataset and use two evaluation metrics: (1) Pre-
cision@10 (P@10) counts the number of correct phrases in
top 10 (retrieved phrases that are semantically similar to
query); and Recall@10 (R@10) calculates whether labeled
phrase of query is present in top 10 or not. Two human
judges did the annotation, disagreements were resolved
upon consensus.
Table 1 shows the performance of different variants of

encoder to learn message embedding. Transformer and
GRU have comparable recall on spell data because it con-
tains singlewords.Hence, transformer does not havemuch
advantage over GRU. CharCNN improves the recall per-
formance on synonym word variants for both the archi-
tectures. CharCNN is able to capture certain chat charac-
teristics occurring due to similar sounding sub-words. For
example. “night” and “n8,” “see” and “c,” “what” and “wt”
are used interchangeably. CharCNN learns such nuances
and performswell inmatching thosewords to semantically
similar words.

Message clustering evaluation

Figure 7 shows a qualitative evaluation of clusters obtained
fromHDBSCAN algorithm; phrases from the same cluster
are represented with the same color. We select the top 100
clusters based on the number of phrases present in clus-
ter. We project the phrase embeddings learned from our
model in 2-dimension using TSNE (Maaten and Hinton
2008) for visualization. We observe that various spelling
variants and synonyms of a phrase are grouped in a single
cluster. For example, “good night” cluster includes phrases
like “good nighy,” “good nyt,” “gud nite.” Our clustering
algorithm captures fine-grained semantics of phrases. For
instance, “i love u,” “i luv u” phrases belong to one cluster
while “love u too,” “love u 2” belong to a different cluster
which helps us show accurate SR for both clusters. If a user
messages “i love u” then showing “i love u too” stickers as
reply ismore relevant than showing “i love u” stickers. Our
message embedding is able to cluster phrases like “i love u
baby” and “i luv u shona” in a cluster distinct from the “i
love u” cluster. This helps us deliver more precise SR since
we have different stickers in our database for phrases like
“i love u” and “i love u baby.”

Message cluster prediction evaluation

We compare our hybrid model and the quantized NN
model on the following metrics: (1) number of characters
that a user needs to type for seeing the correct message
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TABLE 1 Evaluation of different architecture of message embedding model on chat slang task

Spell Syn Overall
Models P@10 R@10 P@10 R@10 P@10 R@10
Trans + CharCNN 73.3 67.1 89.2 51.3 77.6 62.9
Trans 70.8 67.6 86.7 47.4 75.0 62.2
GRU + CharCNN 71.6 66.7 86.6 48.7 75.6 61.9
GRU 70.7 67.6 86.2 44.9 74.8 61.5

F IGURE 7 HDBSCAN clusters of top frequent phrases using message embedding produced by GRU-CharCNN model. The points
represents chat message vectors projected into 2D using TSNE

cluster in top three positions (# of Character to be typed);
(2) how many times the model shows a wrong message
cluster before predicting the correct one in first three posi-
tions (# of times inaccurate prediction); and (3) fraction of
messages that could be retrieved by a model in first three
positions with a prefix of that message (fraction of msg
retrieved). Lower the number for the first two metrics, the
better the model is; while the third metric should be high.
For training the message prediction NN model, we col-

lect pairs of current and next messages from complete con-
versation data. Our training data had 10M such pairs. We
randomly sample 38k pairs for testing. We curate the train-
ing data by treating all prefixes of the nextmessage as typed
text and its message cluster as the class label. We consider
only top 7500message clusters based on the total frequency

of their phrases. Selected clusters cover 34k top frequent
reply messages in our dataset. The hybrid model is a com-
bination of two models. The first model predicts the next
message given the current message. It is trained directly
from pairs of consecutive messages, (current, next), in our
corpus, where the next message was mapped to its corre-
sponding message cluster. In the second model, we build a
trie based on the typed message.
Results of the various models are shown in Table 2.

The quantized NN model performs better in terms of # of
characters to be typed. This is expected because the NN
model learns to use both inputs simultaneously whereas
the combiner (last function in hybrid model) used is a lin-
ear combination of just three features. The hybrid model
performs slightly better in terms of # of times inaccurate
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TABLE 2 Performance of the message prediction models

Method
# of character
to be typed

# of times
inaccurate
predictions shown

Fraction of msg
retrieved

Quantized NN (100d) 1.58 1.47 0.978
Hybrid 2.84 1.22 0.991

recommendations shown and fraction of messages
retrieved. Compared to the quantized model, the hybrid
model needs approximately one more character to be
typed on an average to get the required predictions.
However, the quantized NN is ∼9.2 MB in size, which

goes beyond the permissible memory limits set in our
use case. The on-device foot print for our hybrid model
is below 1 MB. Also, the trie-based model can guarantee
retrieval of all message clusters, with some prefix of the
message. If themessage is not interfered by another longer
but more frequent message, the message class can be fea-
tured in top position itself, with some prefix of themessage
as input or with full message as input. A pure NN-based
model cannot make such guarantees. Hence, more than 2
percent improvement in the thirdmetric shown in Table 2.
Given that this SR interface is a heavily used interface for
sticker discovery, if a sticker is not retrieved through this
recommendation, the user might think that the app does
not support themessage class or the appdoes not have such
stickers. So, making the retrieval of message cluster close
to 100 percent is critical for our SR models.

DEPLOYED SYSTEM

There are multiple languages spoken in India. We segre-
gate our data based on state and train message embedding
models on each geography. Thenwe jointly cluster all mes-
sages using the graph-based clustering algorithm. Thenwe
curate relevant message clusters for each geography based
on their presence in those geographies and train separate
prediction models for each state. It ensures that frequent
chat phrases distribution does not get skewed toward any
single languages. We obtain the primary language of users
from the preferences set by them or infer it from their
sticker usage. We ship corresponding language’s model to
the user.
We decompose our message prediction system in two

steps. It helps reduce the size of the model shipped to
client. It also reduces the download failures on sketchy net-
work. When a message is being sent from user A to user
B, server fetches the response message cluster scores cor-
responding to the model assigned to user B. To maintain
high speed of message delivery, we serve the reply model
by caching the top 300k message in each geography. For

running typed model based on trie, we ship the trie and
message cluster to sticker mapping files to client. When
a user logs in, client checks if an updated model is avail-
able. If trie or sticker mapping file has been updated, client
downloads those files.
We observe that the top phrases in a corpus rarely

change. Only event specific (e.g., “cricket world cup,”
“movies”) or festival specific phrases get updated which
depend on seasonality. So, we freeze our message clus-
ters for each geography and do not retrain the message
embedding model. We only need to update frequency of
phrases for message cluster prediction based on seasonal-
ity which we fetch from analytics. Model maintenance is
not required since we are using unsupervised approach to
generate clusters and only need the frequency of phrases
for scoring the message cluster in trie. Complete pipeline
for message prediction has been automated with anony-
mous chat corpus. It helps us extend to more languages
and requires minimal manual efforts.
We can add new stickers using limited tags decided

while creation. The sticker mappings thus created are later
scored and ranked using the sticker usage data across
users.

User impact

The proposed system has been deployed in production on
Hike for 15+ months. Before a full rollout, we conducted
state wise A/B tests. We chose user sets of size of the order
of 10k as control and test in each experiment group. A/B
tests to compare this system with a previous implementa-
tion showed an average ∼8 percent relative improvement
in the fraction of users who send stickers, among those
who send amessage. Compared to legacy system, proposed
SR system also increases the volume of stickers exchanged.

CONCLUSION AND FUTUREWORK

We present our deployed system for deriving contextual,
type-ahead SR within a chat application. We decompose
the task into two steps. First, we predict the next mes-
sage that a user is likely to send based on the last mes-
sage and the typed text. Second,we substitute the predicted
message with relevant stickers. We discuss how numerous
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orthographic variations for the same utterance exist in
Hike’s chat corpus, which mostly contains messages in a
transliterated form. We describe a clustering solution that
can identify such variants in message embeddings which
learn similar representations for semantically similar mes-
sages. Message clustering reduces the complexity of the
classifier used in message prediction. For example, by pre-
dicting one of 7500 message clusters, it is able to cover
intents expressed in ≈34k frequent messages. For message
prediction on low-endmobiles, we propose a hybridmodel
that combines an NN on the server and a memory effi-
cient trie search on the device for low latency SR.We show
experimentally that the hybrid model is able to predict a
higher fraction of overall messages clusters compared to a
quantized NN. This model also helps in better sticker dis-
covery for rare message clusters. We discuss ways to intro-
duce new stickers to the SR system and maintain their
ordering by capturing relevant user feedback. We also dis-
cuss special steps we had to take to deal with language
diversity and multi-lingual expression needs of our user
base. As of November 2020, our described system has been
deployed for eight Indian languages and serving millions
of users daily with ∼8 percent relative increase in the frac-
tion of users sending stickers.
In the future, we plan to add character-level CNN for

message prediction on client which is memory efficient
compared to current quantizedNN.Althoughwe construct
the message clusters to reduce complexity of the message
prediction task, we observe that these message clusters are
generic enough to be used in other application such as con-
versational response generation, intent classification, etc.
(Serban, Sordoni, and Bengio 2016). We also plan to incor-
porate federated learning into our system.
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