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Abstract

Utility companies in the Nordics have to nominate how much electricity is
expected to be lost in their power grid the next day. We present a commercially
deployed machine learning system that automates this day-ahead nomination of
the expected grid loss. It meets several practical constraints and issues related
to, among other things, delayed, missing and incorrect data and a small data set.
The system incorporates a total of 24 different models that performs forecasts
for three sub-grids. Each day one model is selected for making the hourly day-
ahead forecasts for each sub-grid. The deployed system reduced the mean aver-
age percentage error (MAPE) with 40% from 12.17 to 7.26 per hour from mid-July
to mid-October, 2019. It is robust, flexible and reduces manual work. Recently,
the system was deployed to forecast and nominate grid losses for two new grids
belonging to a new customer. As the presented system is modular and adaptive,
the integration was quick and needed minimal work. We have shared the grid

INTRODUCTION

Everyday at noon utility companies in the Nordics have to
nominate to Nord Pool' how much electricity is expected
to be lost in the power grid for each hour the next day. This
is called day-ahead nomination of grid losses. The grid loss
is correlated with the length of the path that the electricity
is routed and the amount of electricity that is transported
through the power grid. The path through the power grid
changes daily and seemingly stochastically. The electric-
ity is routed based on operational decisions made by the
power grid operator. The consumption also changes every
hour according to the weather, the season, time of the day,
day of the week and whether or not it is a holiday.

The power company TrenderEnergi Kraft AS nominates
losses day-ahead for the utility company Tensio as a ser-
vice. In the past, operators used a numerical method to
forecast the grid losses based on relatively simple heuristics

loss data-set on Kaggle.

and an off-the-shelf energy consumption forecasting
model. It required manual work to recalculate constants
part of the numerical method, and the output of the fore-
casts were adjusted manually from time to time if they
looked off to the operators. The quality of these adjust-
ments depended on the experience of the operators, and
hence they were only as good as the experts making these.
As a small set of operators used the above-mentioned
numerical method to manually forecast and adjust these
loss forecasts, it was not very robust to changes. Although
not very time-consuming, using it required manual work.

In this paper, we present a system that has been
deployed to automate the day-ahead prediction of grid
losses for the utility company Tensio. The deployed system
reduces the MAPE with 40% from 12.17 MW to 7.26 MW
per hour for the period July 17 to Oct 21, 2019. We used
MAPE as the error metric since it has same characteristics
as mean absolute error (MAE) but it is normalized hence
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easy to compare (de Myttenaere et al. 2016). The results
translate to a reduced imbalance cost of about 15,000$ per
year for a relatively small part of the power grid in Norway.
Other advantages include reducing financial risk that the
utility is exposed to because of the imbalance between the
nominated loss and the actual loss in the grid, reduced
manual work (~100 h/year) and systematic nomination
not relying on individuals.

Reducing manual work reduces the potential for human
errors. Automation also frees time for the operators that
can be spent on other, more valuable tasks. It also stan-
dardizes the process, so that it relies less on the subjective
judgment of individual operators. Since October 2019, the
previous model is not in use and hence not maintained.

Since June 2020, the machine learning system was
deployed to forecast and nominate grid losses in the dis-
tribution network for a another utility company. The cus-
tomer provided 1 year of historic grid loss data for two new
sub-grids. The system was developed with such an expan-
sion in mind. It is flexible and robust and supports easy
adaptation to changes in the grids as well as changes in
the available feature set.

POWER GRIDS, LOSSES, AND
ELECTRICITY MARKETS

The power grid transports electricity from the producers
to the consumers and is divided into the transmission
network and the distribution network. The transmission
network transports electricity from the generation site,
such as an electrical power plant, to electrical substations,
while the distribution network distributes the electric-
ity from the electrical substations to the consumers. The
transmission system operator (TSO) operates the transmis-
sion network while the distribution system operator (DSO)
operates the distribution network. In the Nordics, the state
owned public utilities Statnett, Fingrid, Svenska kraftnalt,
and Energinet are the TSOs responsible for the national
transmission networks. The distribution networks are
typically owned by local utility companies, such as Tensio.

Grid loss is defined to be the difference in electricity
between what has been produced by the power plants and
what has been sold to the consumers. Grid losses can be
divided into technical and non-technical losses. Technical
losses are due to both transport and transformation and
show themselves as reduced voltage. Some of these are
variable while others are fixed. The fixed losses do not
depend on the amount of electricity that is transported,
but the applied voltage. The variable losses vary with
the current carried by the conductor and depend on the
resistance, as the resistance causes energy to be absorbed
by the conductor.

Non-technical losses include theft and failing electric-
ity meters. The physics of grid losses are well understood
and can be calculated quite accurately given the grid con-
figuration. Still, as the configuration of the grids are not
known or changes all the time, calculating grid losses is not
straight forward. Parts of the losses are in the transmission
network and parts in the distribution network. The utilities
are responsible for the losses in their networks, and they
have to nominate the expected loss day-ahead to the mar-
ket so that the electricity price can be decided. We assume
that all electricity is accounted for and that there is no theft,
as the theft or commercial losses are very small in Norway
(NVE 2016).

Electricity is sold in several different physical mar-
kets. In these markets, the sellers have to produce the
agreed upon amount and the buyers have to buy the
amount they bid for. The electricity price in the Nordics
is decided in the Nord Pool spot price market. The spot
price is decided based on an auction where producers
and consumers make bids on how much electricity they
can produce or consume and at what price. The auction
closes at noon the day before production starts, and the
spot price for each hour the next day is presented 42 min
later.

As wind and solar power are variable power sources
that cannot be dispatched on demand and vary from hour
to hour, the amount of electricity that they will produce is
highly uncertain and hard to forecast day-ahead. Electric-
ity consumption is also hard to predict. Its dependencies
are among other the weather and season, which is not
surprising as electricity is the main heating source for most
houses in Norway. Figure 1 shows the variation of grid loss
over a year and a week. As the top graph in Figure 1 shows,
grid loss is higher during winter and lower during sum-
mer. The reason is of course the increased electricity usage
caused by the need for heating during winter. The lower
graph in Figure 1 shows the how the grid loss changes over
a typical week with higher values during the weekdays
and lower during the weekends. Even on daily basis, you
can see a pattern with two peaks during the day (morning
and afternoon) and then a big dip during the night.

As mentioned above, grid loss is correlated with the
amount of energy in the power grid. Hence, the total
energy demand, which includes consumption and loss, is
also hard to forecast. The uncertainty in both the produc-
tion and the demand results in imbalances in the energy
market that the system operator has to settle on behalf of
the non-compliant parts. The uncertainty results in fore-
casting errors which again result in deviation from the
nominated positions. These deviations result in imbal-
ances that are settled in the imbalance marked by the
TSO on behalf of the non-compliant parties. The TSO
buys position changes from portfolio owners with flexible



°1 M

AI MAGAZINE

50 -~

40 -

30 -~

MWh

20

10 4

Mar

Mar Jul

45 4

40 4

35 -+

MWh

30 -~

25 4

¥ &

& R

FIGURE 1 Grid loss over an year (top) and a week (bottom)

assets, and the imbalance price is set uniformly for each
hour determined by the bid/ask price of the last activated
asset. The imbalance price is highly unpredictable, and the
imbalance price has a two-price logic which ensures that
anyone causing imbalance always will be worse off com-
pared to the day-ahead market price. Often the imbalance
price is fairly similar to the spot price, which on average is
between 20 and 30 EUR/MWh, but the upper limit is 5000
EUR/MWh. Thus, producers and consumers benefit from
improving their forecasts, as nominating with a low error
leads to a reduced risk of paying high imbalance prices and
thus lowers the imbalance cost.

PROBLEM DESCRIPTION AND
QUADRATIC MODEL

Grid loss is represented as a time-series with 1 h granu-
larity, where each value is the average loss in the network
over the past hour. The objective is to nominate the grid
losses for the next day at noon, so we need to forecast grid
loss for 24 h of the next day before noon. Formally, at time
t = 0, noon, for network n, the objective is to nominate the
24 future losses L, ;. o Where A <13, ..., 36 >, alternatively
annotated as L, ; = (L, 413, ---» Ly +36).- We annotate the
forecasts with bold, so the grid loss forecasts are denoted
L, The grid losses that we forecast are the losses
in the distribution network that Tensio is responsible
for.

'\‘(\o

<<‘<~

This distribution network is composed of three non-
overlapping sub-networks, and hence:

Liya = Lygsn + Lopia + Lapyas @
where L;, 5 is the grid loss for the whole distribution net-
work, Ly s a, Ly 144 and Lj ;. o are the grid losses for each
of the sub-networks for hour ¢t + A. L, 5 is the actual loss
in the distribution network, and E,, , is the error for hour
t+ A:

Eiipn = Lipp = Lyya. ()
The error is the amount of electricity that has to be
traded in the balancing market for the imbalance price that
is decided for that specific hour. Total average energy in a
target network for hour ¢ + A can be described as follows:
Itin = Cron + Lesas (3)
where I,  is the average total energy in the target network
(load) for hour t + A, C, , is the average consumption by
consumers in the target network for hour t + A and L, 5
is the grid loss for the target network for hour ¢ + A. The
previous method for estimating the average grid loss for
hour ¢ + A is based on a quadratic polynomial regression
model:

L[+A = LO + kcz, (4)
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where L, 5 is the estimated loss for the target network, L,
isidle loss, k is a constant and C;,  is the expected power
consumption in the target network for hour ¢t + A. Both
L, and k are computed numerically by fitting Equation (4)
so that Equation (3) is correct for historical data. I, » is
estimated for each hour the next day using an off-the-shelf
demand model that takes as input historical consumption
in the target region and the temperature prognosis for the
next day. Then, based on the expected power consumption,
the grid loss L, 5 for each hour was calculated using Equa-
tion (4). Ly = (Ly413, ---» L43¢) Was nominated to the spot
market before noon.

A complicating factor is that the DSO is responsible for
the electricity consumption of consumers that do not have
a contract with an electricity retailer.

Retailers buy electricity on behalf of many small con-
sumers, and they have to nominate the expected consump-
tion.

The reasons why some consumers do not have contracts
with retailers are: (1) Consumers are in-between retailers;
(2) consumers that have not paid their bill to the retailer
and the retailer has stopped selling them electricity still
get electricity until the DSO cut the supply physically; (3)
some consumers did not get a retailer since the market
opened. The consumption by consumers without a retailer
are nominated as part of the day-ahead grid loss nomina-
tion. Predicting this consumption is hard as the amount
of consumers that do not have a retailer is seemingly
stochastic.

RELATED WORK

Grid losses has a high cost for society and work has been
done on identifying and reducing it. (Navani et al. 2012)
gives an overview of technical and non-technical losses
and provides an analysis of the consequence of losses
to the Indian economy. (Bernheim, Hansell, and Martin
2018) present a system for detecting and localizing non-
technical losses by comparing current and voltage flowing
through different meters at the same time and uses these
to see whether there are un-metered flows between the
meters and the transformer, while (Carquex and Rosen-
berg 2018) use state estimation and smart meters to detect
and locate theft in distribution systems. (Glauner et al.
2017) provides an overview over Al techniques for detect-
ing non-technical loss. (Kang et al. 2006) and (Leal et al.
2006) use artificial neural networks to perform analysis
and evaluation of losses in distribution systems. (Agul ero
2012) reviews technologies, methodologies and operational
approaches aimed at improving the efficiency of power dis-
tribution systems. Both (Han and Li 2019) and (Hu, Harm-
sen, and Crijns-Graus 2017) present methods for reduc-

ing losses by distributing resources, as “decentralized gen-
eration can avoid grid losses and save primary energy”.
(Oliveira et al. 2001), presents a method for computing
losses offline after the fact.

Although losses have to be nominated daily, the lit-
erature on methods for predicting grid losses is sparse.
To the best of our knowledge, we have only found two
other publications dealing with predicting grid losses. This
should indicate the novelty of our research presented here.
(Sulakov 2017) presents a system that is used to nominate
hourly grid losses day-ahead in the Bulgarian electricity
market. It is a statistical approach that takes meteorolog-
ical forecasts, hourly load forecasts, the net export and
forecasts of wind and solar power production as inputs
to forecast the hourly transmission losses. Corona losses
are part of the transmission losses and (Sulakov 2016b)
presents a hourly method very similar to the method
presented in (Sulakov 2017) for making hourly forecasts
of corona losses in order to trade imbalances in the
intraday market. (Sulakov 2016a) discusses how the forced
renewables wind and solar impact variable technical
losses.

PRACTICAL CONSTRAINTS AND ISSUES

A new system had to handle the following issues and con-
straints:

Delayed grid loss measurements: While the preliminary
estimates of the actual grid loss for each grid are available
the day after, these values are unreliable and are overwrit-
ten for the next 5-6 days. These changes are significant (up
to 40% change from day to day), and hence the measured
data cannot be used before these changes are accommo-
dated.

Missing measurements: Due to technical issues, some-
times we do not receive the measured grid loss for days. For
example, for grid 3, measured historical data was unavail-
able at the forecasting hour for a total of 533 h over the last
11 months.

Sometimes these missing measurements are updated
later but sometimes, they stay missing. A robust prediction
system needs to make reliable predictions even when mea-
sured data is missing.

Incorrect measurements: In the past, detecting incorrect
data was an irregular and manual process. Figure 2 shows
that for 2 months in 2018, we received incorrect data with
an approximate error of 25-40 MW per hour. The measure-
ments were never corrected, and it took months to detect
this issue. The incorrect measurements affect the quality
of the training and test data. Depending upon the scale of
error, predictions for those periods can be way off leading
to incorrect bidding of grid losses.
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FIGURE 2 Incorrect measurements for Grid 2

Incorrect measurement detection not grid specific: The
manual process for detecting errors in the measured grid
loss was based on the sum of the grid losses, so incorrect
data from individual sub-grids were not detected. There
might be scenarios when even the major errors in the sub-
grids might not affect the total grid loss significantly. Addi-
tionally, since this method was based on knowledge about
these three grids, it will not work for any new grids added
to the system.

Changing measurements: While the historical measure-
ments for the grid loss are stored and maintained, changes
to them were not tracked. In current implementation, his-
torical measurements were sometimes overwritten. This
poses a problem for any model that uses the historical data.

Small data-set: In order to capture yearly seasonal effects
properly, data-sets should span several years. Unfortu-
nately, we only had access to less than 2 years of data.

Grid specific predictions: The previous solution fore-
casted the total grid loss for the three separate grids, which
leads to less transparency. For example, errors in the data
that cause erroneous results are harder to spot, as large
errors in the smaller grids might not change the overall
results enough to be noticed. The DSO wanted to improve
the transparency.

Robustness to missing features: The previous solution was
not robust to missing features. If either weather or con-
sumption were missing, the system would break and fore-
casts had to be done manually by an operator. Missing fea-
tures is a common issue in real-time systems, so strong
dependence on having all features available in order to
being able to perform a prediction will increase downtime.

Manual retraining: Operators estimated values of Ly and
k in Equation 4 manually once in 6 months, typically. Due
to high seasonal effects and abrupt changes in grid con-

figurations, this was not ideal, and should be done more
frequently.

Manual alterations: Domain experts regularly changed
the predictions from the previous numerical model. They
made manual changes when the predictions looked off.
Such updates were based on subjective expert intuitions.
Hence, the system in use was unsystematic, not repro-
ducible and dependent on expert intervention.

Lack of a monitoring infrastructure: There was no mon-
itoring system to support the experts in detecting anoma-
lies. This made it hard to detect the problems with the fore-
casts like missing or incorrect measurements. Performance
of the resulting forecasts were not monitored either.

Poor scalability: The previous system was not developed
for scalability and did not easily support adding new grids
and customers. Adding new grids and customers would
lead to more manual work in both training the model and
monitoring the deployed solution. Any errors would lead
to an increased workload.

While some of the above issues can easily be solved by
implementing a machine learning (ML) system that auto-
mates the process, some of the issues, such as delayed,
incorrect and missing grid loss measurements, changing
measurements and a small data-set needed to be solved
explicitly.

GRID LOSS FORECASTING

The main results that we report are the experimental find-
ings and deployed results for the three sub-grids from Ten-
sio. Towards the end, we will provide some preliminary
results for the grid loss forecasts for the two additional
grids belonging to the new customer. We chose CatBoost
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from (Prokhorenkova et al. 2018), an open-source imple-
mentation of gradient boosting on decision trees library,
to forecast grid loss for each hour the next day. CatBoost
with minimal hyper-parameter tuning performed well on
our small data-set. We conducted different experiments to
design and evaluate the effect of possible features.

We report results from three of these in more detail in the
subsection Experiments. We identified the historical mea-
surements of grid loss as an important feature.

Since the correct measurement of the grid loss was only
available 6 days after the fact, we used the measurements
from the same hour the week before as one of the features.
Since temperature directly affects the electricity consump-
tion (heating requirements are extensive during winter)
and thus affects load and grid loss, we included meteoro-
logical forecasts as features. Figure 1 shows that the grid
loss is seasonal in nature and calendar features such as
month, week, day of the week, hour of the day affect the
grid loss.

Experiments

In total, we had 19 months of data from Dec 2017 to June
2019. A total of 13 months of these were used for training
and cross-validation and 6 months were used for testing.
We evaluated four different algorithms on the training
data using cross-validation. These were: (1) A Multi-layer
perceptron with five hidden layers, (2) a decision tree
regressor, (3) a gradient boosting regressor ensemble from
sci-kit learn and (4) CatBoost. Their respective MAE were
3.07,1.52,1.02 and 0.95 MW. Since we did not have enough
data for hyper-parameter optimization, we chose CatBoost
which performed the best with minimal hyper-parameter
tuning. Also, we have important categorical features
(season, month, weekday) that CatBoost handles well.
We selected features and took design decisions based on
the experiments we conducted on the training and cross-
validation data. Since grid 3 is relatively new, it does not
have enough data and has low impact on total grid loss due
to its size, we excluded it from these initial experiments.
We designed the model for grid 3 based on the results
from the experiments we conducted using data from grid 1
and 2.

Load predictions as a feature: We had an hypothesis that
an estimate of the load in a grid could be an important fea-
ture for the grid loss. To test this hypothesis, we used the
load for the same hour 1 week before as a feature. We refer
it as the 1-week persistence. The effects were clear, and we
then decided to make a load prediction model. We trained
a separate CatBoost model for predicting the load for each
of the grids. For this model, we used the historical mea-
surements for the load, calendar features and weather pre-

dictions as features. We used MAPE (de Myttenaere et al.
2016) as the error metric. The load forecast performed 60%
better than a 1week persistence baseline (MAPE 3.39 vs
8.49). Using the load prediction as a feature for the grid
loss forecast reduced the MAPE for Grid 1 with 25% (from
15.6 to 11.8) and 22% for grid 2 (from 13.0 to 10.2).

Grid-wise losses versus total losses: One of the require-
ments was to provide separate grid loss forecasts for the
individual grids. However, this requirement was not more
important than reducing the error, so we had to identify
whether it was possible to provide forecasts for each grid
with the same or lower error. For this comparison, we
trained three models, one for each grid, and compared
the sum of their output to a model trained with the same
set of features predicting the total loss for all three grids.
We found that predicting the grid loss separately for each
grid improved the predictions with 9% reduction of MAPE
(from 6.4 to 5.8).

Size of training data: We knew that both seasonal effects
and concept drift would affect the predictions. To cap-
ture seasonal effects, more data is expected to improve the
model. However, the energy consumption changes with
changes in the grid and consumer behavior. To test what
worked best for the amount of data we had access to, mod-
els were trained with different amount of training datain a
sliding window fashion. For some models, we used all the
historical data, and for others we used the different num-
ber of days like 180 or 90. It means for making a grid loss
prediction for day d, we trained the models on the data
from d — 186 to d — 6 days (due to delay in target for 6 days)
for the training size of 180 days. The test showed that 180
day of training data was an optimal choice for both Grid
1 and Grid 2, as it reduced the error with around 20% for
both grids.

Testing

We selected the best features and training period for each
time series from cross-validation and then evaluated the
corresponding models on the testing period (Jan-June
2019).

The CatBoost models for the two grids performed bet-
ter than the 1-week persistence. For Grid 1, MAPE was
reduced from 9.85 to 4.77, and for Grid 2 the reduction was
from 10.01 to 8.45.

Handling Missing Data
In the real-world, we need to predict with the data avail-

able at hand at a given time. This complexity is often
hidden when working with historical data sets. Training
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and testing models on historical data sets provides a good
understanding of how well a model might perform, but
it does not prepare the inference engine for handling
missing, incorrect, and overwritten data. An individual
model that performs the best given all the data might
not perform well when some of the data is missing or
incorrect. Over a period of almost 11 months, the features
load prediction, measured grid loss and weather forecasts
were missing between 1% and 8% of the time for each of the
grids. We found that Grid 3 was especially prone to missing
data.

Robustness: A robust system must be able to predict even
if some of features are missing or unreliable. When fore-
casting grid loss for day-ahead bidding, the cost of not mak-
ing a prediction is typically much higher than the cost of
making a slightly worse prediction. For example, if the
temperature forecast service is down, the model should
still be able to predict the grid loss reliably even though
weather forecast is an important feature. To facilitate this
robustness in our system, we trained a set of models using
unique subsets of features we found useful in our experi-
ments. For example, in the above scenario when temper-
ature forecasts were not available, the system could still
provide grid loss predictions from a model trained without
these. This model generally had a worse performance than
the model that used temperature as a feature, but better in
the cases where these were missing.

Detecting incorrect data: Since the system was deployed
(July 17, 2019), it detected outliers and/or incorrect histori-
cal data and features for 570 h for different sub-grids. When
the system detects the values as extreme, they are tagged as
incorrect and are not used for predictions. So, the models
that use those features/values, will be discarded and won’t
be used for the final prediction.

Model selection: Due to multiple models, multiple pre-
dictions are available for the same grid at the same hour.
Hence, we needed a process to select which predictions
should be chosen to be nominated as the grid loss for a
given hour. This model selection is based on availability
of features and past performance of the models. First, the
system discards the predictions from models using missing
features. From the set of remaining models, it selects the
prediction from the model that performed the best in the
past (same day, last week). For example, five out of eight
models use measured grid loss from last week as a feature.
If grid loss measurements from last week are missing or
tagged incorrect, the system will discard these five models
relying on the historical grid loss and select the prediction
to be nominated from the remaining three models. Finally,
the prediction that will be nominated will be chosen from
the model that performed better the same day last week.
Model selection is performed independently for each grid.

We compared this way of selecting models to a simple
ensemble method that calculated the average of all the
available models for a particular hour. While the perfor-
mance was similar to our model selection method, the
ensemble method performed worse with a MAPE of 8.92
versus 8.11 for the non-ensemble method. The period we
tested this is the same as for the deployment period, that
is July 17 to October 21, 2019. Nevertheless, we added
average (mean of all the model predictions for one grid
at each time point) as one of the models in our deployed
system.

DEPLOYED APPLICATION

The result of the project is a service that forecasts hourly
grid losses for the next day. These daily forecasts of the grid
loss are integrated with the current workflows of the oper-
ators through writing to the time-series service where the
previous model wrote its forecasts. In this way, the oper-
ators who manually submit the forecasts as bids to the
day ahead market follow the same workflow as they have
always used. The predictions should be ready in due time
before noon, so that operators have enough time to submit
the nominations.

Architecture

The system has three main parts: (1) data storage, (2)
Machine Learning (ML) pipeline and (3) visualization. The
deployed application mainly uses two types of data stor-
age: Object storage and a relational database. The object
storage is used to store the trained models while the rela-
tional database stores features, the predictions and values
calculated for monitoring purposes. The features include
measured data and weather forecasts, which we retrieved
from external sources, as well as calendar features and load
predictions. We keep track of all predictions made by all
the models, as well as which predictions that are selected
for nomination. Additionally, we store the detected out-
liers, economic results, spot and imbalance prices as well
as information required for monitoring. We keep track
of missing features and changes to the deployment setup
and models as well. The training and prediction work-
flows read from and write to the relational database and
the object storage. Grafana? is an open source tool ana-
lytics and monitoring solution that supports querying and
visualizing metrics from different data sources. We used it
for making dashboards for both the operators and the ML
DevOps team to monitor performance and the status of the
system.
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FIGURE 3 Grid loss prediction where d is the current day
Workflow for hours and resulted in problems with meeting the nom-

We organized the production code as workflows, one for
training the models and one for making predictions.

A workflow consists of several steps where outputs from
one or more steps serve as inputs to the consequent steps.
We first implemented the system using Jupyter Notebooks.
Each of the notebooks implemented one or more of the
workflow sub-steps. We scheduled the notebooks to run in
a sequence, timed manually so that the next notebook was
executed after the previous one was completed. There are
several reasons why we decided not to use this solution in
production: (1) steps in the workflow are not started until
previous ones are completed, but this temporal depen-
dency was not straightforward with notebooks where each
step had to be scheduled manually causing a lot of run-time
trouble; (2) each workflow step implements a single task,
which can make the system easier to test and maintain, but
notebooks are not easy to maintain; and (3) as each sub-
step in the workflow depends only on its inputs and not
on the implementation of other sub-steps, developers can
work in parallel, which simplifies collaboration. Combin-
ing multiple sub-steps into one notebook made paralleliza-
tion difficult.

Due to these problems, we did not use notebooks in pro-
duction. Instead we implemented each step as a Python
script and deployed the workflows in the cloud with Azure
Machine Learning Pipelines.?

The training workflow has three steps: (1) retrieve data,
(2) detect and remove outliers, and (3) train models using
cleaned data.

The prediction workflow consists of five steps: (1) getting
and cleaning data, (2) detect and remove outliers, (3) make
predictions, (4) choose predictions using model selection,
and(5) report predictions.

Figure 3 shows a breakdown of the prediction step for
each grid. On day d, we first predict the load for the next
day d+1 using historical load from d-6, calendar features
for d+1 and weather predictions for d+1. Using these load
predictions, historical loss from d-6 and the same calendar
features and weather predictions, we predict the grid loss
for d+1, for each grid.

After a few months of deployment, AzureML proved
unreliable. Some technical faults led to processes waiting

ination deadline. The overhead of executing each process
step was large as well. In order to resolve these issues, we
deployed the system on Kubernets mirroring the workflow
that was implemented on AzureML.

The service running on Kubernets is significantly faster
and has so far proved reliable.

Dashboards

We created the dashboard for domain experts to provide
a quick glance of the performance without overloading
them with the technical details of the underlying system.
We gave special attention to metrics and plots the domain
experts are already familiar with, such as an overall status
of the incoming measured data, grid loss predictions,
comparisons with the previous approach and financial
savings made by both the new and the previous model. We
designed two dashboards for monitoring and visualizing
the performance of the deployed application. The first
dashboard was designed in collaboration with the domain
experts to ensure it fulfilled their requirements. Among
many other relevant things, it shows two important plots:
one comparing the actual grid loss, polynomial predic-
tions and new improved machine learning predictions
and another one comparing the imbalance volumes
from both the previous polynomial and the new ML
model.

We designed a second dashboard for the ML DevOps
team for monitoring and evaluating model performance. It
visualizes the performance of different models, error met-
rics and model selection statistics etc.

Both dashboards show statistics for each grid individu-
ally as well as for the total grid loss.

We developed a separate notification system. The first
iteration was implemented on AzureML. The notifica-
tion system, sent emails to the operators and the ML
DevOps whenever something unexpected happened and
human intervention was needed, for example, when jobs
failed, prediction error were huge, and outliers were
detected. After moving the rest of system to Kubernets,
we implemented the notification system as alarms in
Grafana.
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2020

DEPLOYED RESULTS

The service trained eight different models for each grid,
and they are referenced as M1, ..., M8 (8 models * 3 grids).
Each of these models were trained on subsets of the fea-
tures from the experimental setup. Every day, hourly pre-
dictions from these models are stored in the database.
During model selection, system selects one model per
grid and its predictions for all 24 h are nominated day-
ahead.

Model selection

Figure 4 (top) shows the grid-wise performance (MAPE) of
our eight models (M1, M2, .., M8) since deployment (from
July 17, 2019 to May 31, 2020). M8 is the 1-week persistence
(last week’s measurements), and M1 is the model that uses
all features in the feature set. Blue indicates models for grid
1, orange for grid 2 and green for grid 3.

The other six models use a unique subset of the features.
Both for grid 1 and grid 3, model M1 performs the best. M8
performs the worst for grid 1 and 2.

Figure 4 (bottom) shows how many times each of the
eight models that are deployed for each grid are selected
during deployment.

As you will notice, model selection count does not nec-
essarily align with the model performance. Due to unavail-
ability of all the features needed for that model (if they are
missing or incorrect), predictions from the best model can-
not be used.

For grid 2 and 3, the persistence, M8 is selected more
than the other models, even though it does not perform
the best.

Historical measurements for grid 3 are missing often and
hence the models that use them as a feature (M1, M2, M3,
M4 and M5) are often discarded and hence not selected for
the final predictions.

A big structural change occurred in Grid 2 on August
26, 2019 when a high energy consuming device was con-
nected to the grid for long term. The models learned these
changes in about 10-12 days. In the meantime, model selec-
tion picked Model 8 (last week measured values) since it
was closest to the measurements and was the best perform-
ing model.

Up-time

The Grid loss prediction system utilizing machine learning
has been deployed since July 17, 2019. Since deployment,
only once (24 h) the predictions could not be delivered to
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the operators. The problem was due to computation clus-
ter not starting at AzureML. The operators were notified
beforehand to use the fallback method that is last week’s
measured values, equal to what is used by the 1-week per-
sistence model. Other than that, the model has always pro-
vided reasonable predictions to the operators, even when
features have been missing.

System performance

We evaluated the performance of the deployed ML system,
the 1-week persistence and the polynomial regression
method over a 3-month period. In this period, the ML
system reduced MAPE from 9.00 to 7.26 compared to the
1-week persistence, which corresponds to a 19% reduction
of error. In the same period, the polynomial regression
method had a MAPE of 12.17, which corresponds to
an increase in error of 35%. The polynomial regression
method being worse than the 1-week persistence is not
always the case historically. However, after finishing this
evaluation, the polynomial regression method is no longer
in use.

There are several reasons for this: (1) the results were
inferior compared to the whole test and deployment period
of the new system (Jan to October, 2019); (2) The con-
stants had to be recalculated, which requires manual work;
and (3) the previous system required manual adjustments
every day, which means that we did not get value from
automating the process until we decommissioned the pre-
vious system.

After about 11 months of deployment, the performance
of the ML system is 29% better than the 1-week persistence
with a MAPE of 8.7 compare to 12.28 for the persistence
measure. This includes the performance of the system
in winter when the consumption and losses are higher.
Since the polynomial regression model is not maintained
anymore, we only compared to 1-week persistence. The
MAPE for the best performing models for grid 1, 2, and 3
are 9.3, 12.5 and 13.3 respectively (Figure 4). However the
overall performance of the deployed system is 8.7, which
is better than any of the individual grids. This is because
we nominate the sum of the three grid losses together and
errors in the individual grid loss predictions often cancel
each other to some degree, which leads to an overall better
performance.

IMPROVEMENTS

Requirements of a deployed service typically change over
time: Features may become unavailable, grid structures

can change, additional grids can be added or removed.
Maintenance of this service is not restricted to successful
runs everyday, but also to adapt the system to changing
requirements, as efficiently as possible.

Adding new grids

The introduction of the presented system has allowed
TreonderEnergi to become a service provider related to
grid loss nomination and won a bid for providing the
nomination responsibility for a retail company that
is responsible for two grids in a different part of the
country. The presented system was adaptive enough to
add new and completely independent grids easily into
the deployed system. We were provided historical data
for the past year. From these historical data, we used 8
months for training and 4 months for testing the grid loss
predictions.

Compared to the 1-week persistence that has a MAPE of
11.96, the error of the ML system is 25% lower for the test
period with a MAPE of 9.00. Apart from this quick initial
testing, the deployment of the model for new grids did not
require any other major setups as retraining is one of the
steps of the current solution. The two new grids were inte-
grated in the deployed system to predict grid loss from June
1, 2020.

Dealing with restricted feature sets

For the new grids, we only had access to a subset of the orig-
inal feature set. We did not have access to grid load to train
the model as Figure 3. However, as the model selection
selects the best performing model from a group of models
trained on the subsets of features, the system still worked.
Moreover, even for the original three sub-grids, these load
measurements became unavailable, starting from June 1,
2020. Since load prediction was an important feature, most
of the models included it.

This unavailability lead to a large number of the models
being discarded during the model selection, leaving just a
handful of usable models.

To deal with this, more subsets of feature sets were
created, excluding the load prediction. As the system is
flexible enough to entertain different subsets of features,
integrating the new models in the system was smooth.
Since the model selection is a dynamic process in our
system, adding new models is relatively safe. If the new
models being added do not perform well in production,
they will not be chosen for the final prediction.
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Alerts

When erroneous predictions are detected, the domain
experts are consulted to understand the root cause. Mul-
tiple reasons could lead to substantial errors in the predic-
tions, but the two major ones are: (1) Incorrect measured
data: when we receive incorrect data, the error calcula-
tion cannot be trusted. This data is detected as incorrect
and marked in the database (automatically) so that is it
not used for training. (2) Changes in the grid: when sudden
big changes happen in grid configuration or demand, our
first few predictions will be off since they are naive to these
changes. Since we train our models everyday, they will start
learning these changes. Model selection will choose the
persistence model M8 (measured values from last week)
if it is a better prediction than our other models.

GRID LOSS DATA

We have shared all data used for training and testing
these algorithms on Kaggle (Dalal et al. 2020). The web
page also describes how to implement the persistence
baseline we used. We have shared the data used for train-
ing the models presented here and an implementation of
a Jupyter notebook* that reads and calculates the 1-week
persistence baseline on the test set. The following para-
graphs gives a short introduction to the data-set. Detailed
description is also provided on the above Kaggle link.

The data file contains time-series data for the three Ten-
sio grids from December 2017 to May 2020 (two and a half
years). The exception is grid 3 which has only 1 year and 9
months of historical data available. The data-set is further
divided into train and test sets with 2 years and 6 months
of data respectively.

The data-set contains grid-specific features and com-
mon features. Grid-specific features are different for each
grid and depend on the size and location of the grid.
These features include the load, loss, weather forecast of
the underlying region etc. The common features, on the
other hand, are shared between all three Tensio grids. They
include features like calendar features, demand in Trond-
heim and weather the data from the grids was considered
incorrect.

CONCLUSION

We have presented a system for day-ahead forecasting
of hourly grid losses in the distribution grid reduces
the MAPE with 40% from 12.17 to 7.26 compared to the
previous solution. By reducing the error, the system also

reduces the financial risk. The presented system performs
grid specific predictions for each of the five sub grids
separately, which provides the transparency to the DSO.
It also does this with improved results over predicting the
total grid loss. Delayed, missing or incorrect measurements
are handled explicitly by having multiple models that
are trained on the subsets of features, so that the system
will provide results even with delayed and missing data.
Incoming data deemed incorrect will not be used for future
training. The system requires less human intervention as
the predictions do not need manual alterations, avoiding
subjective biases in the predictions and the corresponding
bids. Automatic retraining of the ML models are done every
night, and the performance is monitored by providing a
monitoring infrastructure visualizing results in dashboards
and firing alarms if something is unusual. The small data-
set is accommodated by the retraining. No data is lost by
being over-written, as the historical data is stored in a
separate database. The system is robust to missing features
as it will provide forecasts even if one or more features are
missing. The performance will deteriorate with missing
features, but will not be worse over time than the 1-week
persistence as it is one of the models the system selects
from. Scaling the system to include new grids was a fairly
quick process as it did not require a completely different
set up. Hence, the deployed system meets all the presented
constraints and issues.

While some of our solutions for solving the practical
constraints are domain specific, others are generalizable
to similar forecasting problems. Tackling small data-sets
is important and retraining the model regularly will
improve the performance over time. Time sensitive
systems must handle delayed, missing and incorrect
data, and training models on subsets of the features and
choosing the models that use the available features is a
reasonable solution. Methods for detecting incorrect data
should be implemented as well although the method we
applied is domain specific. Finally, close collaboration
with the domain experts that are responsible for the task
at hand when developing the solution will help ensure a
successful deployment. The presented system can easily
be deployed at all Norwegian DSOs and thus could have a
high societal impact by substantially reducing imbalances
nationally.

ENDNOTES

! https://www.nordpoolgroup.com

2 https://grafana.com/

3 https://docs.microsoft.com/en-us/azure/machine-learning/
service/concept-ml-pipelines

4 https://www.kaggle.com/ndalal01/
grid-loss-demo-and-persistence-mode
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