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Practically Coordinating

Edmund H. Durfee

m To coordinate, intelligent agents might need to
know something about themselves, about each
other, about how others view themselves and oth-
ers, about how others think others view them-
selves and others, and so on. Taken to an extreme,
the amount of knowledge an agent might possess
to coordinate its interactions with others might
outstrip the agent’s limited reasoning capacity (its
available time, memory, and so on). Much of the
work in studying and building multiagent systems
has thus been devoted to developing practical
techniques for achieving coordination, typically
by limiting the knowledge available to, or neces-
sary for, agents. This article categorizes techniques
for keeping agents suitably ignorant so that they
can practically coordinate and gives a selective sur-
vey of examples of these techniques for illustra-
tion.

tainly, people who know much (or think

they know much) are sometimes subject to
cockiness, confusion, paralysis, resignation, or
other unpleasant states. Artificial agents can
also suffer from knowing too much, and so, it
behooves us, as agent designers, to make sure
that our agents are not overwhelmed with too
much knowledge. The trick (or, ultimately, the
engineering skill) is to design agents that have
enough knowledge to act well in their environ-
ments, and no more knowledge than that, lest
the knowledge over and above what is suffi-
cient degrades the quality or timeliness of the
actions.

The purpose of this article is to look more
deeply at strategies for designing agents, and
the strategies’ methods of acquiring and using
knowledge about agents, that make it practical
for an agent to coordinate its actions with oth-
ers. Before we begin, however, let me first be a
little clearer about what I mean by the terms
agent and coordinate. In keeping with much of
the current use of the term, I consider an agent
to be an entity that is capable of acting in its
environment to satisfy its desires. Thus, an

It has been said that ignorance is bliss. Cer-

agent is an entity to which it is convenient to
ascribe characteristics such as choices (capabil-
ities for action); awareness (beliefs about the
world); and preferences (over states of the
world, often coming about as outcomes of its
[and others’] actions). In general, the set of
actions available to an agent, and the set of
possible worlds, could be infinitely large. To
keep matters simpler, however, I discretize
them. We can capture these three characteris-
tics in a variety of notations. For illustration
purposes, let me here just represent them in
terms of a payoff matrix, such as in figure 1.
Here, agent P can take actions A or B, has
beliefs about whether the world is in state of
affairs (SOA) 1 or 2, and prefers to take actions
that lead to higher payoffs (the numbers inside
the matrix). For example, P’s actions might be
to choose one of two doors, behind one of
which is a lovely bouquet of flowers, the sight
of which P values at 2 (figure 1). If P guesses the
wrong door, he/she does not get the reward of
seeing the flowers, although he/she is still just
as able to enjoy their aroma, so he/she breaks
even (a reward of 0).

When the outcomes of its choices can
depend on the choices that other agents have
made, are making, or will make, then an agent
should consider the actions of these other
agents when making its own choice. I refer to
this—the taking into account the choices of
others when deciding what to do—as an agent
coordinating with these others. Coordination is
an overloaded term, possibly meaning either
the process or the result of coordinating. I use
the former sense of the word, which has several
advantages. For one thing, it removes value
judgments that go along with evaluating
whether a result is coordinated. When such
evaluations are needed to convey a sense of
agents working to their mutual benefit, for
example, I prefer a term such as cooperative
rather than coordinated. By considering coordi-
nation as the process by which an agent takes
into account the possible actions of others
(uses these actions as “coordinates” to index
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Figure 1. A Simple Decision Situation.

Agent P has a choice between doing A or B. The reward it receives is dependent

on the state of affairs (SOA).

D

Figure 2. Coordination Problem.

The payoff to P depends on its choice, the choice of Q, and the state of affairs
(SOA). To decide on its choice, it should use whatever it knows to anticipate the
choice of Q and, thus, coordinate with this choice.
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into an outcome), we can determine whether
an agent has coordinated without looking at
other agents. Because coordination does not
imply any mutuality, cooperative or competi-
tive, it need not even be symmetric!
Returning to our simple example, what if P

shared its world with Q? Now, it turns out that
if P and Q choose the same door, the object (if
any) behind the door is removed. Thus, if they
both choose the door with the flowers, the
flowers are removed, and P is actually worse off
(reward of -1), now being unable even to smell
the flowers any longer. If Q opens the door
with the flowers, then P’s view is obstructed;
so, P is no better or no worse off. From the per-
spective of P, therefore, it might be better to
consider Q’s likely choice when making its
own decision, as shown in figure 2, because P
can benefit only when it chooses a different
action than Q!

To make its decision, P needs to determine
whether the state of affairs is 1 or 2 and
whether Q is likely to do A or B and then P
should act accordingly. The degree of detail
with which P should model Q would thus
depend on how much P needs to know about
Q to make an adequate prediction about Q’s
choice. Perhaps it is enough for P to have a
probability associated with Q doing each of its
actions. If Q were a degenerate agent, such as
an agent that simply flips a coin to choose an
action, then this degree of modeling detail
might suffice. If Q’s actions, however, are more
dependent on the situation, then perhaps P
needs probabilities for Q’s actions conditioned
on the state of affairs (SOA). For example, per-
haps the aroma of flowers wafting from one of
the rooms is quite discernible to P, and P has
some statistics of how often Q takes action A
versus B when P has sensed the aroma from
this room before.

Of course, rather than relying on past statis-
tics, P could use what it knows about Q’s pref-
erences. For example, if P thinks that Q likes
flowers too (that is, P thinks that Q’s prefer-
ences are just like P’s in figure 1), then P might
conclude that Q will choose door A in SOA 1
and B in SOA 2. P can use this conclusion to
coordinate its decision with that of Q. It is also
possible that P and Q might have different
beliefs about the state of affairs (perhaps P
thinks Q has a cold and cannot smell very
well); so, to predict Q’s likely action, P really
should attempt to infer Q’s probability
distribution over the states of affairs.

P could even believe that Q will consider P
when making its own decision. Thus, P will
need to model what it thinks Q’s model of P is.
To decide what to do, therefore, P will need to
determine what it thinks Q will do, which, in
turn, requires that P determines what it thinks
Q will think that P will do, which, in turn,
could require that P determines what it thinks
Q thinks that P will think that Q will do, and
so on. In principle, such nested models that



agents have of each other could continue
indefinitely.

Recursive Modeling Method

What should an agent do in such circum-
stances? Well, one answer is that it should use
everything that it knows to make a good deci-
sion. Using all its knowledge means being able
to represent the knowledge and process it. For
example, let us say that P clearly smells the
flowers behind the door that would be opened
with action A4; so, the decision it faces can be
reduced to the matrix at the top of figure 3. P
is also certain that Q can smell the flowers and
that Q values outcomes as does P; so, P models
Q’s decision situation at the second level of fig-
ure 3. However, P also believes that Q thinks P
cannot smell the flowers (P only recently got
over a cold, so does not expect Q to know this,
for example); so, P thinks Q will think P’s
choice will amount to randomly picking an
action, represented at the bottom level of fig-
ure 3 as (probability of choosing A, probability
of choosing B).

A dynamic programming strategy, as used in
the recursive modeling method (RMM) (Gmy-
trasiewicz and Durfee 1995), can solve this
decision problem by propagating from the
leaves upward. P will believe that Q will take
action A (because with P acting randomly, Q
will expect an average payoff of 1/2 for action
A and O for action B); so, P would maximize its
expected payoff by taking action B (with pay-
off 0, compared to expected payoff of -1 for
action A).

Somehow, this outcome seems unsatisfacto-
ry. After all, P seemingly knows more about Q,
yet Q is likely to get the higher payoff. It is to
Qs advantage that it is seen as ignorant by P!!
If P were to ignore its beliefs in Q’s ignorance,
then it might be more inclined to take action
A, but of course, if P’s model is accurate, any
increased probability in its taking action A
only decreases P’s expected payoff. It also drags
Q’s payoff down with it, but we assume that P
would not care about Q’s payoff. (If misery
loves company, then P might want to reduce
Q’s payoff, but this implies that there is more
to P’s perceived payoffs that should be repre-
sented in its matrix.)

P might be able to improve its position if it
were to (justifiably) change its knowledge
state. For example, it might tell Q that it is now
able to smell the flowers, which means that its
model of Q’s model of P should change. Now
P’s model of Q's model of P might include P’s
payoff matrix, which, in turn, means that P
would have a model of Q’s model of P’s model
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Figure 3. An Example Recursive Modeling Method Hierarchy.

P models its decision situation (at the top), the situation it believes that Q is facing
(in the middle), and the knowledge that it thinks that Q has of P (at the bottom).
This last knowledge indicates that P thinks that Q thinks that P is equally likely

todo A or B.

of Q (at least) to predict how Q will think P will
react to what it thinks Q will do! Obviously,
the deeper P’s knowledge about Q’s knowledge
about P’s knowledge about...the more exten-
sive the representation and computation are.

In addition, the size of the nested models
might not only be the result of the depth of
knowledge but also the breadth of possibilities.
For example, what if some agents in the world
were allergic to flowers? For such agents, the
best outcome is for both agents to choose the
door with the flowers, so that the flowers are
removed from the vicinity! Perhaps P is uncer-
tain about whether Q is allergic or not and
whether Q will think that P is allergic or not,
and perhaps P even has beliefs deeper than
that, yielding a representation such as the one
in figure 4.

The uncertainty P has (or thinks Q has, or
thinks Q thinks P has,...) is represented in the
branches. P believes that Q is not allergic to
flowers with probability p,. P believes that if Q
is not allergic, then Q will believe P is not
allergic with probability p,, but if Q is allergic,
then it will believe P is not allergic with the
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Figure 4. A Branchy Nested Model.

In making its decision (top), P considers it possible that Q could see the situation
in either of two ways (second level) and that for each of these Q will believe P
could see the situation in either of two ways (third level), and so on.
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possibly different probability p,, and so on. In
general, the branching factor can be much
larger than 2. Moreover, the contents of the
payoff matrixes and the values of the probabil-
ities can vary in principle, limited only by the
knowledge available to an agent (because the
hierarchy summarizes an agent’s coordination
knowledge). Although in theory using all the
knowledge it has or might get will always lead
to better (or at least no worse) decisions for an
agent,” the costs of acquiring and using the
knowledge must be considered to make the
approach practical.

Keeping Coordination Practical

Using RMM as an example, consider the
amount of reasoning that an agent might have
to do. To consider each of the combinations of
choices that the agents have, an agent needs to
identify the choices (actions, plans) for each of
the agents and the outcomes (utilities) of each
combination of choices for each of the possible
environments. If we assume each of the n
agents has c¢ choices, then there are cn choices
to identify for an environment. Because each
choice can correspond to a planned course of
action on the part of an agent, there are cn

plans to formulate. In addition, for each of the
¢" combinations of plans, the outcome(s) of
executing the plan combination must be pre-
dicted and assigned values (utilities). The pre-
vious calculations only correspond to one view
of the interaction by an agent. Given nested
views of how an agent thinks that others
think...that others think about the interac-
tion, there could be b' such models to con-
struct, where b is the branching factor caused
by uncertainty (such as about allergies in the
running example), and [ is the depth of the
nesting of models available to the agent.

As an agent comes to know more, it must in
general do exponentially more computation.
Because all practical agents have limits to the
resources they can apply to make coordination
decisions, it is in an agent’s (and an agent
designer’s) best interests to maintain as much
ignorance about the world and the agents that
populate it as it can, while knowing enough to
coordinate acceptably well with others. If we
consider all the possible knowledge, as out-
lined within the RMM framework, there are
numerous places where we could hope to trim
the knowledge being used (figure 5). We can be
selective about the nested knowledge we use or
even obviate its use by exploiting communica-
tion (bottom of the figure). We can simplify
the utility calculations, trim the number of
options evaluated for each agent, or decrease
the frequency of coordination decision mak-
ing by coordinating over longer-lived choices
(middle of figure). We can even reduce the
dimensionality of an interaction by ignoring
agents or viewing groups of agents as individ-
uals (top of figure). In short, by considering
places where an agent can simplify its coordi-
nation task by being selectively ignorant, we
can make coordination practical. In the
remainder of this article, I examine these
strategies for practical coordination in more
detail, considering examples of such methods.
To provide a framework for the discussion, I
work from the bottom of figure 5 upward.

Limited Use of Nested Models

One method of keeping the computation in
check is to prune away portions of the nested
models, a technique familiar in minimax algo-
rithms for game-playing programs. Pruning
nested knowledge is somewhat different from
game-playing reasoning, however, because
unlike game-playing reasoning, which hypo-
thesizes sequential possible physical game
states, the nested knowledge captures what
amounts to simultaneous perspectives on the
parts of the agents. Thus, in game playing,
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R’s choices

e Treating multiple agents as
one

¢ Selective search among
choices
Limiting possible choices
Increasing longevity of

P’s\choices

choices

e Simplifying utility
computations

¢ Communication to reduce
model depth and breadth

¢ Selectivity about knowledge

Figure 5. Strategies for Making Coordination Practical.
The outcome of P’s actions depend on the actions of the other agents (Q and R in this figure, but in general this is n-dimensional). Antici-
pating their actions can require nested models of how they see the situation, how they think others see the situation, how they think others
think that others see the situation, and so on. Making this reasoning tractable means limiting the number of nested models to reason over

and decreasing the number of action combinations that P must consider.

undesirable states can be pruned because ratio-
nal agents will not act to get into these states.
With nested models, however, the models
exist regardless of their desirability; ignoring
an unpleasant fact will not make it go away.
For example, in the case where P believes Q
does not know that P can smell the flowers, P
might choose to ignore what it knows about Q,
treating Q as equally likely to take either action
(which is a natural way of terminating the
recursive nesting when an agent is seen to
have no information at a deeper level). If Q
were equally likely to take either action, then
P would take action A with an expected payoff
of 1/2. However, in reality, action A will give P
a payoff of -1, and P knew this to be the case
but chose to ignore it.

The strategy, therefore, is to prune away pos-
sible nested knowledge that is not expected to
change the strategy choice of the agent doing
the reasoning (Russell and Wefald 1991) rather
than prune undesirable states as such. For
example, in figure 4 at the second level right-
hand side, Q, if allergic, has a weakly dominat-
ing strategy of taking action A (the only way it
would ever do B is if it were convinced that A
was going to do B, and even then Q would be

indifferent between A and B). Thus, P might
choose to not search deeper in the branch
because it is unlikely that anything it discovers
down there will change what it will expect
allergic-Q to do. Our preliminary results using
such a strategy indicate that this approach
holds promise, even for simple application
domains. Vidal and Durfee (1996, 1995) show
this strategy’s promise in a simple pursuit task,
where four predator agents placed in a grid
world must surround a prey. Given an uneven
distribution of predators, they have to decide
which will block the prey from which direc-
tion. An individual predator will thus seek to
occupy the closest unoccupied side but to
decide which sides are likely candidates it
needs to determine the sides that other preda-
tors are likely to occupy. However, because this
determination, in turn, depends on what sides
they think others will occupy, and so on, the
nesting can be fairly complicated. By using
heuristic estimates (based on previous experi-
ence) about the impact of expanding different
parts of the nested models, the agents in this
problem domain can achieve a high level of
cooperative behavior using only a judiciously
chosen subset of the nested models.
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Using Regularities
in Nested Models

Another way of simplifying the nested model
computations is to take advantage of patterns
in the nested structure to avoid rederiving the
same information in different places. Figure 4
illustrates how regularities in knowledge can
lead to patterns of similar models. Of course, if
the knowledge is finite, then eventually some
patterns must be broken. However, a powerful
simplifying assumption can be to purposely
project the models beyond finitely available
knowledge to infinite levels.> When this pro-
jection is done, fix-point solutions can be dis-
covered using often much simpler computa-
tional means. The use of fix-point solutions
has been a standard approach in game theory,
for example, in identifying equilibrium solu-
tions. Using the simple view of figure 3 as an
example, P might simplify its model by assum-
ing that it and Q model each other identically
and that this is common knowledge (that is,
that P knows that Q knows that P knows that
Q knows that...P and Q model each other iden-
tically, where the...can go on infinitely
deeply). Then, in the world where P smells and
wants to see the flowers, it models Q as doing
the same, models Q as thinking P will do the
same, and so on. The symmetric nature of this
situation leads to P believing that it and Q will
come up with identical strategies. In this case,
for example, P might conclude that it and Q
will have mixed strategies of taking action A
with probability 1/3 and B with probability
2/3, yielding an expected payoff to each of 1/3.

Exploiting Observations

To this point, we have considered how an
agent, with its particular nested models about
the coordination situation, can make its coor-
dination reasoning more practical by trans-
forming its nested knowledge into an approx-
imate form that might require less reasoning
effort. An extremely common means for trans-
forming knowledge states, however, is to
change the knowledge that agents have
through observation.

Observations, for example, can be used for
plan recognition. Based on the evidence pro-
vided by observations of another agent’s
actions, an agent can hypothesize the likely
larger plans of which these actions are part (for
example, Huber and Durfee [1996, 1995]).
With such hypotheses, the agent can then
anticipate the future actions of the other agent
as those that continue the inferred plans.
When actions and plans are sufficiently unam-

biguous, plan recognition can obviate the need
for nested models.

Observations also provide evidence to learn-
ing mechanisms so that agents can learn what
actions others are prone to take in various sit-
uations. The literature on this subject is grow-
ing rapidly (for example, Weiss and Sen
[1996]). A fundamental challenge in this field
is correlated with the notion of nested models;
namely, although one agent is learning about
others, they, in turn, are learning about it. That
is, what an agent is learning is a moving target
because every time it learns something that
changes how it responds to some situation(s),
its new responses can, in turn, lead others to
respond differently to the situation(s). This
learning by other agents, in turn, could lead to
the agent learning to respond yet differently,
and so on.

It is conceivable that in such circumstances,
the learning never ends. In our running exam-
ple, for instance, if P (who likes flowers) is
paired repeatedly with a Q who is allergic in
this game, we can intuitively picture Q seeking
to match P’s choice (to eliminate the flowers
from the world) while P seeks to make a differ-
ent choice than Q. They could chase each oth-
er around the four combinations of actions
indefinitely, as first one changes, then the oth-
er.

In general, a system reaches an equilibrium
where the improvements it continues to make
through learning are offset by the degradation
to what it has already learned because of the
volatility in what other agents are doing
because of their learning. This notion is illus-
trated in figure 6, which plots the error rate of
an agent at time £+1 given its error rate at time
t, based on the combined learning capability
(which tends to decrease error) and volatility
(which tends to increase error). By characteriz-
ing learning capability and volatility (based on
how coupled agents’ actions are) for particular
problems, we can build expectations of how
practical it will be to use learning for coordina-
tion as well as whether the system as a whole
can ever learn to eliminate all errors (Vidal and
Durfee 1998).

Using Communication

Communication is commonly used to obviate
the need for nested models. For example, one
approach has been for agents to explicitly tell
each other about their intended actions (or at
least about constraints on what these actions
might be). Such an approach has formed the
backbone of work in multiagent planning, for
example, where agents separately form their
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Figure 6. Error Progression.

The error rate at time t +1 based on the error rate at time t and the sum of the learning and volatility curves.
The initially high error rate decreases but cannot fall below .44 because further learning by this agent is offset
by the fact that learning by other agents renders obsolete some things that were previously learned.
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Figure 7. Truncated Hierarchy from Communication.

When P tells Q that it will do action A, P can now truncate its model because it need not reason about what Q
will think P will do.
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own plans and then communicate to identify
possible conflicts or cooperative opportunities
(Ephrati and Rosenschein 1994; Durfee 1988;
Georgeff 1983; Corkill 1979).

The benefits of such communication are
clear when captured in a nested model frame-
work such as RMM. By revealing information
about itself, an agent simplifies its models of
others, either by reducing uncertainty about
the world (hence reducing the branching fac-
tor) or uncertainty about what others will be
doing (hence reducing the requisite modeling
depth). For example, if P considers telling Q “I
will do A,” then P would model the resultant
mental situation as truncated because it knows
exactly that Q will consequently expect P to
pursue A (assuming that the message is certain
to be delivered and believed [Gmytrasiewicz
and Durfee 1993)).

Looking at the resultant model (figure 7), P
can decide that its expected payoff in the
knowledge state after sending the message is
dependent on p,. Specifically, it is (3p,-1).
Clearly, being the first to commit to doing A is
a good idea if Q is unlikely to be allergic and a
bad idea if Q is allergic. With probabilities in
between, the question of whether the message
is good for P depends on what P’s expected
kpayoff was before sending it and what it is
afterward. P should send messages that cause
the largest positive gains in its expected utility
(Gmytrasiewicz, Durfee, and Wehe 1991).

Obviously, it might not be possible (or con-
sidered “fair”) for P simply to claim action A by
being first. Nonetheless, communication can
still benefit the agents if they have correlated
preferences. That is, even with some random-
ization thrown in about who gets first choice,
they can still avoid mutually poor outcomes
(such as both choosing A if neither is allergic).
They could, for example, agree to abide by the
flip of a fair coin such that each now has an
expected utility of 1, which is better than 1/3,
what they would expect to get without com-
munication.* The case is even more obvious
when both agents are allergic, where they both
want to take the same action and get the same
payoff! When possible, therefore, communica-
tion is often a practical and effective tool for
the agent-coordination process!

Epistemic States for Well-
Defined Coordination

In the previous subsection, we saw how a com-
municative act could be in the self-interest of
an individual. Often, however, designers of
multiagent systems also want to be able to
claim particular properties for the collective

decisions of the agents, such as stability, effi-
ciency, and fairness (Durfee and Rosenschein
1994). Thus, communication might be expect-
ed to change the agents’ states of knowledge,
as we have seen, to reach a state of knowledge
from which certain properties must emerge.

For example, a recent trend in game-theoret-
ic research has been to revisit notions of deci-
sion-theoretic rationality as embodied in
game-playing agents to understand better how
rational agents would actually play a game, as
opposed to analyzing a game independent of
the agents, assuming basic rationality and
common knowledge among the agents.
Aumann and Brandenberger (1995), for exam-
ple, investigate epistemic conditions for
achieving Nash equilibria—that is, what must
agents know if we are to be assured that their
decisions will constitute a Nash equilibrium?
Although their analyses are too involved to
detail here, and introduce problematic notions
of common knowledge for cases involving
more than two agents, we can get a flavor of
how their ideas dovetail into those of Al by
considering our ongoing two-agent case.

Recall that in the previous subsection, P rec-
ognized that by telling Q about P’s intention to
take action A, P could increase its own expect-
ed payoff. Moreover, in this case, P got this
higher payoff by doing what it had told Q it
would do (it did not need to lie). If P is correct
in its knowledge of Q’s payoff matrixes, Q’s
rationality, and Q’s correctly receiving P’'s mes-
sage, then P not only will take its part in a
Nash equilibrium but, in fact, will know that
the agents are in a Nash equilibrium if it has
itself been rational in choosing its action and
truthful in revealing it.

A challenge, of course, lies in some of these
nested knowledge assumptions. For example,
P’s projected knowledge state after sending the
message (figure 7) is predicated on knowing
that at the time of the door-opening decision,
Q will have received, decoded, and incorporat-
ed P’s message. P could require that Q acknowl-
edge the message, and this acknowledgment
could suffice, although more interesting kinds
of coordination requiring infinitely nested
(common) knowledge might require infinitely
many acknowledgments in principle (Fagin et
al. 1995). Alternatively, P could have more
models of Q (for the combinations of hear-not
hear and allergic—not allergic) with their asso-
ciated probabilities.

As we have seen, it is often advantageous to
agents if they can attain (and possibly help
others attain) particular states of knowledge.
When particular kinds of knowledge state tend
to be advantageous repeatedly, agents can dis-



cover patterns of communication that tend to
lead to these states. These patterns of commu-
nication form the basis of protocols. Practical
coordination that is predicated on communi-
cation usually embeds well-defined protocols
into the agents to streamline the process of
achieving knowledge states that are desirable
for systemwide properties. Substantial efforts
on the parts of multiagent system designers
have gone into formulating, implementing,
and testing such protocols (for example, KQML
[Mayfield, Labrou, and Finin 1996; Cohen and
Levesque, 19935]) so that agents reach agree-
ment on issues such as task assignments (for
example, Smith [1980], Rosenschein and
Zlotkin [1994]) and coordinated plans (for
example, Durfee [1988] and Ephrati and
Rosenschein [1994]).

Finally, it should be mentioned that overuse
of protocols can be counterproductive. A pro-
tocol that keeps agents informed about each
other is generally helpful, but it could happen
that when one agent changes its plans because
of unexpected events, it tells others, who
adjust their plans, and tells yet others who
adjust their plans, and so on. Sometimes, this
kind of chain reaction can trigger a large
amount of communication and coordination
reasoning; therefore, it only makes sense to
inform others about a change in plans if the
precipitating change was significant. Thus,
part of the practical use of protocols is in
deciding when it is better to say nothing at all
(Durfee and Lesser 1988).

Constraining Choices

So far, we have focused on methods for keep-
ing the nested modeling tractable by using
internal reasoning, learning, or selective com-
munication to reduce the depth or breadth of
the modeling space. Even if we were to reduce
these drastically, however, it would not help if
what little remained involved huge interaction
representations. That is, in the form we’ve
been focusing on, reducing the number of
nested matrixes will not help much if con-
structing even one such matrix is intractable.
Recall that in the worst case, every possible
combination of the c choices for the n agents
must be evaluated, meaning ¢” evaluations.
Certainly, if the space is to be explored
exhaustively, the set of choices must be finite.
By further constraining choices available to
agents, we can simplify the representations of
interactions. In the most degenerate case,
where each agent is given a single specific
capability, an interaction is a matrix with only
a single element (c = 1 so ¢" = 1)! This is an

“assembly line” model of multiagent systems.

Organizational Structures

The idea of constraining the choices of agents
has been part of multiagent systems for well
over a decade in work that has tried to use
notions of organizations and organizational
roles as guidelines for coordinating agents
(Corkill 1983). A description of an organiza-
tion captures the preferences and responsibili-
ties of its members, providing strong clues to
the choices of actions that the members might
make. The organization might also impose
prohibitions on certain kinds of action, both
for particular niches in the organization and
all members of the organization.’> By embed-
ding agents within an organization, their deci-
sions are simplified (they have fewer choices
and know that others have fewer options), and
their dynamic coordination activities can be
better directed. Among the challenges in
designing an organization is determining how
to decompose tasks into separate roles to have
reliable, inexpensive, and effective perfor-
mance on the part of the organization.

For example, consider hierarchical organiza-
tions for tasks such as information gathering.
Given a query to answer, the query task can be
decomposed and the (independent) query sub-
tasks assigned. Let’s define the task granularity
(y) as the task-execution time (1) divided by the
communication delay (5). Then, given y, the
total number of primitive information-gather-
ing tasks (N), and the number of tasks (m)
assigned to each leaf of the organization, we
can derive the branching factor k for the bal-
anced tree that minimizes response time (So
and Durfee 1996):

T(N,k,y,m)

k+1)/ 8+ +m)T - y<1
2/5+(Kl+m)T - y>1

In the previous equation, I = log, (N/m) and
is the number of levels in the organization.
The processing at the leaf level is simply to
execute the primitive tasks and send the results
of each back up the hierarchy. At the nonleaf
levels, the agents receive larger tasks from
above, break them into k subtasks, assign these
subtasks sequentially to the k agents below;
then as results are returned, they are synthe-
sized (where integrating a received result
requires T time), and the composite result is
sent back up the hierarchy once it is done.

Under this assumed organizational behav-
ior, it is the case that for N=32, m =2, and any
Yy, k = 4 outperforms k = 2 and k = 16. Even in
the space of such simple hierarchical organiza-
tions as these, therefore, the detailed design of
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Figure 8. Binary Tree Organization.

The organization (upper right) has 8 tasks overall (N = 8), each nonleaf has 2 chil-
dren (k = 2), each leaf does 2 tasks (m = 2), and tasks are assigned so that even if
1 of every pair of children fails, all the tasks still get done (0 = 1). The graph shows
how variance in execution time decreases with greater agent failure rates and how
the probability of successful overall task completion decreases (scale on right side
of graph).
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Figure 9. Flat Tree Organization.

The organization (upper right) has 8 tasks overall (N = 8), the 1 nonleaf has 4 chil-
dren (k = 4), each leaf does 2 tasks (m = 2), and tasks are assigned so that even if 2
of the 4 children fails, all the tasks still get done (0 = 2). The graph shows how vari-
ance in execution time decreases with greater agent failure rates and how the prob-
ability of successful overall task completion decreases (scale on right side of graph).

the organization (the selection of parameter
values for features such as the number of sub-
ordinates for each manager) balances several
considerations.
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Organization and Run-Time
Coordination Codesign

The previous organization analysis assumes
that each agent can reliably accomplish its
task(s). A major challenge in organization
design, in fact, is to design reliable organiza-
tions that can tolerate failures of some agents.
To increase reliability, we typically introduce
redundancy among the agents so that each
task is replicated by several agents. To the
degree of replication, the task can still get done
even if some agents fail. However, redundancy
also opens the door to possible inefficiencies
because agents can duplicate each others’ work
in situations with few or no agent failures.
Duplication of effort can be avoided if agents
are able to coordinate dynamically at run time,
but this run-time coordination, in turn, incurs
overhead and assumes sophisticated agents.
Thus, an important question in organization
design is, How do different organizations make
demands on the sophistication of agents that
populate them?

To begin answering this question, we have
defined o-redundancy task assignment by a par-
ent to a child in a treelike organization as an
assignment that tolerates the failure of o chil-
dren. For example, one-redundancy task
assignment means that the organization is still
assured of succeeding even if one of the chil-
dren agents of each of the nonleaf agents fails.
In a binary organization (k = 2), one-redun-
dant task assignment means that all the agents
are responsible for all the tasks because in the
worst case (when only one of every two chil-
dren survives), there is a single “live” path to a
single leaf! Because the failures are random,
every single such path must lead to success, so
every leaf agent will have every subtask. (See
figure 8 with tasks labeled with letters a, b, c....
Note that tasks get grouped into subsets at
deeper levels, where the ordering of subsets
might imply a preferred ordering of subtask
execution.) Fortunately, for larger values of k,
redundancy need not be quite so total! (See fig-
ure 9, where a leaf agent does not have all the
subtasks.)

For different levels of o-redundancy, along
with the previously described parameters, we
can measure an organization’s response time
given that particular agents fail. We here define
the agent failure rate as the proportion of agents
that fail (although a richer model of indepen-
dent failures is used elsewhere [Durfee and So
1997]). Thus, with a failure rate of .4, an organi-
zation with 5 agents will have 2 failed agents.
Whether the organization succeeds can depend
on which of the agents fail (note that any sim-
ple hierarchical organization such as the ones



we have examined will fail if the top agent
fails), and in some cases, the failure rate might
force the violation of the degree of redundancy
in the organization, so the organization will be
assured of failing to respond at all.

Thus, a particular organization will not have
a deterministic response time but, rather, will
have a distribution over performance times,
depending on which agents fail and how the
surviving agents order their tasks. If we assume
random task ordering, we get behavior as
exemplified in figure 8 and figure 9. (These fig-
ures do not include response times for failed
instances of organizations [Durfee and So
1997].) Note how, in the first case (figure 8),
the distribution over run times (shaded region)
narrows with increasing failure rate. This nar-
rowing is because, as more agents fail, the dif-
ferences in performance as a result of alterna-
tive orderings disappears because ultimately,
enough agents are gone that the remaining
ones must complete all their tasks anyway.
This narrowing does not occur in the second
case (figure 9); having less redundancy at the
leaf agents means the performance distribu-
tion will be narrower, but it tends to widen
with failures because there can be more
reliance on results from agents that get their
tasks later (assignments are made left to right).
Broader distributions represent opportunities
for improvements through run-time coordina-
tion (Durfee and So 1997), which helps agents
coordinate their orderings to do better than
random. The second case also has a higher
probability of completion for low agent failure
rates but does not degrade as gracefully as the
first case when agent failure rate increases, as
shown by the solid line in the graph giving
completion probability (scale on the right side
of the graphs).

The design of organizations is, thus, a bal-
ancing act between factors such as reliability,
response time, and investment in run-time
coordination technologies for the agents that
populate the organization (Durfee and So
1997). Again, recall that by embedding agents
within an organization, their decisions are
simplified (they have fewer choices and know
that others have fewer options), and their
dynamic coordination activities can be better
directed.

Preference Simplification and
Selective Search

As we have seen, overly constraining choices
will affect the flexibility of agents to accommo-
date less than ideal circumstances, such as the
failure of some agents within an organization.

There are, therefore, limits to how much we
want to make coordination practical by tying
the hands of our agents—by keeping ¢ small so
that ¢” stays small.

In this section, I consider alternative strate-
gies, such as only selectively examining some
of the ¢” combinations or even just keeping n
small. If some agents can safely be ignored, for
example, the interaction can be simplified
greatly. To say that an agent can be ignored
means that the choices made by the agent
have no (or negligible) impact on the per-
ceived payoff that another gets from its choice
of actions. Obviously, one way of realizing this
negligible impact is to structure the multiagent
system in a way that maximizes independence,
such as creating organizations with indepen-
dent roles (for example, no redundancy) so
that agents would not need to consider what
others had or would be doing when making
their own decisions. Such systems have been
called completely accurate, independent sys-
tems (Lesser and Corkill 1981).

In more open systems, imposing such struc-
ture can be problematic, so alternative means
are needed. One fundamental approach is to
simplify the agents’ preference structure. Con-
sider, for example, the following: In a robot
delivery task, a robot R is indifferent to where
other robots are, except when they are trying
to be in the same place as R at the same time.
Thus, if we consider R’s interaction space, for
most of the choice combinations, the payoff of
the choice combination is the same as R’s pay-
off for its individual choice, except for a few
points where R’s payoff is strongly negative (a
collision!). Thus, reasoning about its choice of
action could be viewed as prohibiting the bad
combinations and acting independently other-
wise. The notion of social laws (Shoham and
Tennenholtz 1995), for example, has this fla-
vor of prohibiting actions that lead to failure
states and otherwise allowing agents to ignore
each other.

Satisficing

An even greater simplification can arise if each
agent has only two levels of preference over
outcomes of choices: (1) good and (2) no good.
In effect, this simplification reduces the search
for an optimal choice of action to a satisficing
search: As soon as a choice is found that is
good, it is pointless to enumerate and evaluate
other choices.

These strategies presuppose that agents
know what choices to avoid. In some cases,
offline analyses of an application domain can
yield a set of prohibitions, as has been done
with social laws (Shoham and Tennenholtz

Articles

overly
constraining
choices will
affect the
flexibility of
agents to
accommodate
less than
ideal circum-
stances, such
as the failure
of some
agents
within an
organization.
There are ...
limits to
how much
we want

to make
coordination
practical by
tying the
hands of our
agents....

SPRING 1999 109



Articles

Commitment Type Time Scale
Biology Millennia
Centuries
Law
Decades
Years
Months
Days
Hours
Schedule
Minutes
Control
Seconds

Number of Agents

Species

Societies

Communities

Individuals

Subindividuals

Figure 10. Commitment Spectrum.

As we work our way down, the time scale of commitments decreases, as does the number of agents participating in the commitment. The
marked areas are the parts of commitment space focused on in this article.
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1995). However, run-time methods for search-
ing for coordinated choices can exploit simpli-
fied preferences greatly. For example, in coor-
dination approaches based on plan merging
(for example, Ephrati and Rosenschein [1994];
Durfee and Lesser [1991]; Georgeff [1983]),
agents begin by assuming that their choices are
independent; thus, each agent searches for
plans that look best locally. These are then
merged to detect conflicts, and if conflicts are
found, some agents might replan or simply
revise (such as insert synchronization actions
into) their original plans to remove the prob-
lem. Thus, rather than enumerating the whole
interaction space (matrix), the agents selective-
ly enumerate portions of the space until a sat-
isfactory combination of local plans is found.
Often, they perform a hill-climbing search,
beginning from their combination of indepen-
dently derived local plans and searching
through successive perturbations of these
plans until a satisfactory (conflict-free) combi-
nation is found (for example, Durfee and Less-
er [1991)).

This satisficing simplification of preferences
to being good (enough) and no good reduces
the coordination process to a distributed con-

straint-satisfaction problem (Yokoo et al. 1992;
Conry et al. 1991; Sycara et al. 1991), where all
satisfactory solutions are equally good. Much
work in multiagent systems has benefited from
this kind of simplification, taking advantage of
algorithms for constraint-satisfaction search to
solve, for example, problems in distributed
resource allocation and scheduling. There
might be many possible strategies for conduct-
ing such a search, however, and the quality
and cost of coordination might well depend
on adopting an appropriate strategy given the
current problem-solving context.

Negotiation

For example, in the application domain of dis-
tributed meeting scheduling, there could be
several strategies for how agents go about
searching through (negotiating over) possible
meeting times to propose to each other (Sen
and Durfee 1995). Two (of many) possible
strategies are to (1) simply move through the
available times chronologically and schedule a
meeting as early as possible or (2) find larger
portions of the calendar that are relatively free
and then iteratively narrow down the times to
find a meeting time. These strategies lead to
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Figure 11. An Organizational Solution.

R1 delivers objects between the solid square locations (it is at one of those in the figure). R2 similarly delivers between the shaded regions.
One coordination decision could be to partition the space once and for all, such that each robot has complete control over its region (shown

on the right).

calendars that look different, the second tend-
ing to distribute meetings more evenly. In
turn, the evolution of a calendar with one of
the strategies eventually reaches a point where
the other strategy becomes the better (more
cost-effective) choice for further scheduling. As
the calendar gets full toward the front from as-
soon-as-possible scheduling, a fit-in-sparse-
space strategy works better. Because the fit-in-
sparse-space strategy tends to make the
calendar evenly dense (so there really are no
spaces appreciably more sparse than others),
the simpler soon-as-possible strategy eventual-
ly becomes more cost effective. Thus, not only
does an agent’s choice of strategy for searching
the options affect the quality and cost of its
schedule, but the agent must also be capable of
adapting its strategy as circumstances change.

The iterative search through the space of
joint decisions that we have described has
many of the features that most people associ-
ate with the concept of negotiation. There are
many possible strategies for making negotia-
tion practical depending on the needs of an
application, ranging from simplifying the pref-
erences and adapting the search strategy (as
outlined earlier), to simplifying the proposals
(for example, using prices to summarize
agents’ allocation plans, as in Wellman [1993]
and Lee and Durfee [1995]), to using heuristics
or past cases to generate new proposals based
on feedback about prior proposals (as in Sycara
[1989]), to exchanging intervals of proposals

and narrowing down to solutions, and so on.
In fact, because the term negotiation has been
used to encompass so many more specific
strategies such as those just mentioned, the
term has become much less technically mean-
ingful; a challenge for the community is to
more carefully characterize the different kinds
of negotiation that have been studied, possibly
(as suggested in this article) by focusing on
how each kind attempts to make the coordina-
tion problem tractable.

Hierarchical
Elaboration of Choices

To this point, we have discussed approaches
where agents can search through the space of
individual actions to find good joint actions,
such as working their way through proposed
meeting times and agents working within
longer-term organizational guidelines that
focus their behaviors. In fact, these strategies
for coordination involve agents making com-
mitments at different levels (at the schedule
level versus the organization level). Generally
speaking, agents can make commitments
along a spectrum of levels, which are differen-
tiated mostly in terms of the lifetime of the
commitment (or the frequency with which
new commitments must be made) and in
terms of the number of agents involved in the
commitment, as broadly summarized in figure
10. The frequency of coordination decisions is
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Figure 12. Alternative Levels of Abstraction.

Treating coordination for only the next delivery, the agents represent their plans abstractly in terms of an x-y region over time. The most
abstract representations (upper left) overlap, leading either to moving their activities apart in space or time (working downward in the figure)
or exchanging more detailed views (moving to the right in the figure) to isolate more precisely where the conflicts could arise. At the most
extreme right, the agents exchange detailed movement plans and coordinate by shifting one of them very slightly in time to avoid collision

in the doorway.
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conveyed in the left column (darker is more
frequent) along with the type of commitment
and the time scale and number of agents
involved. The emphasis in multiagent systems
research is mostly in the areas that are boxed,
with the gray areas being less fully explored.
The choice of what kinds of commitment
agent should make to each other depends on
the frequency of coordination activity, the
requirements for coordination precision, the
tolerance of coordination costs, and the flexi-
bility that agents need to individually retain to
cope with environmental changes.

An ongoing objective of our work is to rep-
resent the continuous spectrum of commit-
ments in a single search space to allow agents
to move among models of individual and joint
activity at different levels of (temporal)
abstraction. Thus, the search for coordinated
activity involves not only a search among
alternatives at a particular abstraction level for
specifying choices but, in fact, a search
through alternative levels of abstraction to
find models of agents and actions that balance
the costs and benefits of coordination appro-
priately.

For example, consider two robots doing
deliveries, as in figure 11 (left side). Because R1

always delivers to the top destination and R2
to the bottom one, one strategy for coordinat-
ing is to statically assign resources (in this case,
regions that contain the doors are most impor-
tant). This strategy leads to figure 11 (right
side), where R2 is always running around the
long way. This organizational solution avoids
any need for further coordination, but it can
be inefficient, especially when R1 is not using
its door because R2 is still taking the long
route.

For a particular delivery, R1 and R2 might
consider their time-space needs and identify
that pushing their activities apart in space or
time would suffice (figure 12, left side). With
temporal resolution, R2 waits until R1 is done
before beginning to move to and through the
central door, or the robots could use informa-
tion from this more abstract level to focus
communication on exchanging more detailed
information about the trouble spots. They
could resolve the potential conflict at an inter-
mediate level of abstraction; temporal resolu-
tion has R2 begin once R1 has cleared the door
(figure 12, middle column bottom), or the
robots could communicate more details (figure
12, right side), where now R2 moves at the
same time as R1 and stops just before the door



to let R1 pass through first. Clearly, this last
instance of coordination is crispest, but it is
also the most expensive to arrive at and is the
least tolerant of failure because the robots have
less distance between them in general, so less
room to avoid collisions if they deviate from
planned paths.

This example illustrates that coordination
can go on at different abstraction levels and
that which level is correct can be very situation
dependent. Thus, it is important to develop
coordination techniques that can find the
right level of detail. Moreover, in terms of the
framework laid out in this article—of thinking
about strategies for limiting the knowledge
being considered during coordination—the
ability to represent situations abstractly is
another way of reducing the number of choic-
es (and choice combinations) being considered
(lowers c in our earlier formulations). Protocols
that allow the incremental elaboration of
choices, moreover, can be based on such a rep-
resentation as another means for selectively
exploring (and ignoring) options of agents
(Durfee and Montgomery 1991).

Of course, there are even more strategies for
coordination, even in a simple domain such as
the robot-delivery task. One interesting strate-
gy is for the robots to move up a level to see
their tasks as part of a single, team task. By
doing so, they can recognize alternative
decompositions. For example, rather than
decompose by items to deliver, they could
decompose by spatial areas, leading to a solu-
tion where one robot picks up items at the
source locations and drops them off at the
doorway, and the other picks up at the door-
way and delivers to the final destination. By
seeing themselves as part of one team, the
agents can coordinate to their mutual benefit
(they can cooperate).

Using Teams to
Simplify Coordination

We turn to one final strategy for keeping coor-
dination practical that builds on both the ideas
of using hierarchical abstractions and of ignor-
ing agents or treating multiple agents as a sin-
gle agent. Abstraction is a powerful tool for
reducing complexity; for tasks that admit to
abstraction such that subtasks can be elaborat-
ed independently, hierarchical distributed
problem solving can solve an exponential
problem in logarithmic time. That is, some
problems admit to hierarchical decomposi-
tion, such as the Tower of Hanoi problem,
where solving the problem of moving a stack
of smaller disks off the disk that needs to be
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Figure 13. Example Team Hierarchy.
Nodes are clustered into four teams, and one member of each team acts as a leader

and coordinates with the leaders of the other teams.
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Figure 14. Experimental Results on Team Deliveries.

The total time to complete deliveries is plotted as the number of packages to
be delivered (where their start and destination locations are randomly generated)
grows. With a small number of deliveries, it is faster for agents to coordinate as
individuals, because the number of potential conflicts (collisions) is small, than
to incur the overhead of working through a team hierarchy. However, as the num-
ber of deliveries rises, it eventually becomes more cost effective to decouple much

of the search by using teams despite the added overhead.

moved can be solved separately from the prob-
lem of restacking smaller disks on top of the
moved disk (Knoblock 1991; Korf 1987). Mul-
tiagent problem solving can construct a plan
in logarithmic time as long as the number of
agents to solve the problem can grow with
increasingly large problem sizes (Montgomery
and Durfee 1993).

Moreover, even when strong assumptions of
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Figure 15. Strategies for Practical Coordination.

Here is a summary of the techniques described for making coordination more practical, indicating what parts of the coordination problem

subtask independence do not hold, the use of
abstraction can be beneficial. For example, in
coordinating 20 delivery robots, having each
communicate and coordinate with all the oth-
ers directly can lead to paralysis because each
is overwhelmed with information. An alterna-
tive strategy is to have the agents break into
teams, such that team leaders coordinate to
divide (space and time) resources among the
teams, and team members divide their allot-
ment among themselves (figure 13).

Because team members must summarize
their requests for team leaders, and then team
leaders must pass revised team constraints
back to the members, the property of subtask
independence does not hold. However, despite
this violation of the subtask independence
assumption, as illustrated for a particular case
in figure 14, the use of team-level abstraction
can allow coordination costs to grow more
slowly because the task becomes harder than if
the individuals had to coordinate with every
other agent (Montgomery and Durfee 1993).

Summary and Future Work

To summarize, what we have seen is that con-
sidering all the knowledge that an agent might
have, completely thoughtful coordination

might be impractical for most applications.
Making coordination practical, therefore,
means finding ways to not use some of the
possible knowledge—to either be, or pretend
to be, blissfully ignorant about some aspects of
the multiagent situation (figure 15). I would
claim, in fact, that the bulk of coordination
research has been in developing techniques to
do exactly that. The large number of tech-
niques out there seems to me to be a reflection
of the number of ways that people have found
to ignore, simplify, or implicitly design away
aspects of agent models to make coordination
tractable. Different application domains have
tended to be sensitive to ignorance of different
things; hence, in general, coordination tech-
niques appear to be tied to application
domains.

My hope is that this application specificity is
really not the case but that the coordination
techniques are tied instead to what is safe to
ignore in different domains. By characterizing
coordination techniques in terms of how they
reckon with the potential intractability of the
coordination task, as I have done here with a
small (shamelessly biased) subset of tech-
niques, I hope to encourage further examina-
tion of previous and ongoing work (of which
there is too much to comprehensively list) to



understand it not in terms of how
techniques match a particular applica-
tion domain but, rather, how they fit a
class of domains that admit to—or
even thrive on—certain kinds of igno-
rance that allow coordination to be
practical.

Further Reading

Computational approaches to coordi-
nation among Al systems have been a
focus of work in the distributed Al and
multiagent system community for
many years. Numerous collections of
research results in the field exist, rang-
ing from classic papers (Bond and
Gasser 1988) to the papers from the
International Conferences on Multia-
gent Systems (Demazeau 1998; Takoro
1996; Lesser 1995) and the Auton-
omous Agents Conferences (Sycara
and Wooldridge 1998; Johnson 1997).
There are in-depth treatments on the
design of mechanisms that lead to
multiagent systems that exhibit desir-
able properties (for example, Rosen-
schein and Zlotkin 1994), on compu-
tational organization theory (for
example, Prietula, Carley, and Gasser
[1998]) and on theories of nested
agent knowledge (Fagin et al. 1995).
Recently, the field has matured to the
point where textbook-level treatments
have begun to appear (Weiss 1998;
O’Hare and Jennings 1996), and a
journal entitled Autonomous Agents
and Multiagent Systems is now being
published.
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Notes

1. This is not unlike how seemingly oblivi-
ous drivers are given the right of way on
the highway by more aware and defensive
drivers.

2. Recall, though, that although knowing
more is better, it is not necessarily better to
be known as knowing more. That is, it
might be advantageous to be seen by others
as being ignorant. There can be power in
using knowledge that others do not know
that you have! It is unlikely that the reverse
(of not using knowledge that others know
you have) will be a good idea.

3. Of course, if the agents truly do have infi-
nitely deep knowledge, then this is not a
simplifying assumption but, rather, a mod-
el of their true knowledge state. I address
shortly the question of how such a knowl-
edge state might come about.

4. That is, by communicating, the agents
can be assured of taking complementary
actions (one A, the other B), so one is sure
of opening the right door (payoff of 2), and
the other will get a payoff of 0. If each is
equally likely to be in each of these circum-
stances, each has an expected (average)
payoff of 1.

5. Note that prohibitions across the entire
population equate to “conventions” or
“social laws” (Shoham and Tennenholtz
1995) that correspond to a specialized form
of organization structure.
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