
■ Many different architectures have been proposed
for the design of autonomous agents. In this arti-
cle, the application of the belief-desire-intention
architecture to the artificial soccer domain is
described. We show how it supports efficient delib-
eration in a highly dynamic environment.

The consideration of programs as agents
focuses at first on the aspect of autono-
my: Programs have to act in an appropri-

ate way to changes in the environment; there-
fore, they need some input or sensor facilities
and some output or actoric components. The
mapping from input to output can be done in
simple ways (for example, strictly reactive) or
in more sophisticated ways, for example, with
models that are inspired by human decision
processes. We found that mental notions such
as capabilities-skills, belief, goals-desires, and
intentions-plans are useful pictures to make
agent programming transparent. The aspect of
rationality forces agents to deal efficiently with
their resources, especially with time.

Many different architectures have been pro-
posed for the design of agents. The subsump-
tion architecture (Brooks 1990), for example, is
a well-known architecture with different levels
of performance. The so-called belief-desire-
intention (BDI) model fits best to our concept
of agents in artificial soccer (Kitano et al. 1997).
The BDI approach is based on the philosophi-
cal work of Bratman (1987) and the theoretical
and practical work of Rao and Georgeff (1995)
and others (cf., for example, Wooldridge and
Jennings [1994] and Burkhard [1996]).

Rao and Georgeff characterize typical prob-
lem domains that can successfully be solved by
BDI. These characteristics fit the artificial soc-
cer domain well: (1) The simulator and the
opponents create a nondeterministic environ-
ment. (2) The agent itself reacts nondetermin-

istically because parts of the planning process
are randomized. (3) The player can have differ-
ent goals at the same time, for example, reach-
ing the ball while covering an opponent. (4)
The success of the player’s own commands
depends strongly on the simulated environ-
ment and the opponents. (5) The whole infor-
mation is local and different for every player.
(6) The environment pushes bounded rational-
ity because reasoning that is too deep is with-
out payoff in a dynamic surrounding.

In the BDI approach, agents maintain a
model of their world that is called belief
(because it might not be true knowledge). The
way from belief to actions is guided by the
desires of the agent. Bratman has argued that
intentions are neither desires nor beliefs but an
additional independent mental category.
Intentions are considered as (partial) plans for
the achievement of goals by appropriate
actions. Commitment to intentions is needed
that has impact on the rational use of
resources: The (relative) stability of committed
intentions prevents overload in deliberation
and useless plan changes, and it serves trust-
worthiness in cooperation.

All components of a BDI architecture can be
identified in our deliberation process. The fol-
lowing sections give an overview to our realiza-
tion of this kind of architecture.

Belief—The World Model
The soccer server sends only a partial noisy pic-
ture in relative coordinates to the agent, which
leads to an individual belief of the world in
every agent. The agent cannot rely on the accu-
racy of the received and interpolated data;
therefore, it is belief, not knowledge.

Belief is updated in the component world
model in our realization. In a dynamic and
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is under control, the agent is able to pass the
ball or dribble. If the player has no control of
the ball, it can decide whether to intercept it,
watch the game, or run to a certain position.
This goal (target) finding is done by a usual
decision tree. Some of the decisions are trivial
(“Is the ball in the kick range or not?”), but
some are really tricky (“Should I run to the
ball, or should my teammate do it?”). The lat-
ter decision is done by using a distance mea-
sure: If the agent supposes to be the first of its
team to reach the ball, it will run. If not, it
relies on its teammates and runs back to its
home position.

Intentions—The Planning
The achievement of the chosen goal is realized
by an appropriate plan. Such a plan might last
for a larger set of server cycles with new arriv-
ing sensor information. This sensor informa-
tion can be used for the adaptation of a plan
(for example, for correcting the agent’s direc-
tion while it is running for the ball). However,
permanent (small) corrections can cost more
time than only occasional adaptations. Here
we observe a trade-off between adaptation and
persistence: Strict execution of predetermined
long-term plans can fail because of unforeseen
events in a changing and only partially observ-
able environment. However, permanent evalu-
ation and new deliberation for every execution
step can lead to many additional actions. Such
a procedure could have serious drawbacks for
fixed plans with special initialization steps: If
new deliberation leads to a new plan, then
related initialization steps (for example, turn-
ing to a new direction) might be executed
again and again. Other drawbacks of too many
new deliberation processes might be the exten-
sive use of computing resources (bounded
rationality).

We have developed a special kind of deliber-
ation strategy that regards each new sensor
information but makes adaptations only in
special situations. Our deliberation process can
be considered as a special implementation of
intention stability. Intentions are considered
committed plans for achieving a goal. We have
two stages of planning in our system: (1) deter-
mining the best way to achieve the intention
and (2) computing concrete parameters and
single actions. The first stage of the planning
process produces a coarse long-term plan with
some parameters (partial plan).

There are two major cases to cope with: The
agent is out of the kick range, or it can control
the ball (that is, has ball possession). In the
first case, the player calculates an optimal

uncertain domain such as artificial soccer, a
consistent (as far as possible) modeling of the
environment is necessary. Short-term false
information has to be corrected, imprecise
information must be evaluated, and inferences
are necessary for missing information. The
related algorithms lead to a certain stability of
the agent’s belief.

To satisfy these demands, the world model
provides, for example, basic classes for linear
algebra and special classes for every object on
the field. Inheritance is strongly used, and
additional features such as timed objects, and
encapsulated environments make synchro-
nization with the simulated surrounding easi-
er.

The agent’s absolute position on the playing
field is calculated using the relative visual
information concerning lines, flags, and goals.
The triangulation considers all possible cases
(actually several hundred). The agent’s velocity
is estimated from the movement commands
sent to the simulator. Absolute positions of all
other seen objects can be computed because
the own absolute position is known. A special
algorithm matches new information on
unnamed objects (for example, a player with a
missing number) to known objects. The world
model can also close the information gaps for
unobservable objects by simulation.

Simulation is also used to predict future sit-
uations by using the knowledge about posi-
tions and velocities. This ability is extensively
used by the planning process to estimate con-
sequences of possible commands. For example,
the component advanced skills can instantiate
a new ball object, simulate it for some time
steps, and look at the position and speed.
Additional features such as wind can easily be
taken into account this way. The world model
logs an adjustable number of environments to
track the player’s history. This ability was
implemented to support online learning (not
used until now).

Desires—Goal Finding
In our implementation, desires are goals that
are selected out of a fixed goal library. The list
of possible goals is still small, but the set will
be extended, for example, to allow joint goals
(such as double passes) in the future. In the
current realization, different (even opposite)
goals can be achieved, but the agent selects
only one of them.

The component planning embeds the plan-
ning process that can be initiated each time a
new piece of sensor information has arrived. A
new situation is classified as follows: If the ball
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interception position, if it has decided to get
the ball. For several reasons (for example, to
regard the wind if necessary), we decided to
use the simulation capability of the world
model. The agent tries mentally to reach the
ball in one step, in two steps, and so on, until
it finds a certain number of steps in which it
can reach the ball. This procedure also pro-
vides a distance measure because it can be
applied to every player and ball instance. Fig-
ure 1 shows this process graphically and gives
a commented example. If the player has decid-
ed not to intercept the ball, it returns to its
home position or (if it is already there) collects
information by turning and waiting.

If the player controls the ball, it has to
decide whether to pass the ball or dribble. Fur-
thermore, it has to decide in which direction
to kick or dribble, respectively. It should prefer
a direction with the best chances to score or
pass the ball to a teammate. At the same time,

it should prefer directions that promote an
offensive play style. A fixed single direction is
evaluated by a special function that takes into
account the distance in terms of the distance
measure, as described previously. The minimal
distance of the player to the ball and the relat-
ed mean distances for its own team and the
opponent team, respectively, are combined
using role-dependent weight factors and a
goal-hitting bonus.

Having the function to evaluate single direc-
tions, the agent can look for a globally optimal
direction. Because of its definition, the evalua-
tion function is normalized to zero, which
means that negative values indicate a good
direction, and positive values indicate a bad
direction. In our recent implementation, sev-
eral discrete directions are evaluated, and then
the best direction is taken. Figure 2 exemplifies
such an evaluation process.

Values near zero are neutral; these values are
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Figure 1. Decision Finding for Ball Interception.
The solid line shows the ball movement with the ball positions at the time steps t ± i. The dotted lines represent the view sectors
of the different players P1 and P2 at time t. The dashed lines show the movements of the players. P1 does not see P2 and P5. It cal-
culates distance 26 for P4, 29 for P3, and 6 for itself. The agent decides to intercept the ball. P2, whose view sector includes P1, cal-
culates 6 for P1, 30 for P3, 26 for P4, 39 for P5, and 4 for itself. It also decides to go for the ball. Hence, both players of the same
team go for the ball. P1 calculates the interception position at ball position t + 6. Likewise does P2 for ball position t + 4. At time
t + 3, a new sensor information comes in. P1 cannot see the ball. It will keep its plan according to the implementation of our plan-
ning component for such situations. P2 sees the ball and also continues intercepting the ball.



uate this sector, and so on. This repetitive pro-
cedure was a safe way to find the global best
direction but was actually too slow because our
agents had to wait 300 microseconds (ms) to
get the next information. (We did not consider
another sensor cycle because we missed one
action by sending a view-change command. It
is under discussion that such actions should
not consume time, which could make the oth-
er strategy more interesting.)

Thus, we implemented the following behav-
ior: If the agent looks approximately in the
preferred direction (the definition of approxi-
mately is role dependent), it will do the evalu-
ation process. If not, it will do an emergency
kick directed at the opponent’s goal. (We did
not use communication between the players
in the recent implementation. With additional
information obtained by communication, we
can make a full evaluation of the situation in
the future.)

The described stage of planning corresponds
to long-term plans with some parameters that
can be also seen as partial plans. Its calculated

especially difficult to judge. For this purpose, a
randomized function was implemented that
decides afterwards whether to kick or dribble.
It is a function that takes the distance value of
the best direction and calculates a role-depen-
dent probability to dribble.

These planning procedures have a certain
overlapping with the finding procedure for
desires. This overlapping is necessary because
the decision process has to look for achievable
desires, and the realization of the intentions
relies on the capabilities of the agent.

The main problem of the evaluation strategy
described here is that players move in unpre-
dictable ways. Therefore, the positions of
unseen players are uncertain, which is why we
decided to evaluate only directions in the view
area (our agents had a view angle of 90
degrees). To prevent too many backward shots,
every area on the field has a defined preferred
direction. Our first idea was the following rule:
Turn to preferred direction, and evaluate the
kick directions. If there is no good kick direc-
tion, determine a turn direction and turn, eval-
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end is the achievement of the selected goal.
The second stage is to split the intention into
smaller pieces that are implemented as short-
term plans in the Advanced Skills component.

This component is a library of skills that
facilitate efficient ball handling and optimal
movement. The short-term plans produced by
Advanced Skills are not longer than the inter-
val between consecutive sensor information
(with our preferences, these are actually three
basic actions). This way, the long-term plans
are executed by iterated calls of Advanced
Skills after each sensor information.

It was one of the major decisions during
development to use this strategy of plan execu-
tion. The more common strategy is to fix a
long-term plan that can be adapted during
execution if necessary. Such a long-term plan
can start with some initial actions to achieve a
well-defined situation (for example, a suitable
ball position for dribbling). Afterwards, the
actions are performed in the fixed sequence
according to the plan such that each action
relies on the successful execution of its prede-
cessors.

In our strategy, a strictly new deliberation
process can start for each new sensor informa-
tion (actually every 300 ms), and in this case,
we have a new long-term plan started just at
this time point. If we always needed certain
(new) initial actions for preparation, then we
might never come to the continuation of a
plan. To overcome this problem, the advanced
skills are designed to deal immediately with
any situation that might appear at the begin-
ning or during the execution of a long-term
plan (for example, to continue dribbling in
any situation). As a side effect, the advanced
skills are able to realize the fastest way for goal
achievement in a flexible way from arbitrary
start situations.

The main advanced skills of the player agent
are Directed Kick, Go to Position, and Dribble.
Go to Position is used to reach any absolute
position on the field. It produces one basic
Turn (if needed) and/or up to two/three Dash-
es. If demanded, this procedure avoids obsta-
cles such as other players. Dribble moves the
ball into a certain direction without losing
contact with it, including the production of
several Kick, Turn, and Dash combinations.

The Directed Kick skill is a good example for
the planning subtask of the advanced skills;
therefore, we describe it in detail. This capabil-
ity allows the players to kick the ball in any
direction with a demanded power (as far as
possible). It handles difficult situations such as
high velocities and the player itself as an obsta-
cle for the desired direction. If the desired

direction with the desired speed cannot be
achieved, the skill tries to meet the demands as
well as possible.

First, the skill tries to determine the kick
angle and the power that is necessary to trans-
form the current movement vector into the
demanded movement vector (figure 3a). If the
length of the necessary kick vector (the power)
is physically impossible, the skill tries to at
least keep the correct direction. A complica-
tion occurs for kick vectors that are possible
but hit the player itself. In this case, an inter-
mediate target is calculated that is at the side of
the player (figure 3b). The first kick leads to
this point, and further kicks are calculated
from there (figure 3c). In some cases, the ball
can be kicked once more (figure 3d).

As mentioned previously, Advanced Skills
provides precompiled plan skeletons of a size
that fits between two time points of sensor
information. They have their own calculation
capability that is used to compute the short-
time optimal command sequence. Looking at
the mentioned trade-off, these short-term
plans are atomic and cannot be interfered with
by sensor information. However, in composi-
tion, they build a long-term plan that is com-
plex enough to achieve higher goals.

Persistence of Planning
The consideration of our agents as BDI con-
structs is appropriate because for each new
piece of sensor information, we have a com-
plete deliberation process with an update of
belief, a choice of a desire, a commitment to an
intention, and an execution of a plan part.

A problem arises when the commitment of
intentions is mostly performed independently
from the previous intentions, which might
contradict the principle of stability of commit-
ted intentions, a central point in Bratman’s
theory. The canonical deliberation process has
to maintain an old intention as long as there
are no serious counterindications.

A new deliberation process is initiated every
time a new sensor information comes in, and
a new plan is created. It is a special task of our
planning strategy to ensure stability of the
long-term plans and avoid constantly chang-
ing goals or intentions. Our world model gives
a good picture of the outside reality; thus,
updates usually coincide with expectations.
Therefore, a completely new planning process
will usually lead to the same goal and a similar
intention (plan). Hence, the player must only
prevent this missing new belief or slightly bet-
ter new intentions from leading to unsuitable
changes in its behavior. To avoid this, the
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position. The agent avoids the additional
actions (turns) that would be necessary to look
for the ball. He makes a straight run to the des-
ignated position until the “don’t care” time is
over. In general, the old goal and intention are
kept as long as the calculated interval lasts.

We found this to be an interesting imple-
mentation of the stability principle for com-
mitted intentions without explicitly using the
old intention. Our agents are able to adapt a
plan to new situations if necessary (for exam-
ple, a turn command with a greater change
would not be dropped). It might be the case
that future implementations would need an
explicit treatment of previous intentions (for
example, if a commitment were given to team-
mates in explicit cooperation).

Conclusion
An architecture that makes the agent process-
ing transparent is important for the develop-
ment of concepts and for the implementation.

agent, for example, lets out minor turns on the
way to a certain position. (The avoidance of
minor turns saves time: Very often, the old
direction still leads at least approximately to
this position. If the small omitted changes sum
up over time, then a related turn would be exe-
cuted later.) The result of this strategy could be
called implicit persistence.

The explicit persistence of goals and inten-
tions in our implementation can be exempli-
fied by the realization of the goal “Go to home
position.” To decide whether to intercept the
ball or go home, the agent has calculated the
minimal distance of all teammates and oppo-
nents to the ball and has stored these values. If
the decision is to go home, the agent uses
these values to determine a time interval in
which it must not care for the ball because no
other player is able to change the ball’s known
movement. The decision tree usually strongly
relies on sight of the ball, but in this case, the
agent won’t turn for the ball in the calculated
“don’t care” interval on its way to its assigned
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Figure 3. Several Steps of the Directed Kick Skill.
A. This view shows the actual kick that is necessary to give the ball the demanded direction (by vector addition
of the kick and the current movement). B. If the player itself is an obstacle for the demanded kick direction,
then a first kick must place the ball beside the player. C. The second kick gives the ball the demanded direction.
D. If the ball is still in the kick range, then a third kick might give the ball additional power. (According to vec-
tor addition, the actual kicks have to regard the current movement of the ball as described in A.)
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It is especially valuable for fast refinements
and changes of code. In this article, we showed
that the BDI architecture can successfully be
applied to artificial soccer because of its poten-
tials for deliberation and adaptation in highly
dynamic environments and maintenance of
stable intentions.

The trade-off between in-deep planning and
accuracy to fast-changing situations can effi-
ciently be solved by the presented execution of
long-term partial plans by short-term com-
mand sequences without losing the necessary
persistence.

Until now, the team behavior of our agents
has only been implicit. Players act according to
their expectations of the behavior of their
teammates. Different roles result in an efficient
use of the whole playground. However, we
have also identified several situations where
communication would improve the behavior;
so, future development might take into
account explicit team play. Explicit coopera-
tion needs an extension of our architecture for
team goals, negotiation, and joint plans. Relat-
ed strategies could lead to a real heterogeneous
team with players having their own character
but cooperating efficiently.

Another long-term goal is the use of online
and offline learning. We have already imple-
mented the storage of histories in the agents,
which is to be used for online learning with
methods from case-based reasoning.
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Notes
1. In the future, we might deal with the com-
mitment to concurrent goals. In such a case,
we will have to regard the “scope of admissibil-
ity” (Bratman) set by previous intentions. For
example, an existing intention to preserve the
off-side position of an opponent might restrict
the commitment to later goals for reaching
special positions.
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