
■ Robotics Team 1 from Kansas State University was
the team that perfectly completed the Office Nav-
igation event in the shortest time at the fifth
Annual AAAI Mobile Robot Competition and
Exhibition, held as part of the Thirteenth Nation-
al Conference on Artificial Intelligence. The team,
consisting of Michael Novak and Darrel Fossett,
developed its code in an undergraduate software-
engineering course. Its C++ code used multiple
threads to provide separate autonomous agents to
solve the meeting scheduling task, control the
sonar sensors, and control the actual robot
motion. The team’s robot software was nick-
named SLICK WILLIE for the way it gracefully
moved through doorways and around obstacles.
The resulting code was robust and performed
excellently.

Kansas State University Robotics Team 1
tied for second in the Office Navigation
event at the fifth Annual Mobile Robot

Competition and Exhibition, held as part of
the Thirteenth National Conference on
Artificial Intelligence (AAAI-96). The team,
consisting of Michael Novak and Darrel Fos-
sett, accomplished the complete Office Navi-
gation event perfectly. In both the second
and the final rounds, the software achieved
the maximum points for successfully com-
pleting the event without hitting obstacles,
hitting walls, incorrectly estimating the time
for the meeting, or failing to enter rooms. The
time for completion of the task was less than
one-third the time of the only other team to
perfectly complete the task.

Novak and Fossett’s software planned a
route from the director’s office to the confer-
ence rooms, directed the robot to each of the
two conference rooms, correctly determined
which conference room was not occupied,

planned a route to the other offices and back
to the director’s office, guided the robot to
each of the other offices, estimated the time
for the meeting and announced the time of
the meeting, and then directed the robot back
to the director’s office exactly one minute
before the announced time for the meeting.

Novak and Fossett (figure 1) were undergrad-
uate computer science students in the Com-
puting and Information Science Department at
Kansas State University (KSU) in Manhattan,
Kansas. During the 1995 to 1996 academic
year, they took a two-semester, software-engi-
neering course that I taught. In this required
course, the principles of software engineering
are taught using a team-project approach.
Their project was to develop software on the
Nomad 200 robot for tasks such as maze fol-
lowing, office delivery, and office navigation.
The course emphasized the development of
robust software and the adequate testing of the
software in a variety of situations.

After completion of the course in May
1996, Novak and Fossett specialized their
team’s code for the AAAI-96 robotics competi-
tion. By the end of June, they had robust soft-
ware for the competition’s Office Navigation
event.

The Robot
The robot, named WILLIE after the KSU wildcat
mascot, is a Nomad 200 robot from Nomadic
Technology, Inc., in Sunnyvale, California. The
robot is approximately two feet in diameter
and three feet tall. It is equipped with 2 sonar
rings of 16 sonars each and with 2 charge-cou-
pled device (CCD) cameras. The robot has a
486 processor on board with a hard drive and
16 megabytes of memory. The turret and the

Articles

SPRING 1997 33

Kansas State’s SLICK WILLIE
Robot Software

David A. Gustafson

Copyright © 1997, American Association for Artificial Intelligence. All rights reserved. 0738-4602-1997 / $2.00

AI Magazine Volume 18 Number 1 (1997) (© AAAI)

it but did not need to know about obstacle
avoidance. The behaviors at the bottom level
needed to worry about low-level responsibili-
ties, such as avoiding obstacles and not hit-
ting walls but did not need to know about
the overall strategy for solving the task. Fig-
ure 2 shows a simplified version of the object
model. Most of the attributes and some of the
methods are not included. The classes marked
with an asterisk run as separate threads.

The top-level–object high_level_control was
responsible for the sequencing of the path-
planning, high-level motion, observation,
estimation, and direction tasks and for high-
level error recovery. The high_level_control
object handles the direction of motion down
hallways and into and out of rooms, but low-
er-level objects control the local movement.

Below the top level are objects to handle
the mapping functions, the detection func-
tions, and the robot motion. The midlevel-
object map is responsible for the mapping
and path-planning functions.

The midlevel object detect is responsible for
using the camera to detect motion in the
conference rooms. The low-level–object cam-
era controls the actual camera. In each room,
the camera was aimed in three directions,
overlapping the whole area of the room, and
in each of the directions, a sequence of cam-
era images was compared by the detect object
to identify any movement or change in the
image.

The last midlevel object, motion, is respon-
sible for general hallway motion, the exiting
of rooms, and the entering of doorways.

The move function in the motion object
does two important tasks (figure 3). The first
task is to avoid moving objects. It calls the
function blocked to check on the immediate
area in the direction of motion. If there is an
obstacle to forward motion, it waits and
retries. If there is not an obstacle or if the
obstacle has moved, it continues to monitor
the areas directly in front of the robot. It
plans the local movement necessary to avoid
obstacles. It also uses a low-level object, vec-
tor, to identify the immediate free area in
front of the robot, allowing the robot to
smooth out the motions necessary for mov-
ing through doorways and around obstacles.
The team’s software controller was nick-
named SLICK WILLIE because its motion
through doorways was a graceful sliding
motion instead of the boxy movements com-
mon in robots centering on, and moving
through, doorways.

The low-level object vector is responsible for
maintaining the local view of the surround-

base can rotate independently. The robot can
translate forward and backward on its three
wheels, which rotate together. The robot has
a zero turning radius and a maximum speed
of 20 inches/second. The Nomad 200 robot
has a simulation system that runs on UNIX

workstations. This simulation system allows
extensive execution of the software in a vari-
ety of situations.

The programming was done in C++ under
the LINUX operating system that was installed
on the 486 PC on board the Nomad 200.
Although the team used a workstation and
wireless ethernet to initiate the execution of
the robot software, the Nomad 200 was run
as an autonomous robot under the control of
the software on board the robot.

The Design
The object-oriented approach provided
robust software to control the robot. The
main principle of the software development
was to partition the tasks and responsibilities
into top, middle, and low levels. For example,
the top level needed to know about what the
Office Navigation event was and how to solve

Articles

34 AI MAGAZINE

Figure 1. David Gustafson, Michael Novak, and Darrel Fossett.

ings. It uses a trigonometric analysis of the
sonar readings to determine the locations of
walls, and so on. It stores a description of the
local space. It can also be used to produce a
virtual wall on one side of the robot to allow
simple wall following when appropriate.
Using this local space description, the get_vec-
tor function returns the best local direction to
move.

Also in the motion object is the blocked
function. It is the heart of collision avoid-
ance. Blocked determines if the area in front
of the robot is free. It checks the sonar read-
ings and determines if there is a possibility of
forward or sideways movement. Blocked is
called by all the functions that do midlevel
movement control.

The team used threads to provide
autonomous agents for the low-level control
and sonar functions. The low-level–object
sonar runs continuously and provides assur-
ance of the detection and avoidance of obsta-
cles, stationary or moving. The sonar object
also filters the raw sonar data to prevent erro-
neous transitory sonar readings from confus-
ing the higher-level objects. Sonar is also
responsible for returning the current condi-
tion to other objects.

The actual movement of the robot is under
the control of the low-level–object
low_level_control. The high-level and midlevel
objects do not directly send commands to the
robot’s motors. The object low_level_control
maintains a queue of motion requests from

Articles

SPRING 1997 35

high_level_control

detect

camera

map

node

motion

sonar* low_level_control*

vector

follow_path
error_recovery

doorway
move

exit_room

sonar_anal
get_vector

motion

enqueue

get_frame
set_camera

build_map
plan_path

blocked
left_opening
in_left_window
in_right_window

forward_speed
looking_left
turning_speed

getsonar

Figure 2. Simplified Object Model of Control Software.

David A. Gustafson is a professor
in the Computing and Informa-
tion Sciences Department at
Kansas State University. His
teaching interests include soft-
ware engineering, robotics, and
expert systems. He is the author
of more than 30 papers in soft-
ware measures and software engi-

neering. He received his Ph.D. in computer science
from the University of Wisconsin at Madison.

the higher-level objects. It decides on which
request to process and how to implement the
request.

The result of this design is a robust system
that has partitioned the tasks among appro-
priate objects and has delegated the responsi-
bilities to objects at an appropriate level. This
approach allows each object to have a simple
approach to solving the problems for which
it is responsible. The resulting code is clear
and understandable, and the software system
is robust.

The Students
Michael Novak is now a graduate student at
KSU, working on a master’s degree in com-
puter science, and Darrel Fossett completed
his bachelor’s degree in December 1996 and
is currently interviewing for a software devel-
opment position.

while (1) {

// see if intended path of travel is blocked
if (blocked())

wait a few seconds - say “get out the way”
if (blocked())
return (failure);

if (left_opening()) and (in_left_window()) and (looking_left)
return (success);

if (right_opening()) and (in_right_window()) and !(looking_left)
return (success);

// forward speed - based on a linear function dependent upon how close to obstacles
forward_speed = get_forward_speed();

// get the direction to go - this will always be a vector toward the best “freespace” area in
// the intended movement direction
turning_angle = vector->get_vector();

// the turning speed is a linear function based upon how far we have to turn
turning_speed = get_turning_speed(turning_angle);

// enqueue the move
low_level_control->enqueue(vm, forward_speed, turning_speed, 0);

}

Articles

36 AI MAGAZINE

Figure 3. Algorithm for Move Function in Class Motion.

