
■ As a field, knowledge representation has often
been accused of being off in a theoretical no-
man’s land, removed from, and largely unrelated
to, the central issues in AI. This article argues that
recent trends in KR instead demonstrate the
benefits of the interplay between science and
engineering, a lesson from which all AI could
benefit. This article grew out of a survey talk on
the Third International Conference on Knowl-
edge Representation and Reasoning (KR ‘92)
(Nebel, Rich, and Swartout 1992) that I presented
at the Thirteenth International Joint Conference
on Artificial Intelligence (IJCAI ‘93).

The Third International Conference on
Knowledge Representation and Reason-
ing (KR ‘92) was held in Cambridge,

Massachusetts, in October 1992. This article is
an edited version of a talk surveying that con-
ference, which I presented at the Thirteenth
International Joint Conference on Artificial
Intelligence (IJCAI ‘93). Although nominally
a conference overview, the article attempts to
summarize the state of the conference and
the field with respect to the intertwined goals
of science and engineering. I point out what I
hope is a growing trend within the KR com-
munity to develop science inspired by engi-
neering and to engineer systems according to
KR’s science.

This article discusses some of the technical
material presented at KR ‘92. Nonetheless, its
focus is on the field as a whole, the direction I
see it taking, and the implications of this
direction for people both inside and outside
KR. As a survey, this article is both sketchy
and heavily biased.1 It touches all too briefly
on only a handful of papers, mostly in sup-
port of a central argument. This theme is the
relationship between recent work in KR and
its supporting pillars: science and engineering.

Knowledge Representation:
Disconnected Science?

Before going on, I should explain what it is I
mean when I speak of science and engineer-
ing. Science, to me, represents the study of
phenomena. Science asks what, why, and
how. Sometimes, science is theoretical, specu-
lating on, or formalizing hypotheses of, what
might be; at other times, it is empirical, ana-
lyzing what is. However, in and of itself, sci-
ence builds only theories. Engineering, its twin
and partner, is concerned with the construc-
tion of artifacts. Engineering is less about
questions than about answers. This is not to
say that engineering is without theory. There
are both theories of how to engineer and
engineered theories, but engineering is funda-
mentally about the result, what is built, what
is created.

Of course, the problem with this neat
dichotomy is that it is not. First, the theories
that scientists build to explain what is are
themselves artifacts, engineered. Engineers
can only construct their artifacts—physical or
theoretical—by understanding the science of
putting things together. On the whole, engi-
neering works best when informed by sci-
ence, and science is most useful when advised
by engineering. To sharply separate the two is
to miss the point.

In KR (and in AI and computer science
more generally), there is a second problem
with the attempt to distinguish science from
engineering. Much of KR has traditionally
focused on what we might call science, the
investigation of what’s there. However, as
Herb Simon has so aptly noted, this science is
not a science of reality but a science of the
artificial reality that we create. Although AI is

Articles

WINTER 1996 77

Science and Engineering in
Knowledge Representation

and Reasoning
Lynn Andrea Stein

Copyright © 1996, American Association for Artificial Intelligence. All rights reserved. 0738-4602-1996 / $2.00

AI Magazine Volume 17 Number 4 (1996) (© AAAI)

ing play back and forth. I cover very few of
the interesting papers that have been pub-
lished in KR in the recent past; I hope this
article inspires you to seek those out yourself.

Science
Many papers in the KR proceedings addressed
the fundamental problems of science: That is,
they tried to analyze the way that AI and cog-
nition—or representation and reasoning—
work.

An excellent example of such a paper is
“New Results on Local Inference Relations” by
Robert Givan and David McAllester. This paper
is unquestionably one of science. It addresses a
phenomenon that exists. Its domain is (Pro-
log-like) Horn-clause programs, and this paper
answers many open questions about those
programs and the ways in which such pro-
grams can be practical. It builds on earlier
work of McAllester’s, which describes a practi-
cal but fairly trivial class of Horn-clause pro-
grams: superficial rule sets. The KR’92 paper
resolves many of the open questions raised by
the earlier paper and builds on those results.

Givan and McAllester define a class of Horn-
clause rule sets that correspond to the class P,
the polynomial-time computable functions.
These local Prolog programs are in fact equiva-
lent to the class P: Every program in P can be
characterized by such a local Horn-clause rule
set, and inference over local rule sets is poly-
nomial-time decidable. Givan and McAllester
then go on to demonstrate that determining
whether a rule set is local is an undecidable
problem. This is an interesting piece of sci-
ence. It tells us a fundamental fact about what
there is. Unfortunately, it doesn’t really help us
if we want to go and build something.

The third result of Givan and McAllester’s
paper is different. They define a subset of
local rule sets, inductively local rule sets,
which can be recognized tractably. As a con-
sequence, they demonstrate that you can give
a rule set to a program that will tell you
whether your rule set is inductively local and,
if it is, will automatically transform it into a
polynomial time-decision procedure.

In short, Givan and McAllester’s work falls
clearly into the science side of KR. It is, in some
sense, logic hacking: It is playing with theo-
rems about logic. It does not result directly in
an implementation. Nonetheless, this paper
has a great deal to say to people who are play-
ing with Prolog programs. If you are an engi-
neer who uses Horn clauses, this work contains
a set of significant results that tell you how you
can go about building a better program.

at times influenced by psychology and biolo-
gy—by the reality of biological intelligence—
our bias as a field is evident in our chosen
name. Thus, our science is inherently a sci-
ence of engineering, and our engineering is
often difficult to distinguish from our science.

The KR community, in particular, has, over
the last decade, acquired something of a rep-
utation for obscurity, putatively disinterested
in, and disengaged from, the reality that is
supposed to underlie AI. We are dismissed as
“logic hackers,” presumably in contrast to the
“real hackers” who build software artifacts:
scientists when we should be engineers, theo-
rizing when we ought to build. To build on
Simon’s observation, KR is accused of going
beyond a science of the artificial, of having
become artificial science.

This article is an attempt to convince you
otherwise. Whatever the truth of this view in
the past, I believe that both those within and
those outside KR need to reassess and reevalu-
ate the direction that the field is now taking.
A certain amount of KR is indeed strictly sci-
ence, with an exclusive focus on the artificial
world that we create; this is science walled off
from engineering. However, there is also a
great deal of KR that goes beyond this narrow
realm; the wall between science and engi-
neering has come down. In the remainder of
this article, I hope to describe examples of sci-
ence and engineering intertwined. For readers
who are AI engineers, concerned with the
practice of AI systems rather than its theory, I
hope to demonstrate that the field of KR can
usefully inform system building. For the KR
“scientist,” I argue that it is not enough to
provide useful input for the engineer but also
that the science of KR itself should be driven
by engineering problems.

At the KR conference and in the field of KR
today, science is informing engineering, and
engineering is informing science. The KR
community is paying a great deal of attention
to this cycle. This article is an attempt to
encourage this trend within the KR commu-
nity and to encourage the AI community out-
side KR to pay attention to these develop-
ments, to foster them in KR and elsewhere
throughout AI. By reopening this dialogue, AI
at large will help the KR community, and the
KR community, in turn, will help all AI.

The outline of the rest of this article is as
follows: First, I describe some of the science
that was presented at the KR conference.
Then, I turn to engineering. The last part of
this article focuses on hybrids between sci-
ence and engineering, papers that specifically
address ways in which science and engineer-

Science,
to me,

represents
the study of
phenomena.

Articles

78 AI MAGAZINE

Another example of a paper that uses sci-
ence to inform engineering is “Representa-
tions for Decision-Theoretic Planning: Utility
Functions for Deadline Goals” by Peter Had-
dawy and Steve Hanks. This work explores
the problem of combining decision theory
and planning, fields with both practical and
abstract incarnations. Haddawy and Hanks
define several relationships between decision
theory and planning. This is essentially basic
science, albeit science in which the KR com-
munity is tremendously interested. This
paper is exemplary, however, in that it ulti-
mately uses these relationships to describe a
way of merging the two fields that results in a
satisfying planning algorithm. Thus, it
addresses both the scientific challenge of elu-
cidating the relationships between decision
theory and planning and the engineering
problem of how to put those insights into
practice to build a better planner.

There are many other papers from the KR
conference that belong in this section, papers
that tell you about what’s out there, what
exists, and how to characterize it but that
also give you insight into how you can go
about building an implementation. Space
considerations limit my coverage here; I rec-
ommend the conference proceedings for
much enjoyable reading.

Before turning to engineering, I would like
to point out two other items that belong in
the science category and that have some inter-
est for people outside KR science. One is the
invited talk by Ray Reiter, entitled “Twelve
Years of Nonmonotonic Reasoning Research:
Where (and What) Is the Beef?” Although
clearly in the dreaded category of “logic hack-
ing,” Reiter’s talk specifically addressed ways in
which the logic hacking influences our prac-
tice of KR engineering.

The second item is an invited talk by Steve
Kosslyn, a cognitive psychologist, about sci-
ence in the brain: How is it that our brains
actually do representation and reasoning? It is
my belief that he was brought to the KR confer-
ence both to remind us that logic and symbolic
reasoning are not the only representations—
ultimately, we must turn to biology— and to
show us that representation and reasoning sys-
tems can work. Kosslyn’s talk was intended in
part to help us remember that our goals are KR
systems, systems that not only have abstractly
desirable properties but also are engineering
artifacts that we can use.

Engineering
Other papers in the KR conference addressed
the problem of engineering. These papers talk

about implemented systems. Unlike the
familiar caricature of a KR paper, full of
Greek, they contain performance profiles of
programs. These are empirical, result-oriented
papers. Did you know that such things were
published in the KR proceedings?

One such paper is “An Empirical Analysis
of Optimization Techniques for Terminologi-
cal Representation Systems, or Making KRIS

Get a Move On” by Franz Baader, Bernhard
Hollunder, Bernhard Nebel, Hans-Jürgen
Profitlich, and Enrico Franconi. This paper
addresses the actual effects of optimizations
that were believed to improve the perfor-
mance of terminological logic programs.2 Ter-
minological logics are KL-ONE–like systems;
they are the knowledge representation sys-
tems that you are perhaps most likely to use
if you decide, in building another type of AI
system, to use off-the-shelf knowledge repre-
sentation technology. Prior to this confer-
ence, there was a well-established theory
addressing the optimization of such systems.

Baader et al. examined the existing theoret-
ical literature on the optimization of termino-
logical systems, implemented several variants
within their terminological system, and ana-
lyzed the effect of these optimizations on the
performance of the system. Surprisingly, two
of the most promising techniques—tech-
niques that were expected from a theoretical
standpoint to improve the performance of
the programs—did not significantly improve
performance. In short, this paper describes
those techniques that help and those that
don’t. It takes theory and brings it into the
realm of practice, telling the reader what
these results actually mean for the ways in
which we build KR systems.

Another example of a KR engineering
paper that compares theoretical expectation
with empirical practice is “Total Order versus
Partial Order Planning: Factors Influencing
Performance” by Steven Minton, Mark Drum-
mond, John L. Bresina, and Andrew B.
Philips. This paper examines the commonly
held belief that partial orders are a better
working representation for plans than total
orders. By analyzing the performance of
implemented systems, they demonstrate that
this hypothesis holds true even for some
highly expressive planning languages. They
further characterize the circumstances under
which partial ordering is advantageous in
terms of problem parameters such as solution
density, solution clustering, search strategy,
and use of heuristics. Like Baader et al.,
Minton et al. depend on empirical analysis to
determine ground truth.

Engineering,
its twin and
partner, is
concerned
with the
construction
of artifacts.

Articles

WINTER 1996 79

and transformed it from the Common Lisp
prototype into a deployed product with
extensive use outside its research group.
“Reducing CLASSIC to Practice” describes what
happened when a piece of science was taken
to the point where it became engineering.
Brachman describes some of the primarily
engineering lessons his group learned. For
example, certain aspects of the original, pure
CLASSIC system were intractable, although pos-
sessed of tractable approximations. In imple-
menting the production version of the sys-
tem, the CLASSIC group was faced with the
decidedly nonscientific question of whether
those tractable approximations would survive
the next 10 generations of CLASSIC. Although
in science, it is sufficient to state that an
intractable feature has a tractable heuristic
approximation, engineering requires that the
developers commit to backward compatibility.

Similarly, getting the abstraction right—
making it possible for the user to walk in and
understand the basic building blocks of the
system—is critically important in a piece of
engineering, although not particularly rele-
vant to science. In addition, such things as
user support—whether there is good docu-
mentation, whether there are good case exam-
ples, whether there are nontoy case stud-
ies—matter a great deal in engineering but
relatively little in science.

Brachman also describes the lessons that
“real” CLASSIC holds for science. These are
results that were derived from the engineer-
ing experience—from the experience of mak-
ing this a deployed application—but that
speak not to how a system is built but to how
our theories work.

Real users have real problems. If the user
can’t understand it, it is wrong. It doesn’t
matter whether it’s theoretically well found-
ed. For example, Brachman’s group discov-
ered that users commonly utilized a powerful
language mechanism to implement mini-
mum and maximum constraints—for exam-
ple, age is less than 25—which were absent in
the original versions of CLASSIC. Because these
features often arose in CLASSIC usage, the
group ultimately revised not only its imple-
mentation but also the underlying theory to
handle these particular cases more cleanly.
Thus, something that was learned in engi-
neering changed the science.

Similarly, engineering the application
forced the identification and closure of gaps
in the science on which pure CLASSIC was
based. For example, pure CLASSIC contained a
close operator over predicates; the implemen-
tation revealed that close in fact makes sense

Perhaps half a dozen papers in the confer-
ence compared empirical behavior of systems
with predictions from theoretical analysis. A
somewhat different kind of empirical paper is
Yoav Shoham and Moshe Tennenholz’s
“Emergent Conventions in Multi-Agent Sys-
tems: Initial Experimental Results and Obser-
vations.” This paper is a somewhat prelimi-
nary but decidedly empirical investigation of
the dynamics of multiagent systems. It
explores the behavior of a society of agents
under a set of evolving conventions. Shoham
and Tennenholz demonstrate the effect of
parameters such as relative attention to one’s
own versus others’ behavior, or length of
memory, on the time to convergence on a
uniform societal convention. In this case, a set
of experiments leads to the development of a
nascent theory that the authors have gone on
to explore further in later work.

Closing the Cycle
The previous sections talked about KR papers
concerned with science and those concerned
with engineering. The science papers describe
what’s out there, what actually happens in the
world. However, with these particular papers,
as well as with many papers that are not
described here, science also has something to
say to engineering about fundamental facts
that implemented systems can build on. Thus,
although these papers spell out a science of
what exists, it is also a science that has rami-
fications for the systems that we build. Simi-
larly, the engineering papers demonstrate an
engineering that informs the underlying sci-
ence about the relevance and legitimacy of its
contributions or one that points the science
toward new questions to explore.

At this point, I’d like to turn to papers that
address science and engineering together. To
my mind, one of the best examples of this—
but by no means the only example—is a paper
called “`Reducing’ CLASSIC to Practice: Knowl-
edge Representation Theory Meets Reality” by
Ronald J. Brachman. This paper addresses the
CLASSIC system, again a KL-ONE–derived knowl-
edge representation system, which was first
presented in 1989 as a primarily scientific
contribution. CLASSIC is a scaled-down version
of the KL-ONE family of languages, cleaned up
to be an elegant representation of what the KL-
ONE knowledge representation family does and
contributes. It was a nice piece of science.

Brachman’s KR’92 paper looks at what hap-
pened over the succeeding three years as the
CLASSIC group at Bell Labs took the original sys-
tem—a scientific, theoretical contribution—

… in the
process of

putting into
practice this

science, a
great deal

of truly
scientifically

interesting
research was

generated
simply by the

fact of
implementa-

tion; so,
engineering

informs
science.

Articles

80 AI MAGAZINE

only as an operator over the entire database.
In this case, a flaw in the original science of
CLASSIC was discovered not by further science
but by engineering: building the system.

This leads to what I believe is one of the
morals of Brachman’s paper: To misuse an
axiom of reactive robotics, theory is doomed
to succeed. If you build an artifact, if you
prove it useful by implementing it and giving
it to a user who has never seen the system
before, if the user finds your system helpful,
then you have closed the gap. In fact, it might
not be until the 30,000th satisfied user has
proclaimed your system functional that you
believe that you have indeed closed the gap.
Thus, to build a truly useful piece of theory,
from a scientific perspective, you need not
only to come up with theory but to put it into
practice, back to theory, and so on. The cycle
does not end.

Don’t listen to me, however. Listen to
Brachman himself:

[T]he resulting system is clearly far better
than anything we could have built in a
research vacuum. And the effort of reducing
our ideas to a practical system generated a great
deal of research…on language constructs, com-
plexity, and even formal semantics (p. 257).

By this, I believe that Brachman means
that not just the implementation but the
theoretical, scientific, abstract version of
CLASSIC is clearly better than anything that
would have happened if CLASSIC had
remained exclusively a piece of science. This
is not to say that science isn’t worthwhile
but, rather, that science needs engineering.
Further, in the process of putting into prac-
tice this science, a great deal of truly scien-
tifically interesting research was generated
simply by the fact of implementation; so,
engineering informs science.

“Managing Disjunction for Practical Tem-
poral Reasoning” by Robert Schrag, Mark
Boddy, and Jim Carciofini goes the other way.
This paper is really about a system. It is a sys-
tem that is well founded. It is based on some
known theory. The paper addresses the exten-
sion of an implementation of Tom Dean’s
TIME MAP MANAGER to cover ambiguity. Dean
implemented a system that is essentially a
repository for temporal information. Schrag,
Boddy, and Carciofini are using it in a sched-
uling application, but it is relevant to a vari-
ety of applications in which temporal infor-
mation must be stored as well as resolved.
Because it is an implemented system, ambigu-
ity is not merely a theoretical problem about
which theorems can be proved; it becomes a
significant computational problem. Some-

thing must be done to resolve ambiguity
because the TIME MAP MANAGER must support
computation to produce useful information;
ambiguity becomes an engineering problem.

The kind of ambiguity that Schrag, Boddy,
and Carciofini address is the disjunction that
arises when the constraints given to the sys-
tem leave open multiple possibilities. For
example, if I arrive at a meeting at 11:00 AM,
it might be either before or after the coffee
break, which occurred at some time between
10:00 AM and noon. The system that Schrag,
Boddy, and Carciofini built to reason with
such constraints is computationally tractable,
but it is also theoretically well founded and
well characterized. Here are people who are
building an engineering system but were
informed by, and informed, science.

Their solution largely involves limiting the
expressive power of the system and substitut-
ing a weak approximation to the disjunction.
Weak approximation is a well-known tech-
nique, and engineers use it all the time, but it
is something that theory is skittish of. Schrag
and his colleagues point out that in fact, weak
representation—approximating the disjunc-
tion by an easier-to-manage, if not, strictly
speaking, complete, representation—actually
turns out to be a good pragmatic solution.
They further close the cycle by demonstrating
that their system preserves soundness. Thus,
engineering, well founded on theory, with
strong ties to a theoretical underpinning,
again ties together the cycle of engineering
and science.

Another example of the interactions of sci-
ence and engineering is “An Approach to
Planning with Incomplete Information” by
Oren Etzioni, Steve Hanks, Daniel Weld,
Denise Draper, Neal Leash, and Mike Wil-
liamson. This is more of a science paper—it
does not have an implemented system direct-
ly tied to it—but it grows out of a problem
encountered in constructing a particular
implemented system. The paper addresses
what seems like a purely theoretical problem:
Say that I want to find the blue door. Formal-
ly, my goal is to achieve “the blue door.”
Etzioni and his colleagues point out that this
goal leaves two possibilities: One is that I
want some particular door to be(come) blue.
The other is that, for example, someone has
told me that my jacket is behind the blue
door. Thus, there are two different kinds of
actions that I can perform, both of which will
result in my binding “blue door”: One is
painting the door blue, and the other is look-
ing at the door to see what color it is. In the
first case, where I really want this door to be

If you’re
an engineer,
don’t just
build your
system.
Analyze it,
or have
someone else
analyze it.

Articles

WINTER 1996 81

Keeping the Cycle Turning
I’d like to summarize the changes that I’ve
seen in the KR community. Although there
certainly are a lot of papers that might be
classified as ivory tower science—nonmono-
tonic logic hacking—there are also a lot of
papers that have a great deal to say about
how science can inform engineering, how to
build a better system, how to build a system
that actually accomplishes your purposes.
There are also a lot of papers that talk about
systems that were actually implemented and
that have something to say about where sci-
ence has missed things or where science
should look next. There are science papers
informing engineering, and there are engi-
neering papers informing science, and there
are also papers that talk explicitly about this
cycle. There are papers that say that science is
best when it has something to say to engi-
neering, and engineering is best when it has
something to say to science.

If this article has a message, it is this: If you
consider yourself to be a scientist, look at
engineering. Look at the way that your work
can influence engineering, but also look at
engineering to see what it can say about your
work. If you’re an engineer, don’t just build your
system. Analyze it, or have someone else analyze
it. When you go out to build your next sys-
tem, look at what has already been said by sci-
ence. See whether science has anything useful
to tell you. If you’re a KR person, I ask you to
do what the invited talks by Martha Pollack
and Peter Szolovits describe: Look at domains,
look at applications, take inspiration both
about how your system should work—what
the world needs—and about what kinds of
problem engineering needs you to solve. If
you are not a KR person, I ask you take anoth-
er look at KR to see that the KR community
takes this cycle extraordinarily seriously and
to see whether we have solutions to some of
your problems or whether you have problems
that we should be solving.

Notes
1. Given the number of papers in the conference,
the 60-minute talk on which this article is based
would have allotted each author significantly less
than Andy Warhol’s proverbial 15 minutes of
fame—closer to 15 seconds, in fact!

2. In the time since Baader and his colleagues wrote
this paper, this class of systems has become more
widely known under the term description logics.

blue, painting it might be appropriate. How-
ever, in the case where I want to find the blue
door, painting this door is actually going to
interfere with my ability to find the blue door
behind which my jacket is hidden. Previous
planning languages did not distinguish these
two forms of the blue-door goal.

Etzioni and his coauthors describe a repre-
sentation language that captures the distinc-
tion between these different types of goal:
information goals, such as “go out and look
and see if the door is blue,” versus goals of
achievement, such as “paint the door blue.”
Their paper presents the theory behind this,
as science, describing the phenomenological
differences between information goals and
achievement goals. It culminates in a lan-
guage within which it is possible to describe
conditional plans, an incomplete world mod-
el, and the representation of an action on
changing worlds and changing knowledge.
However, outside the paper is the implemen-
tation that drove the need to discover, or to
create, this language. The conclusions of the
paper are science, but its central question was
informed by engineering needs, and having
done this science, Etzioni and his colleagues
now have a better idea of how to implement
their engineering system.

The last paper that I’d like to describe is
“Towards the Systematic Development of
Description Logic Reasoners: CLASP Recon-
structed” by Alex Borgida. This paper discuss-
es a reimplementation of CLASP, a terminolog-
ical logic system originally designed and
built by Prem Devanbu and Diane Litman.
Borgida’s interest was in using PROTO-DL, his
description language for terminological log-
ics, to implement Devanbu and Litman’s
already-existing language in a way that used
more advanced software-engineering tech-
niques. In the process of reimplementing it
to meet some software-engineering—prag-
matic—constraints, he discovered some
difficulties in the CLASP language. The theory
of PROTO-DL told Borgida how to implement a
better system. His new system has software-
engineering properties that are advantages
over the properties of the original CLASP sys-
tem. However, the reimplementation,
according to these theoretical principles, also
informs the way in which CLASP behaves, so
that Borgida was able to identify some short-
comings in the terminological logic theory
underlying CLASP. Science and software engi-
neering inform the practice of reimplement-
ing the system, which, in turn, informs sci-
ence on how the system should work in the
first place, and the cycle goes on.

If you
consider

yourself to be
a scientist,

look at
engineering.

Articles

82 AI MAGAZINE

Reference
Nebel, B.; Rich, C.; and Swartout, W., eds. 1992. Principles of
Knowledge Representation and Reasoning: Proceedings of the Third
International Conference (KR ‘92). San Francisco, Calif.: Morgan
Kaufmann.

Lynn Andrea Stein is an associate professor of
computer science and a member of the Artificial
Intelligence Laboratory at the Massachusetts
Institute of Technology. Her research spans the
fields of cognitive robotics, commonsense rea-
soning, software agents, human-computer inter-
action and collaboration, and object-oriented
programming. Her web page is available at
http://www.ai.mit.edu/people/las.

Articles

WINTER 1996 83

Still “in print” in one form or another!

Electronic Access
Adobe Acrobat (PDF) versions of AI Magazine are available to members at
AAAI’s website (www.aaai.org). For access information, please contact the
membership department (membership@aaai.org). (Early issues are not yet
available, but will come “online” soon!)

Hardcopy
Hardcopy of selected issues of AI Magazine are also available for purchase. A
Contents list of all AI Magazine issues is available at the AAAI website. For
price and availability of specific issues, contact AAAI (info@aaai.org)

ISBN 0-262-06184-8 336 pp., index. $25.00 hardcover

The AAAI Press • Distributed by The MIT Press
Massachusetts Institute of Technology, Cambridge, Massachusetts 02142

To order, call toll free: (800) 356-0343 or (617) 625-8569. MasterCard and VISA accepted.

84 AI MAGAZINE

Edited by Kenneth M. Ford, Clark Glymour, & Patrick J. Hayes

Epistemology has traditionally been the study of human knowledge and rational change of human belief.
Android epistemology is the exploration of the space of possible machines and their capacities for knowl-
edge, beliefs, attitudes, desires, and action in accord with their mental states. From the perspective of
android epistemology, artificial intelligence and computational cognitive psychology form a unified endeav-
or: artificial intelligence explores any possible way of engineering machines with intelligent features, while
cognitive psychology focuses on reverse engineering the most intelligent system we know, us. The editors
argue that contemporary android epistemology is the fruition of a long tradition in philosophical theories of
knowledge and mind.

The sixteen essays by computer scientists and philosophers collected in this volume include substantial
contributions to android epistemology as well as examinations, defenses, elaborations, and challenges to the
very idea.

Contributors include Kalyan Basu, Margaret Boden, Selmer Bringsjord, Ronald Chrisley, Paul Church-
land, Cary deBessonet, Ken Ford, James Gips, Clark Glymour, Antoni Gomila, Pat Hayes, Umar Khan,
Henry Kyburg, Marvin Minsky, Anatol Rapoport, Herbert Simon, Christian Stary, and Lynn Stein.

Android
Epistemology

