
■ This article discusses the development of the
robot ERRATIC, the second-place winner of the
1994 AAAI Robot Competition and Exhibition. I
detail the robot’s history and describe the percep-
tual and control architecture. The success of the
robot is highlighted in a description of the
robot’s performance during the competition.

Ienjoyed competing in the first two AAAI
Robot Competition and Exhibitions: lots
of energy, great exchange of ideas, and

interesting solutions to the problems of
indoor navigation. However, competing
meant bringing the big robot, FLAKEY, with its
nightmarish logistics: crating a 300-pound
metal monster with delicate protrusions and
several SPARCSTATIONS and their consoles, not
to mention all the tools and spare parts for
the ever-present hardware spastics. This year,
I thought I’d try something different.

ERRATIC Lives!
In spring 1994, I taught a course at Stanford
University in which we built three small
robots modeled after FLAKEY but smaller and
much cheaper. When I say built, I mean just
that: The students were given all the electron-
ic and mechanical components and, during
the course, assembled and tested the circuit
board (several smoky disasters here); built the
chassis from bent aluminum sheet metal;
mounted motors, encoders, and wheels; and
soldered a gazzillion cables to connect every-
thing. It was the most work and the most fun
I’ve had teaching a class.

Figure 1 is a picture of one of the critters.
As you can see, the result wasn’t pretty, but it
was wonderfully robust and good natured
compared to other robot hardware I’ve
worked on—in part as a result of simplicity.
Thanks to Fred Martin and Randy Sargeant of
the 6.270 robot-building class at the Mas-
sachusetts Institute of Technology (MIT),
there is a small, low-powered microprocessor

board that’s great for robotics projects. The
board is based on Motorola’s 68HP11 UP, a
highly integrated device that can hook up
with sensors and effectors without too much
additional hardware “glue.” I made the deci-
sion to use the 6.270 board as the only on-
board processor and communicate to a host
computer by a radio modem link for more
computationally intensive tasks. With a pack-
et protocol for commands and data, the robot
base becomes a server implementing a few
basic functions: servo control of the motors,
position integration for dead-reckoning
movement, and sonar control (figure 2).

One of the unique features of the robot
server is a front-pointing sonar mounted on a
servomotor, the kind used in model airplanes.
The front sonar can be aimed anywhere in
the front half-circle of the robot. This design
is cheap and easy to implement: It’s easier to
control 1 sonar on a servo than the 8 to 10
fixed sonars that would be needed to cover
the same area. An early prototype I built used
just the front-mounted sonar (actually twin
sonars at a slight angle to each other), but
this model proved unworkable because the
servo couldn’t turn fast enough to gather
enough data (the sonars can’t be used while
the servo is turning because they won’t pro-
duce reliable echoes). As a compromise, we
used five sonars in the pattern shown in fig-
ure 3. The pivoting front sonar detects for-
ward obstacles, and the fixed-side sonars look
for walls, doorways, and oblique obstacles.

The whole robot weighs about 6 pounds
without the battery, but the battery is a bruis-
er, a lead-acid 12-volt cell weighing 9 pounds.
Perhaps this battery is overdesign, but the
benefit is that the robot can run six to eight
hours without having to recharge. In fact, I’ve
never had to worry about one of the most
onerous duties of mobile robotics—trying to
keep a fresh set of batteries charged and
switching them in. However, all the weight

Articles

SUMMER 1995 61

ERRATIC Competes with
the Big Boys

Kurt Konolige

Copyright © 1995, AAAI. All rights reserved. 0738-4602-1994 / $2.00

AI Magazine Volume 16 Number 2 (1995) (© AAAI)

FLAKEY’s control architecture has been written
up in several places, so I just explain the
basics here. At the center is the local perceptu-
al space (LPS), an internal, egocentric repre-
sentation of the local environment, where
sensor readings are interpreted and registered
(figure 4). The LPS gives the robot an aware-
ness of its immediate environment and is
critical in the tasks of combining sensor
information, planning local movement, and
integrating map information. The perceptual
and control architecture makes constant ref-
erence to the LPS.

In Brooks’s terms, the organization is partly
vertical and partly horizontal. The vertical
organization occurs in both perception (left
side) and action (right side). Various perceptu-
al routines are responsible for both adding
sensor information to the LPS and processing
it to produce surface information that can be
used by object recognition and navigation
routines. On the action side, the lowest-level
behaviors look mostly at occupancy informa-
tion to do obstacle avoidance. The basic build-
ing blocks of behavior are fuzzy rules, which
give the robot the ability to react gracefully to
the environment by grading the strength of
the reaction (for example, turn left) according
to the strength of the stimulus (for example,
distance of an obstacle on the right).

More complex behaviors that move to
desired locations are used to guide the reac-
tive behaviors and use surface information
and artifacts; they can also add artifacts to
the LPS as control points for motion. At this
level, fuzzy rules blend possibly conflicting
aims into one smooth action sequence. Final-
ly, at the task level, complex behaviors are
sequenced, and their progress is monitored
through events in the LPS. The horizontal
organization comes about because behaviors
can choose appropriate information from the
LPS. Behaviors that are time critical, such as
obstacle avoidance, rely more on simple pro-
cessing of the sensors because it is available
quickly. However, these routines can also
make use of other information when it is
available, for example, prior information
about expected obstacles that comes from the
map.

Controlling Executive: PRS-LITE

Behaviors are coordinated by a decision sys-
tem called PRS-LITE, a real-time version of SRI’s
procedural reasoning system. The basic com-
ponent of PRS-LITE is an intention schema, a
finite-state machine whose arcs are labeled
with conditions to check or goals to achieve.
Each schema embodies a strategy, a sequence

slows ERRATIC down a little: Top speed is about
20 centimeters a second, a slow walk. Still, it’s
light enough (15 pounds) that I was able to
carry it in a cardboard box on board the
plane to Seattle, Washington. One of the stu-
dents from the class, Birdy (Bharadwaj S.
Amrutur), took a SPARCSTATION, which was all
we needed (unfortunately, the console had to
be shipped, but next year, I’ll use a portable
MACINTOSH or PC).

Oh yes, the name: Because the robot mim-
ics the motor and sonar portions of FLAKEY, a
similar name was appropriate. ERRATIC had the
right tone; it comes from the Latin root err
(which means to wander, at least in this case).
With its noisy, oscillating front sonar and
slightly unstable motor control, ERRATIC does
live up to its name.

Perceptual and
Control Architecture

ERRATIC itself is just a server providing basic
mobile robot capabilities. The main idea
behind the client-server architecture is that
the details of the server don’t matter to the
client, which communicates through a speci-
fied interface. Because FLAKEY was designed
this way from the beginning, it was easy to
use the control, interpretation, and planning
software we developed for FLAKEY on the new
ERRATIC platform—just a matter of changing
some parameters to accommodate the differ-
ences in size, speed, and sonar placement.

Articles

62 AI MAGAZINE

Figure 1. The ERRATIC Mobile Robot Base.
The whole platform is 6 inches high; 12 inches wide,

including wheels; and 14 inches long. The 68HC11 pro-
cessor is in the middle, flanked by two side-pointing
sonars. The rest of the sonars are in the front of the

robot. The radio modem, with its antenna, is also on
top. The housing contains a large battery and the

motors.

of perceptual checks and behavior instantia-
tions that accomplishes a goal. Some schemas
are fairly simple. For example, to detect
closed doors, a monitoring schema is fired up
every time ERRATIC attempts to go through a
doorway; if no progress is made after a fixed
amount of time or if the sensors detect that
the doorway is closed, the schema halts the
current door-crossing behavior, updates a

global map with the new information (more
on this later), and signals the plan executive
that the current plan has failed.

PRS-LITE is interesting because it incorpo-
rates a small amount of deliberation in its
schemas but is still able to react to contingen-
cies in real time. It throws away some of the
more costly (and often useful) features of full
PRS, especially the database of facts and goals

Articles

SUMMER 1995 63

Figure 2. ERRATIC Mobile Robot Base Functions.
The base acts like a server, providing a set of low-level movement and sensor functions to clients. The inter-

face is a packet protocol through an RS232 link.

Steering control

Forward motion
control

Dead-reckoning
(encoders, rate gyro)

Proximity sensors

Vision head control

Vision processing
control

Internal sensors
(tilt, battery, etc)

Packet
Protocol

Rover base
server

Vision processing

low-speed
control bus

high-speed
vision bus

(extraction of depth
information)

Control
process

Vision
process

monitoring various conditions and coordi-
nating behaviors.

Interestingly, the ERRATIC team has not
found a need for a larger planning capability
to control ERRATIC. PRS-LITE is the main control-
ling agent and issues calls to higher-level
functions, such as a navigation planner or a
registration mechanism, when it requires
their services.

that is used to trigger new schemas. Instead,
every schema must be triggered explicitly by
another schema, which gives a much less
flexible system. However, the advantage is
that PRS-LITE is fast: Written in C, it has a cycle
time of 100 milliseconds, during which every
executing schema is updated. This cycle time
is very fast, considering that at any given
moment, 10 or 15 schemas can be operating,

Articles

64 AI MAGAZINE

Figure 3. ERRATIC Sonar Placement.
The two side-pointing sonars in back are used for the extraction of wall segments and for obstacle avoid-

ance. The other sonars cover the front hemisphere of the robot to detect obstacles. The single front sonar is
mounted on a servomotor to swivel through 90 degrees.

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

AA
AA
AA
AAAA
AA
AA
AA

Maps: Navigation and Registration
To navigate through extended regions, ERRATIC

uses a global map that contains prior, impre-
cise spatial knowledge of objects in the
domain, especially walls, doorways, and junc-
tions of corridors. Using a map depends on
the reliable extraction of object information
from perceptual clues, and I (as well as oth-
ers) have spent many frustrating years trying
to produce object interpretations from highly
uncertain sonar signatures. The best method I
have found is to use extended aperture sonar
readings. As ERRATIC moves along, readings
from the side sonars are accumulated as a
series of points representing possible surfaces
on the side of the robot. This gives some of
the resolution of a sensor with a large aper-
ture along the direction of motion. By run-
ning a robust linear-feature algorithm over

the data, ERRATIC can find wall segments and
doorways with some degree of confidence.
False-positive rejection, the bane of sonar
sensors, is excellent for wall surfaces and rea-
sonable for doorways, although we do get
some false doorways when the robot rotates
quickly. Extracting wall and doorway features
makes it easy to build a global map by run-
ning ERRATIC around an area, but one problem
must be overcome: By relying solely on ERRAT-
IC’s dead-reckoning ability, the map will be
skewed terribly. For example, if I run ERRATIC

10 meters down the hall here at SRI and then
turn and come back, the map will contain
two hallways, and they won’t be close to each
other except at the point where ERRATIC

turned around. ERRATIC’s dead-reckoning abili-
ty is particularly poor, an error rate on the
order of 10 percent for rotations and transla-

Articles

SUMMER 1995 65

Figure 4. FLAKEY’S System Architecture.
Perceptual routines are on the left, action routines on the right. The vertical dimension gives an indication

of the cognitive level of processing, with high-level behaviors and perceptual routines at the top. A map
location module continuously matches local perceptual information to a stored global map, updating

FLAKEY’s global position. All modules operate independently in a distributed fashion.

Local Perceptual Space

Sensors

Raw depth
inforamtion

Surface
construction

Object
recognition
and
registration

Reactive
behaviors

Actions

Tolerant
global map

Self−localization
 and
Map registration

Tasks

Purposeful
behaviors

The Competition
As in previous contests, there is always a bit
of confusion about the rules, especially as
teams start trying out their robots in the new
environment and discover problems. Our
team’s biggest concern was getting into the
finals so we could show off our little monster.
We decided on the most certain way of com-
pleting the navigation task—use an initial
metric map of the arena (made as described
earlier). Using this map gave ERRATIC a big
penalty hit, but it had some pleasing results
too. Most importantly, it meant that ERRATIC

had a good idea of where doorways were, so
it could detect closed doors fairly easily.
Because the topological map was distributed
free of charge, most other teams elected to
use it without any metric information; as a
consequence, they couldn’t easily distinguish
a closed door from a wall and would spend a
lot of time trying to decide where they were
in the topological map. As slow as ERRATIC was
physically, it could beat the larger robots
because it moved purposefully and continual-
ly.

In retrospect, our team could have had the
best of both worlds because it was possible to
accumulate metric information in the prelim-
inary rounds and use it in the finals. We
could have had ERRATIC start with just the
topological map and build up its metric infor-
mation as it moved toward the goal room,
but we wanted to make sure we qualified, and
using the metric map was the best way to
achieve that goal.

ERRATIC did have several problems in the
preliminaries. First, it would only poke its
head into the goal room. I hadn’t read the
rules carefully enough; they stated that the
whole body had to be inside the room. It
took a while to fix the offending behavior, so
we squandered a goodly amount of time in
the preliminaries, finishing fifth. However,
we did make it.

The second problem was one of interpreta-
tion. ERRATIC’s topological planner didn’t
make use of metric information; so, it would
pick a path to the goal based on the number
of nodes visited. To test recovery from unex-
pected contingencies, the judges blocked a
door to the goal room in the second prelimi-
nary round. They blocked the closest door to
the robot, but the other door was just as close
on the topological map, and ERRATIC chose
that route. The judges had to wait until ERRAT-
IC made a choice before moving to block the
door.

ERRATIC was in the finals! I couldn’t stay
because of vacation plans, so the responsibili-

tions (to be contrasted with some of the very
precise robots at the competition whose
errors were closer to 0.1 percent). To say it is a
deliberate design decision is partly correct: It’s
much easier to make imprecise robots. How-
ever, it also helps to wean students from
“dead-reckoning dependency” and have
them cope with the vagaries of real-world
navigation. Interestingly enough, the robot
that arguably had the best dead-reckoning
(RHINO from the University of Bonn) relied on
it too much and lost its orientation in a large
room during the preliminary trials.

What to do? The usual answer is to register
the robot based on its sensing. Take the case
of ERRATIC: It goes up and down the same cor-
ridor. If it can make the assumption that it is
seeing the same walls on its way back, then it
can realign its internal idea of where it is to
correspond with the walls it has already seen.
The beauty of this idea is that the original
map the robot makes does not have to be pre-
cise (and it can’t be if dead reckoning is poor).
The robot doesn’t have to survey the area, just
make a map that has approximately the cor-
rect dimensions. The registration process will
keep the robot’s position updated with respect
to the objects in the environment, assuming,
of course, that the robot can find and match
objects of the right sort. For example, going
down a long corridor with no features, the
robot will stay correctly registered in the cen-
ter of the hallway, but the error in its longitu-
dinal position will grow. Because ERRATIC’s reg-
istration process only used doorways—and
not corridor junctions—we had some prob-
lems with localization during the finals of the
competition, as I explain later.

Now ERRATIC can make a reasonably com-
plete map of its office environment just wan-
dering around. It helps to turn on a few
exploration strategies, for example, following
a corridor until it ends and then looking for
likely openings. However, for the competi-
tion, we just ran ERRATIC by hand and saved
the resultant map (deleting a few of the false
doorways that were found). From this labeled
metric map, a simple algorithm extracts a
topological map of corridors, rooms, junc-
tions, and doorways that is suitable for use by
a simple topological planner. The planner
takes the robot’s current position (room, cor-
ridor) and a goal and produces a sequence of
intermediate goal points at junctions and
doorways. A plan executive schema in PRS-LITE

takes these plans and fires up appropriate
behaviors in sequence, monitoring their per-
formance and updating the map to reflect
closed doors and blocked corridors.

Articles

66 AI MAGAZINE

ty for getting ERRATIC ready and running was
left to Birdy. I worried that something in the
control architecture would break, that the
hardware would fail, and so on.

For the finals, our team put a balloon on
ERRATIC so that the audience could see it wan-
dering the halls. Birdy says it was a cool sight
to see the balloon bobbing along, marking
the progress of the robot. The judges had
decided to make the finals particularly diffi-
cult: The closest door of the goal room (in
both a metric and a topological sense) was
blocked, and a key connecting corridor was
also blocked. ERRATIC was running fifth and
last, and all but Stanford University’s DERVISH

had failed to make the goal; most were
stymied by the blocked corridor.

ERRATIC started in fine style, balloon trailing
behind, and the audience cheered when it
recognized the closed door and started on an
alternate path. Now, the serendipity of the
topological planner surfaced: ERRATIC chose a
longer path that completely avoided the
blocked corridor. It looked like ERRATIC might
win. Even with the high time penalty for
using metric information, it was much faster
than DERVISH, and if it made it into the goal
room, victory was ours—but the robot gods
giveth, and they taketh away. The final long
corridor had only one door before the goal,
and the failure to use corridor junctions for
registration caught us: ERRATIC mistook a corri-
dor entrance just in front of the goal door for
the door itself; so, it didn’t quite make it to
the goal and first place. However, because
none of the other robots besides DERVISH made
it past the blocked corridor, ERRATIC was
declared second-place winner.

Conclusions
The competitions are useful because of the
lessons learned comparing different robot
strategies aimed at the same task—indoor
navigation. For the navigation task in the
1994 competition, no team had any signifi-
cant advantages in hardware design: Every-
one used sonars for navigation, and the com-
putational and mechanical equipment was
comparable (arguably, we had the worst dead
reckoning of the group). Thus, the perfor-
mance reflects the ability of control- and sen-
sor-interpretation algorithms as well as the
planning strategy of the teams. Here’s some
of what I learned:

First, don’t depend on dead reckoning,
even very good dead reckoning. I knew it
before, and this contest confirmed it.

Second, make use of metric information. It

is powerful if used in the right way. It lets the
robot move quicker and recover from errors
sooner.

Third, make sure you can use imprecise
metric information. Just as with dead reckon-
ing, it is never good to rely on the accuracy of
a map. Good registration with respect to
sensed real-world objects is essential. We
learned it the hard way in the finals.

Fourth, it helps to have a random compo-
nent in your rationality, just to keep the
judges on their toes. If your robot is pre-
dictable, it’s much easier for the judges to
frustrate it. However, some randomness tends
to frustrate the judges.

Let me end by making a shameless plug for
ERRATIC. It’s a cheap, reliable indoor robot
platform; there’s lots of good software to back
it up; I’m developing course materials based
on my classes at Stanford; and I’m looking
into getting a robot maker to distribute the
hardware. For more information on the robot
and pointers to articles on the issues dis-
cussed here, check out http://www.ai.sri.com
/people/erratic.

Kurt Konolige is a senior comput-
er scientist at the Artificial Intelli-
gence Center of SRI International
and a consulting professor at Stan-
ford University. He received his
Ph.D. in computer science from
Stanford University in 1984; his
thesis, “A Deduction Model of

Belief and Its Logics,” developed a model of belief
based on the resource-bounded inferential capabili-
ties of agents. His research interests are broadly
based on issues of commonsense reasoning, includ-
ing introspective reasoning; defeasible reasoning;
and reasoning about cognitive state, especially in
the context of multiagent systems. More recently,
he has conducted research in fuzzy control for reac-
tive systems, constraint-based planning and infer-
ence systems, and reasoning about perceptual
information.

Articles

SUMMER 1995 67

