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Even the most sophisticated current artificial intelli-
gence (AI) systems cannot anticipate all the problem- 
solving scenarios to properly execute a solution 

without some human guidance. However, it becomes harder 
and harder for humans to provide this guidance as systems 
become more and more difficult to understand, control, and 
trust. For many black-box systems, the user has little con-
trol over the problem-solving strategies beyond parameter 
tuning, and the solutions are often given without grounds 
that are comprehensible to a human. In contrast, a system 
that could engage with humans in multimodal natural lan-
guage dialogue, in which they jointly identify problems 
and refine, develop, and explore solutions, would consti-
tute a major step forward toward expanding the repertoire 
of problems that can be (jointly) solved by leveraging both 
the human judgment and expertise and the system’s com-
putational and analytic capabilities, and gaining the user’s 
trust that the solutions (jointly) arrived at are explainable 
and verifiable.

 Dialogue is a very active area of 
research currently, both in developing 
new computational techniques for 
robust dialogue systems and in the 
active fielding of commercial con-
versational assistants such as Apple’s 
Siri and Amazon’s Alexa. This article 
argues that, while current techniques 
can be used to design effective dialogue- 
based systems for very simple tasks, 
they are unlikely to generalize to con-
versational interfaces that enhance 
human ability to solve complex tasks  
by interacting with artificial intelli-
gence reasoning and modeling systems. 
We explore some of the challenges 
of tackling such complex tasks and 
describe a dialogue model designed 
to meet these challenges. We illustrate 
our approach with examples of several 
implemented systems that use this 
framework.
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Most current dialogue systems only support inter-
actions within very simple task models that can be 
represented as a short list of attributes. Once the val-
ues of these attributes are elicited, the task is essen-
tially complete (see, for example, Williams et al. 2016 
and the Dialogue State Tracking Challenge [DSTC]1). 
Recent work has focused primarily on machine 
learning, motivated partly by the belief that machine 
learning leads to robustness and overcomes some 
of the brittleness found in earlier hand-engineered 
systems. However, the task models and dialogues sup-
ported remain very simple (for example, querying bus 
schedules, making restaurant reservations, booking 
plane tickets), and the task complexity has remained 
largely at the same level as that of systems developed 
decades ago, at least because since of the slot-filling 
dialogue managers described in Goddeau et al. (1996).2

We will demonstrate that it is possible to create 
robust conversational systems in much more com-
plex domains. As opposed to the tasks of prior systems 
— which often can be solved by identifying speech 
acts and arguments for slot filling — tasks in com-
plex domains may have no clearly defined solution 
or end state, and the reasoning required for both 
the user and the system cannot be articulated easily 
by a nonlinguistic user interface with predefined 
functions. In addition, these tasks cannot be solved 
by a standalone optimization process or a deep- 
learning algorithm, because in complex problem- 
solving the goal is often only vaguely outlined 
to begin with and becomes iteratively refined and 
modified as the problem-solving session progresses. 
Furthermore, even if such a black-box system could 
solve these tasks, the human user would have little 
trust in the results because the black box cannot 
provide explanations that the user can examine and 
understand. To tackle these tasks, we need systems 
that can provide humans with relevant informa-
tion, understand their intentions within context, 
and integrate the human expertise and judgment 
to jointly explore potential solutions and identify desir-
able ones, providing transparent reasoning throughout 
the process. Such systems operate as active collabora-
tors in the problem-solving process, interacting with 
the humans in the same ways that humans naturally 
use among themselves when they work together, both 
in terms of the mode of communication and the proto-
col implicit in negotiating a joint endeavor.

While the main ideas behind our collaborative 
problem-solving (CPS) approach are not new, it was 
only in the last few years that we integrated the 
natural language components and the CPS-based 
dialogue model into a fully domain-independent 
framework, thereby allowing third parties to boot-
strap from these components to independently 
develop their own dialogue systems in a variety of 
domains. Some of the technical aspects of the CPS-
based model are outlined in Galescu et al. (2018). In 
this article we consolidate our entire approach, using 
examples from multiple domains, to give the reader 
a better understanding of the capabilities and the 

broad applicability of our framework, in particular to 
tasks of complexity higher than can be handled by 
the predominant state of the art. Here we also extend 
the discussion of the key domain-independent capa-
bilities and show in detail how the framework can be 
instantiated for specific applications. We also include 
an evaluation of our approach using several metrics.

Examples of  
Complex Collaborative Tasks

As motivation, we describe two example tasks that 
require a level of human-machine interaction and 
collaboration that is well beyond the capability of 
standard dialogue systems. For each domain we intro-
duce our dialogue system implemented using the CPS 
framework. More example dialogues of complex tasks 
and CPS-based systems capable of supporting these 
tasks can be found on the Institute for Human and 
Machine Cognition (IHMC) website.3

Collaborative World Modeling
While researchers from a wide range of disciplines 
have developed complex simulation tools for 
exploring aspects of the world (for example, agricul-
ture, economics, social stability, weather, hydrology), 
automated methods for combining such systems to 
answer larger questions about the world remain  
elusive. The state of the art in world modeling involves 
an extremely labor-intensive process, requiring per-
son-years of effort by highly trained modelers to 
determine how a given scenario could correspond to 
a configuration of quantitative modeling engines, to 
identify or approximate the required data and param-
eter values needed, and then to actually run the 
resulting models over a set of scenario variations. For 
example, the Australian National Outlook (Hatfield- 
Dodds et al. 2015), which used mostly existing models 
for climate, land use, the economy, and other systems, 
took a large team of domain experts and scientists two 
years to produce. The Collaborative World Modeling 
System (CWMS) is an effort to build a collaborative 
conversational agent to assist humans in building such 
models. CWMS has to understand vague user goals, 
suggest and understand discussions about the prob-
lem-solving strategy, be able to plan and execute sim-
ulations, explore alternatives, and present and explain 
analyses. Figures 1 and 2 show a sample interaction 
with the current prototype system. More details can be 
found in Allen et al. (2018b) and Allen and Teng (2019).

To get a better feeling for how humans should be 
able to interact with AI systems, consider what hap-
pens in the dialogue in figure 1. It starts with the 
user suggesting a goal (1), which the system accepts 
and takes initiative to refine (2), and then suggests 
an initial course of action (4). To support this inter-
action, the system reasons that malnourishment is 
both an indicator of food insecurity and also that 
it is a value that can be computed by one of its rea-
soning engines. The system then constructs a plan to 
run a reasoning engine that can compute expected 
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childhood malnutrition rates, based on baseline 
information on the expected availability of food 
and other variables. The answer computed is given 
in (6). The user then expresses a desire to elaborate 
the scenario based on predictions that there would 
be an El Niño event in the coming year. The system 
recognizes the user’s intention is to run a new anal-
ysis with the new assumption. The change in crop 
yield is computed (figure 2) and fed through an eco-
nomic model to compute the effect on food availa-
bility, and the change in food availability is then fed 
through a food security model to compute malnour-
ishment rates.

The user follows up by asking about the effect of 
changing the planting date (11). The system knows 
a problem-solving strategy for exploring the effects 
of changing variables, and so asks whether it should 
construct a simulation experiment that estimates 
the crop yields for a range of different planting dates 
(12). Once the user concurs, the system builds and 
executes a plan for the experiment and shows a plot 
of the results to the user, identifying the best option. 
While this is as far as we have space to discuss it here, 
the user could easily continue on, for instance asking 
for elaboration (for example, OK, and how would that 

affect the malnourishment rates?) or exploring other 
options (for example, What if we could increase the 
amount of fertilizer that is available?) or pursuing some 
new strategy for dealing with the problem, such as 
shipping more food aid to the region.

Biocuration
In molecular biology, finding explanations for biologic  
observations and phenomena requires building and 
visualizing complex causal models with varying gra
nularity and conceptual elements, and running simu-
lations on these models to detect their dynamic  
properties. To manage this wide range of complex 
problem-solving behaviors, the Blabbing on Biocuration 
system (BoB) dialogue system integrates a variety of 
specialized agents with access to an extensive list of 
curated databases covering gene expression, protein 
activities, and molecular pathways, as well as knowl-
edge extracted automatically from reading scientific 
publications in molecular biology (Allen et al. 2015; 
Gyori et al. 2017; Valenzuela-Escárcega et al. 2018).

Figure 3 shows an excerpt from an actual dialogue 
with BoB,4 where the user is attempting to find sup-
port for the hypothesis that a drug has a particular 
effect on a gene that it does not target directly. BoB can 

1 U: Can you analyze food insecurity in Sudan next year?
2 S: OK. Should we look at child malnourishment rates?
3 U: OK.
4 S: Should I compute a baseline estimate based on available data?
5 U: yes

System identi�es a reasoning engine that can estimate childhood malnourishment, and
uses existing knowledge about Sudan (population, food availability, etc.) to estimate the
number of malnourished children.

6 S: OK. The percentage of malnourished children is about 39%.
7 U: What if 2019 is an El Nino year?

System builds a plan to estimate the difference in crop yields in Sudan in El Nino years by
interpolating simulation results from 30 years of prior weather data.

8 S: I can estimate the effect with the following plan. Does that look good?
9 U: Yes
10 S: OK. The percentage of malnourished children increases by 5%.
11 U: What would happen if we change the planting date?
12 S: Shall I run simulations varying the planting date?
13 U: Yes

System creates a plan to run a series of simulations that vary the planting date parameter, again
estimating yields for an El Nino year by interpolating over results obtained from simulations of
the past 30 years. The plan then assembles the results and presents to the user in a chart.

14 S: The best scenario involves planting crops one week earlier than usual.

Figure 1. A Dialogue between a User (U) and the CWMS System (S).
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help to identify possible pathways by which the drug 
can affect the desired gene. There are often multiple 
such pathways, so the mere fact that such a pathway 
exists is in itself useful, but typically this has insuffi-
cient explanatory power. BoB can provide additional 
help by assembling such pathways into molecular 
models, identifying missing pieces in the model, and 
making suggestions for revising the model, all in 
collaboration with the user. These models can be 
analyzed statically to find mechanistic support for 
the hypothesis. In addition, their behavior over time 
can be analyzed by running simulations. While the 
parameters for these simulations are generally set 
automatically, the user can explore what-if scenarios 
by asking the system to alter them and compare the 
outcomes of the simulations under different condi-
tions. In addition to carrying out a dialogue with the 
user, the system also uses a graphical interface (fig-
ure 4) to display multiple views of the model being 
built as well as supporting evidence from databases 
and the literature, with hyperlinks that the user can 
follow to assess their reliability and usefulness in the 
biologic context of their problem.

Although CWMS and BoB involve substantially dif-
ferent types of AI reasoning systems and need to under-
stand quite complex sentences expressing the user’s 

intentions about different tasks, these two systems 
have been built on the same CPS framework, without 
having to develop separate language understanding 
and dialogue models for each domain. This shows 
that the CPS framework can serve as the basis for 
developing the next generation of conversational 
agents.

Background
In this section we review the current state of the art 
and show that significant extensions are needed to 
meet the challenges of complex domains such as 
world modeling and biocuration.

State-Based Dialogue Systems
Most current work in conversational agents is per-
formed at essentially the same level of task com-
plexity as systems dating back to at least the 1990s. 
To understand this notion of tasks, consider the rep-
resentation used in the DSTC1, described in Williams 
et al. (2016). A dialogue system is formalized in 
terms of dialogue states, each consisting of a set of 
attributes (or slots) and their possible values organ-
ized as a frame. The focus of DSTC1 was providing 
information over the telephone about bus schedules. 

Figure 2. System Presents a Plan  
(in Background) Together with Results of Simulation of the Model.

The example shows the difference in expected crop production in an El Niño year.
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The slots that comprise a dialogue state are shown in 
figure 5, reproduced from Williams et al. (2016). The 
state of the conversation so far is captured by the 
values of the slots that have been instantiated. For 
instance, if the user said I need to take a bus from City 
Hall tomorrow then the dialogue state would have the 
TIME slot set to tomorrow’s date (obviously relative 
to the time the conversation is occurring) and the 
ORIGIN POINT OF INTEREST would be set to City 
Hall. In the early conversational systems using this 
model (for example, Goddeau et al. 1996), the system 
would then examine the dialogue state to find an 
attribute that still needs to be filled. In this case, the 
system mainly needs to identify the destination to 
find appropriate bus routes. This would motivate a 
system response such as Where do you want to go? 
Once this question has been answered, the system 
would make an application-program-interface call to 
a bus-schedule database to identify the routes and 
present them to the user.

A significant advantage of such frame-based sys-
tems is that they enable robust semantic parsing 
(for example, using pattern matching or a trained 
neural network). The relevant frame significantly 

restricts the space of possible interpretations and 
parsing can be reduced to essentially a keyword/
named-entity recognition task. For example, no 
matter the surrounding context, if a fragment that can 
denote a day (for example, Saturday, tomorrow, …) 
is found, then it is used to fill the DATE slot. Like-
wise, time expressions (for example, 3 pm, in the 
afternoon, …) are used to fill the TIME slot. A simple 
grammar of addresses can recognize phrases to fill 
the DESTINATION_STREET slot. With a handful of  
special patterns, the frame can be instantiated even  
from ungrammatical or nonsensical sentences (whether 
initially misspoken or resulting from speech recog-
nition errors).

Much of the research in dialogue systems in the 
past two decades has focused on creating better 
dialogue management strategies. A clear step for-
ward was to track multiple possible dialogue states 
rather than a single one (Pulman 1997). As a simple 
example, consider an utterance that resulted in two 
hypotheses from the speech recognizer: the user said 
City Hall Today or Seaton Mall Today. Both locations 
were recognized as possible points of interest and 
could either fill the ORIGIN POINT OF INTEREST 

1 U: what proteins does SB52533 target?
2 S: The nominal target of SB525334 is TGFBR1.
3 S: Tell me what you want to do now.
4 U: Let’s build a model
5 S: Okay.
6 U: SB525334 inhibits TGFBR1
7 S: Okay. I created a model where SB525334 inhibits TGFBR1.
8 U: what transcription factors regulate SMURF2?
9 S: I found three transcription factors that may regulate SMURF2: PBRM1, SMAD2, and

TBL1XR1.
10 U: does TGFBR1 activate SMAD2?
11 S: Overall, I found that TGFBR1 can activate SMAD2.
12 S: I found 5 relations to support my conclusion. Look in the provenance tab to see a few

examples of what I found.
13 U: TGFBR1 activates SMAD2
14 S: Okay.
15 S: It looks like a required activity is missing, consider revising to Active TGFBR1 activates

SMAD2.
16 S: I added the fact that TGFBR1 activates SMAD2 to the model.
17 U: Active TGFBR1 activates SMAD2 and active SMAD2 increases the amount of SMURF2
18 S: Okay. […]
19 U: does SB525334 decrease SMURF2 in the model?
20 S: Yes, it is decreased.

Figure 3. Excerpt from a Dialogue between a User (U) and the BoB System (S).

The user is working with BoB to build a model of how the drug SB52533 decreases the amount of SMURF2.
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or the DESTINATION POINT OF INTEREST slots in 
the frame. Assuming the speech recognition slightly 
preferred City Hall and destinations are more com-
monly stated before origins, the system can com-
pute a distribution over the four possible dialogue 
states. See Kim et al. (2008) and Williams et al. 
(2016) for good examples of systems following this 
approach.

At this stage, the dialogue manager would need to 
decide between a number of plausible continuations: 
Ask user to confirm top speech recognition hypoth-
esis (for example, Did you say City Hall?), ask user 
to confirm an entire interpretation (for example, You 
want to go to City Hall?), ask user to identify/confirm 
a slot (for example, Where are you going to?), or ask 
user to repeat the statement (for example, I didn’t 
understand. Would you repeat that?). In any of these 
situations, when the user provides the next response, 
the possible interpretations of that utterance would 
be combined with the current context to provide 
updated probabilities over the possible states.

The earliest frame-based systems, to determine the 
next step, used hand-constructed rules (for example, 

Zue et al. 2000; Larsson and Traum 2000), and some 
of those dialogue managers have performed well in 
DSTC (for example, Wang and Lemon 2013). Much 
of the effort over the past decade, however, has 
focused on using machine learning to learn dialogue 
management strategies. There is a long history of 
using Partially Observable Markov Decision Pro-
cess models (see the excellent review in Young et al. 
2013) and more recently also neural net approaches 
(for example, Serban et al. 2016). These techniques 
generally require a large corpus of sample dialogues 
in the domain, ideally annotated with the correct 
current dialogue state (represented, for example, 
as a partially instantiated frame with the currently 
known values).

While we do not know the details of the imple-
mentations of commercial conversational assistants, 
such as Apple’s Siri, Google’s Google Assistant, and 
Amazon’s Alexa, it is safe to say that they represent 
the conversational state using something equivalent 
in expressive power to the frame representations. 
Each task (for example, set an alarm, find a restau-
rant, navigation) has an associated set of information 

Figure 4. Screenshot of BoB’s Interface.

The right panel is a chat-style language interface, and the left panel shows the current model. The user has access to other views with 
additional information.
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that needs to be acquired, and once that information 
has been collected an application-program-interface 
call is made to the back-end application that supplies 
the functionality.

There are some generalizations of frame-based sys-
tems that extend the range and complexity of con-
versations they can support. For instance, the system 
may accommodate multiple tasks, each represented 
as a separate frame. To identify the intended task 
and frame from the first utterance (or when the user 
switches to a different task), the system associates 
with each frame keywords and phrases that are useful 
indicators for the frame, and checks which frames 
allow the extraction of the most information from 
the given sentence. For example, a sentence that 
mentions the word “bus” would be a strong indicator 
that the utterance should be interpreted with respect 
to the frame in figure 5, rather than, for example, 
another frame that involves making a restaurant res-
ervation. Many neutral network-based approaches 
use joint models for simultaneously predicting the 
intent (task frame) and the slot fillers (for example, 
Liu and Lane 2016; Zhang and Wang 2016; Wang, 
Shen, and Jin 2018). Recently DSTC included a track 
on developing multitask dialogue systems (Li et al. 
2020), although there have been earlier forays into 
this area (for example, Mrkšiċ et al. 2015; Wen et al. 
2017; Nouri and Hosseini-Asl 2018). While tackling 
multitask dialogues does pose additional challenges 
compared with handling single-task dialogues, the 
increase in task complexity is fairly minimal.

Another generalization is to represent a task as a 
series or transition network of frames, where once all 
the information in one frame is acquired, the system 
can transition to a new state (with a new frame). 
This model is captured in the industry standard 
VoiceXML5 and can be used to develop commercial 

systems such as the customer service systems one 
encounters over the telephone. In practice, these 
systems are typically driven by system prompts, that 
is, the system asks a question or provides options for 
the user to select, and then moves on to the next 
state based on the answer. Such systems are often 
referred to as system-initiative. In contrast, the frame-
based systems described above are typically user- 
initiative, that is, the user initiates the conversation 
as opposed to answering system queries.

Currently, most work on modeling dialogue is 
based on neural net models for all or most of the 
system components (for example, Wen et al. 2017; 
Lin et al. 2019). These systems are trained on tran-
scripts of dialogues, with or without annotation 
of the dialogue states (that is, frames). They then 
attempt to generate the next turn in a dialogue, given 
the complete dialogue history up to that turn. Most 
such end-to-end systems are evaluated on datasets of 
complete dialogues, either generated automatically 
or crowdsourced, but are never put to a real test with 
human users (some evaluation schemes use simu-
lated users). DSTC8 (Li et al. 2020) introduced a form 
of human evaluation via Amazon’s Mechanical Turk, 
where users converse with the system to achieve a 
given task. However, unlike traditional user experi-
ments, this type of evaluation suffers from a signif-
icant weakness: The task is described in detail, step 
by step, in natural language, which users can follow 
almost exactly to conduct a reasonably successful 
conversation.

Of note, while there has been a large effort in 
developing more robust and effective state-based 
dialogue management techniques, there has not 
been much effort in developing systems for more 
complex tasks. As we will discuss below, as task 
models become more complex, there are significant 

Slot Possible Values
BUS ROUTE Route Numbers (e.g., 1 – 100)

DATE Calendar date
TIME Time of day

ORIGIN STREET Street Address
ORIGIN NEIGHBORHOOD Neighborhood name

ORIGIN POINT OF INTEREST Name of distinguished location (such as museum, city hall, …)
DESTINATION STREET Street Address

DESTINATION NEIGHBORHOOD Neighborhood name
DESTINATION POINT OF INTEREST Name of distinguished location

Figure 5. The Template for a Dialogue State in DSTC1.

Reproduced from Williams et al. (2016) under Creative Commons Attribution License 3.0.
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hurdles to overcome. First, relatively simple parsing 
techniques and methods of information extraction 
(for example, pattern recognition for slot filling and 
intent detection) start to lose their effectiveness as 
the domain of discourse becomes larger. Second, 
both probabilistic and neural network-based frame-
works rely on having a fairly simple notion of state, 
and a relatively simple set of choices that can be 
made as the system’s contribution. Both of these 
spaces increase substantially with the increase in 
task complexity. In addition, related to this second 
point, the more complex the dialogue states, the 
larger the corpora that need to be collected and, for 
some approaches, annotated to train the probabilis-
tic models.

Task-Based Dialogue Systems
While state-based systems dominate the literature, 
there has been a steady development of conver-
sational systems supporting more complex task 
models. These systems explicitly model the task 
being performed using hierarchical task representa-
tions, and engage the user in more complex, longer-
term tasks such as tutoring, collaborative planning 
and control, and task learning. The notion that the 
structure of the dialogue reflects the structure of the 
underlying task was noted early on by Grosz (1974). 
As we will see later, this is not strictly a one-to-one 
correspondence, but the task structure does provide 
significant insight into the dialogue structure. The 
more complex relationship between the two was 
elaborated in Grosz and Sidner (1986).

A number of dialogue systems are driven directly 
from task models. For instance, STEVE teaches stu-
dents about physical tasks using a virtual environ-
ment (Rickel and Johnson 1998). COLLAGEN (Rich 
and Sidner 1998) and, more recently, Disco (Rich 
and Sidner 2012), provide general frameworks for 
building systems that engage in collaborative con-
versation based on a library of explicit tasks (not tied 
to any specific domain). Another task-based model 
that supports multitasking in dialogue is described 
in Lemon et al. (2002).

Let us examine a task-based dialogue system in 
more detail. RavenClaw (Bohus and Rudnicky 2009) 
is driven by a hierarchical task model such as the 
one shown in figure 6 for booking rooms for meet-
ings. The task (ROOMLINE) consists of four subtasks: 
logging in, in which the system welcomes the user 
and asks if the user is already registered and asks for 
their name; obtaining specifics of the reservation, 
including location, time and other information 
such as room size; querying to the back-end reser-
vation system; and presenting and discussing the 
results. The dialogue engine is task-independent and 
includes a number of generic conversational skills, 
including language interpretation, response genera-
tion, clarification requests, and error detection and 
management. The system manages the dialogue by 
moving through the task tree from subtask to subtask 
as each is completed. Each task is executed based on 

its specification, which may include the following 
general behaviors:
 

•	 Giving the user some information (for example, 
the WELCOME task involves saying Welcome)

•	 Requesting information from the user (for  
example, ASKREGISTERED involves asking if the 
user is registered; DATETIME involves asking the 
user for the desired time of the meeting)

•	 Making a call to a back-end reasoner (for example, 
GETRESULTS involves querying the room reserva-
tion database)

 

As in frame-based systems, each task has a set of 
slots and semantic patterns for interpreting values for 
that slot. For example, the LOGIN task has a slot for 
the username, while the ASKREGISTERED task has a 
Boolean slot indicating whether the user is registered.

The dialogue manager operates by executing 
tasks in the task tree, maintaining a stack of active 
tasks, much like the attentional stack in Grosz and 
Sidner (1986). To execute the current task, the system  
either: performs one of the actions on the stack 
and, if appropriate, waits for a response; or, if there 
are no pending actions, pushes a subtask onto the 
stack and then executes that subtask. For instance, 
after the user logs in, the system asks when the user 
wants a room (subtask DATETIME). At that time, 
there are three tasks on the stack: The top is DATE-
TIME, with a slot for reservation time. Below that is 
the task GETQUERY, with a time slot which it shares 
with DATETIME, plus the location slot and other slots 
from its other subtasks. At the bottom of the stack is 
the root goal, ROOMLINE. In interpreting the answer, 
all the slots on the stack are candidates to be filled. For 
instance, if the user said Gavett Hall at 3PM Tuesday in 
answer to the time question, the system would fill in 
not only the requested TIME slot, but also the LOCA-
TION slot even though it has not asked about this (yet). 
This architecture thus supports the same robust parsing 
as phrase/keyword spotting in frame-based systems.

Task-based models can engage in dialogues over 
tasks more complex than can be easily modeled 
in state-based systems. In addition, because of the 
explicit task model the system has a representation 
of what its current goals and intentions are (so, in 
principle, it could answer questions about what it is 
doing). These models work well in instructional envi-
ronments where the system designer essentially lays 
out a concrete lesson plan, or in applications where 
there are well-defined tasks to be accomplished, such 
as in a room reservation or a travel agent domain. 
However, task-based dialogue models are rela-
tively underrepresented in current research because 
domains where they are most effective are typically 
too complex to construct a sizable corpus, and thus 
are not amenable to machine learning approaches.

Dialogue Systems Based on CPS
While task-based models support more complex dia-
logues than state-based models, they still fall short for 
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a wide range of applications involving agent inter-
actions. Consider an example of an actual human–
human dialogue collected by one of the authors 
(figure 7). Participant A was trying to mail a let-
ter to Mexico. Participant B was an administrator  
in the office. While it would be easy to build a 
dedicated state- or task-based system to handle the 
task of mailing a letter, this dialogue does not track 
any predefined task and none of the approaches 
discussed above could explicitly model the discus-
sion and modification of the goal and subsequent 
novel solutions. (In fact, most of the conversation 
was to define exactly what the goal was, not devel-
oping or performing a task!)

A system participating in this conversation needs to 
be able to generate new tasks on demand, thus requiring 
reasoning capabilities similar to AI planners (for exam-
ple, Ghallab, Nau and Traverso 2004), which can gen-
erate novel task models by combining operators from 
a plan library. In addition, building mutually agreeable 
plans requires intention recognition (for example, Allen 
and Perrault 1980; Kautz and Allen 1986) and mixed- 
initiative planning (Ferguson and Allen 2007).

Early work on SharedPlans (Grosz and Kraus 1996; 
Lochbaum et al. 1990) and plan-based dialogue 
systems (for example, Allen and Perrault 1980) laid 
good theoretical foundations for such systems. A 
core underlying principle was that communication 
acts can be formalized and reasoned about in terms 
of their effects on beliefs and goals of the dialogue 
participants. Perhaps the best developed formalism is 
described by Cohen and Levesque (1990). However, 
while there were some interesting demonstrations, 
these approaches have not been effective in building 
robust dialogue systems in practice. It is just too diffi-
cult to account for all the different actions that could 
occur in a dialogue from first principles alone.

When agents are engaged in solving problems 
together, they need to communicate to agree on 
what goals to pursue, what steps to take to achieve 
those goals, and to negotiate roles, resources, and 
more. In other words, the dialogue agents must take 
into account the nature of the joint activity itself. We 
call this collaborative problem solving, or CPS. Exam-
ples of early systems that took this approach include 
Chu-Carrol and Carberry (1998) and Litman and 
Allen (1987). In the early 2000s, Allen and colleagues 
described a preliminary plan-based CPS model of 
dialogue based on an analysis of an agent’s collab-
orative behavior at various levels (Allen et al. 2002). 
A dialogue system based on this model is described 
in Blaylock and Allen (2005). Even earlier systems, 
such as the original The Rochester Interactive Plan-
ning System (Ferguson and Allen 1998; Allen et al. 
2000), operated using similar intuitions but imple-
mented the behaviors directly, without an explicit 
CPS model.

The CPS model consists of the following four 
conceptual levels: An individual problem-solving level, 
where each agent manages its own problem-solving 
state, and plans and executes individual actions. 
This level includes the AI systems that implement 
the functionality of the specific domain, as well as 
the overall management of these systems; A CPS  
level, which models and manages the joint or CPS 
state (shared goals, resources, situations) and is 
independent of any specific domain; An interaction 
level, where individual agents negotiate changes 
in the joint problem-solving state, independent of 
the particular domain; and A communication level, 
where language and/or other forms of communica-
tion realize the interaction level acts. While this may 
be domain-specific, in our systems we use generic 
semantic parsing and interpretation that applies 

RoomLine

GetQuery GetResults

DataTime

LocationAskNameAskRegistered

Login

Welcome

DiscussResults

... ... ...

Figure 6. A Task Tree for a Room Reservation System.

Reprinted in part from Figure 3 in Bohus and Rudnicky (2009), with permission from Elsevier B.V.
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to any domain. For natural language generation 
(NLG), communication acts are in terms of standard, 
domain-independent speech acts, whose content is 
expected to be domain-specific.

Consider first the general structure of a problem- 
solving state, either the collaborative problem-solving 
state established in the dialogue, or the individual 
problem-solving state of a single agent. Figure 8 shows 
the management of goals and ways to achieve goals 
(that is, tasks and solutions). We see there an encoding 
of the life cycle of goals and solutions: a new goal/ 
solution may be adopted (ADOPT); an existing goal/
solution may be focused on (SELECT) for pursuing 
in the subsequent dialogue; the current goal/solu-
tion may be deferred for now, possibly to be resumed 
later (DEFER); a goal/solution may be abandoned 
(ABANDON); or may be accomplished and dismissed 
(RELEASE). When problem-solving acts are used to 
interpret the behavior of a single agent’s reasoning, 
it is a characterization of key parts of an intelligent 
agent’s behavior. For instance, I might describe my 
behavior as follows: I decided to buy a rib-eye steak 
for dinner (ADOPT a goal), but after I found out 
how expensive it was I decided to buy a hamburger 
instead (ABANDON then ADOPT a new goal).

For shared goals in a collaborative situation, these 
problem-solving acts can only be accomplished via 

communication. In other words, the two agents 
have to agree before something becomes shared. 
Consider again the dialogue in figure 7. Before the 
conversation, agent A has the goal to mail the letter 
(A0). Utterance A1 attempts to introduce a shared goal 
to establish the price of the postage to Mexico, which 
agent A believes would allow successful completion of 
the goal (a proposal to an ADOPT GOAL act). Agent B 
does not accept the proposed goal because they do not 
have the information to accomplish this goal (B2). In 
response, agent A proposes a related goal, namely, to 
find a method to determine the postage (utterance A3). 
Agent B does not address the request directly but asks 
what the exact goal is (utterance B4). Thus, we describe 
B4 as a REQUEST CLARIFY GOAL. Agent A answers this 
question, which in this context is interpreted as identi-
fying a new goal (IDENTIFY GOAL). With a joint goal 
finally established, agent B suggests the simple solu-
tion of placing a charge slip on the letter for the post 
office. Utterance B6 is interpreted as both an implicit 
acceptance and a proposal of a solution to the agreed-
upon goal (PROPOSE SOLUTION). In response, agent A 
accepts the proposed solution (utterance A7). The dia-
logue ends with the accomplishment of the joint goal 
as agent A hands over the letter.

The way the individual problem-solving state is 
implemented and managed is idiosyncratic to each 

Utterance Collaborative Act Problem-Solving Status
A0 Private Goal: mail letter to

Mexico
A1 Do you know what �rst-

class postage to Mexico is?
PROPOSE ADOPT GOAL [Know
postage rate]

Goal 1 [Know postage rate] is
proposed as Shared Goal

B2 No. REJECT [B does not have the
knowledge to accomplish goal]

Proposed goal rejected. But A
still has private goal.

A3 How do I �nd out? PROPOSE GOAL [build plan to
know postage rate]

Goal 2[create plan …] is
proposed as Shared Goal

B4 Do you really want to know,
or do you just want to mail
the letter?

REQUEST CLARIFY GOAL
[Know postage or mail letter]

Goal 3 [identify goal …] is
proposed by B

A5 Mail the letter. IDENTIFY GOAL [Mail Letter] Goal 3 satis�ed. Goal 4 [mail
letter] proposed

B6 No problem, we’ll put this
charge slip on it and the post
of�ce will �gure it out 

PROPOSE SOLUTION [have post
of�ce do it] 

Goal 4 accepted as shared.
Solution is proposed.

A7 Great, thanks. Here it is. ACCEPT SOLUTION Solution is Shared. Solution
is executed.

Figure 7. Collaborative Dialogue in Action.
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application domain and typically involves special-
ized reasoning engines to execute the actual tasks. In 
the CPS framework, the individual problem-solving 
state is managed by a component called the behavioral 
agent (BA). For example, the BA in CWMS encodes 
modeling tasks that create and execute simulations 
to support activities such as intervention planning 
and prediction. These tasks can then be executed by 
invoking back-end specialized reasoning engines, 
such as a crop modeling system for agricultural sim-
ulations. In the BoB system the BA coordinates the 
activities of many knowledge sources and reasoning 
engines, for building and reasoning with mecha-
nistic molecular models, simulation and analysis of 
dynamic molecular models, pathway analysis, and 
specialized database lookups.

A key insight is that the collaborative problem- 
solving state can be task- or domain-independent and 
implemented in a general fashion, given a suitable 
interface to the BA, which will perform the domain- 
specific reasoning at the individual problem-solving  
level. The domain-independent dialogue manager 
coordinates the interpretation of the dialogue, inter-
acting with the BA as needed. It bridges the divide 

between how humans interact when problem solving, 
and how the back-end systems perform the problem- 
solving processes for the domain (see figure 9).

Challenges for  
Complex Dialogue Systems

To build dialogue systems for complex tasks, we face 
a number of challenges: the language is relatively 
unconstrained; the exact nature of the tasks cannot 
be anticipated and coded in advance; and the system 
behavior cannot be characterized by static policies. 
We will discuss how these considerations impact 
slot-filling and state/task-based systems and the CPS 
systems.

Language Understanding
The slot-filling approach to language understanding 
allows robust interpretation of sentences even in the 
presence of speech recognition errors and ungram-
matical utterances. It is highly limited, however, as 
it is based on predefined (by explicit definition or 
by learning) extraction patterns that are associated 
with each slot. This works fine for slots such as TIME 

Topic

Goals,
Solutions

ACT

ADOPT

SELECT

DEFER

ABANDON

RELEASE

Gloss

Introducing a goal

Focusing on existing goal

Temporarily putting a goal aside

Abandoning a goal

Completing a goal

Example Sentence

Let’s plan food aid for Sudan.

Let’s return to the food problem.

Let’s work on this later.

I don’t care about this anymore.

We’re done.

Record of
Completed Goal/

Tasks

Active Goal/Tasks
not under active

discussion

D
EFER

SE
LE

C
T

RELEASE

Goal/Task
under active
discussion

Record of
Abandoned Goal/

Tasks
ADOPT ABANDON

Figure 8. Life Cycle and Key Acts of a Problem-Solving Goal.
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OF DAY, RESTAURANT TYPE (for example, Italian, 
Lebanese), or MODE OF TRANSPORT (for example, 
bus, car, train) that are encoded as part of a state/task 
model. But it is unclear how such techniques could 
be used to handle most of the utterances in the CPS 
dialogues we presented. For instance, what slots in 
a task could match utterances such as What if 2019 
is an El Niño year? Even if we had a task model with 
YEAR and WEATHER slots, filling the year slot with 
2019 and the weather slot with El Niño would not 
capture the intent, which is to compare the results 
of the current analysis to one where a variable (the 
weather condition) has been changed (constrained 
to the presence of El Niño events). Or, Consider what 
transcription factors are phosphorylated by MAP3K7 
and regulate CXCL8?, which involves a conjunction 
of complex event descriptions. Cohen (2019) pre-
sents many examples of utterances in other domains 
whose content cannot be easily captured as a collec-
tion of slot values, such as What is the closest parking 
lot to the Japanese restaurant nearest the Space Needle? 
We clearly need compositional semantic parsing that 
captures complex relations between objects, as well 
as complex objects such as events and nominals with 
relative clauses.

Specifying Task Models
Tasks are often not well defined at the start and have 
to be constructed incrementally during the dialogue 
itself. Consider a relatively basic transportation plan-
ning domain, namely the original TRIPS system 
(Ferguson and Allen 1998), in which a human and 
system collaboratively build a schedule of transport 
actions to accomplish some goal (for example, Use 
truck 3 to get the people in the city Abyss, then go to Bath 
and get the people there. Meanwhile, use the helicopter to 
get the people in Calypso). Here the task is constructed 
in the dialogue and then executed and monitored 
and may be revised in subsequent dialogue if the 
situation changes. The actual task is arbitrarily com-
plex, and it is not feasible to enumerate all possibili-
ties in advance. Rather, the dialogue interactions can 
be characterized by metalevel actions, for example, 
add this step to the plan, change a parameter value 
(for example, the vehicle) in this planned action, 
replace this action in the plan with a different action. 

Furthermore, each turn in the dialogue has to be 
interpreted in the context of the transportation plan 
built so far. An utterance such as Let’s send the helicopter 
to Bath instead could refer to many different possible  
modifications to the plan (for example, Instead of 
sending it to Calypso? Instead of sending a truck to Bath? 
Instead of taking the people back from Calypso directly?).

Determining System Behavior
In the state/task-based dialogue models, the range 
of system actions is quite limited, typically consisting 
of a few actions: asking the user for a slot value, 
performing a clarification or confirmation, or per-
forming a back-end application-program-interface  
call. In the CPS domains, the possible system actions 
are the result of a complex problem-solving pro-
cess, where the system needs to recognize the 
user’s intention, system planning may occur on 
the basis of this intention, and problems may arise 
in planning that need to be resolved. While the 
range of possible actions can be enumerated at the 
meta-level, as we discussed, the actual actions are 
essentially unlimited given they could be based on 
any possible aspect of any possible plan that can 
be constructed.

A Framework for  
Collaborative Problem-Solving Systems
One of the main goals of our recent work has been 
to create tools for generic linguistic interpretation 
and intention recognition, and to provide a dia-
logue shell independent of domain-specific problem 
solving. The domain-specific BA then instantiates the 
higher-level intentions into concrete problem-solving 
actions and verifies that such actions make sense in 
the domain context. As a consequence, in the CPS 
model the back-end problem solvers are relatively 
insulated from the need to worry about linguistic 
issues of sentence understanding as well as dis-
course and dialogue management.

We will describe the CPS framework in more detail 
in this section and return to the problems of natural 
language understanding in complex tasks in the next 
section.

USER Language & GUI gestures API calls & responses Domain-Speci�c
Behavioral Agent

Domain-independent
Collaborative

Problem Solving
Dialogue Manager

Figure 9. The CPS Model Bridges the Divide between Intuitive Human Behavior and Specific AI Reasoners.
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Operations on the Problem-Solving State
The interaction level consists of an interaction 
speech act where the content of the act is an oper-
ation on the problem-solving state. As the simplest 
example, a shared goal can be established between 
agents A and B if A proposes a goal and B accepts it.
 

(1) PROPOSEA ADOPT G1 :as (GOAL)
Let’s analyze the food security situation in Sudan next 

year
 
 

(2) ACCEPTB ADOPT G1 :as (GOAL)
OK

 
 

There are two key parts: the communicative act 
(for example, PROPOSE, ACCEPT), and the inter-
action act (for example, ADOPT), which identifies 
what action the communicative act is attempting to 
perform on the collaborative state. The main com-
munication acts are shown in table 1. These acts 
are augmented by the specific operation on the CPS 
state that is being proposed or accepted, for example,  
a new top-level GOAL in the above. One might also 
suggest refining a current goal. For example, the second 
part of utterance 2 in figure 1 proposes adopting G2 
(looking at malnourishment rates) as a subgoal to goal 
G1 (analyzing food security), formalized as follows:
 

(3a) PROPOSEB ADOPT G2 :as (SUBGOAL :of G1)
Shall we look at child malnourishment rates?

 
 

Another key relation involves refining or changing 
an existing goal. This commonly occurs during clari-
fications. For instance, the dialogue might have con-
tinued as follows:
 

(3b) PROPOSEA ADOPT M1 :as (MODIFICATION : 
OF G1)
Focus on the eastern part of the country

 
 

In this case, agent A refined the goal to a more 
specific region to be analyzed. Once agent B accepts 
this, the shared goal will be updated. Table 2 shows 
the different relations between the new act and the 
existing CPS state.

Managing Domain-Specific  
Intentions: The EVALUATE-COMMIT Cycle
The CPS manager interprets and drives the interac-
tions that embody the collaborative problem-solving 
negotiation between the user and the system (that 
is, the interaction level in the above discussion). 
This cannot be done accurately without an ability 
to reason about the domain-specific intentions as 
well. For instance, the sentence Can you analyze 
food insecurity in Sudan next year in figure 1, after 
appropriate semantic parsing, could be identified 
as likely to be a PROPOSE of a new top-level goal. 
This hypothesis can be derived solely based on the 
current problem-solving context (no goal has been 
agreed to yet, this being the first utterance) and the 

form of the speech act (a REQUEST), but it cannot 
be confirmed without checking that analyzing food 
insecurity is a reasonable collaborative goal in the 
current context, using domain-specific knowledge 
and reasoning.

To make the system as domain-independent as 
possible, the CPS manager generates a ranked list of 
candidate CPS acts based on general knowledge, and 
requests the BA to evaluate the likelihood of each 
in turn given its domain-specific knowledge about 
the current problem-solving state. If the BA deems 
a hypothesis acceptable, the CPS manager commits 
to the act and changes the CPS model, thereby iden-
tifying what the system believes was the intended 
interpretation. This interchange can be formalized as 
follows, where G1 is the hypothesized goal derived 
from a user utterance:

( )( )( )
CPS Manager BA

EVALUATE content ADOPT G as GOAL

→ :  

 :  1 :  

( )( )( )
BA CPS Manager

ACCEPTABLE what ADOPT G as GOAL

→ :  

 :  1 :  

( )( )( )
CPS Manager BA

COMMIT content ADOPT G as GOAL

:  

 :  1 :  

→

The CPS manager requests that the BA evaluate a 
hypothesis about the CPS act of adopting G1 as a 
goal. On receiving from the BA that it deems the 
hypothesis ACCEPTABLE, the CPS manager commits 
to the interpretation (and issues a confirmation to 
the user). Once the acceptance is generated, G1 
becomes a shared joint goal for both the system 
and the user.

On the other hand, the BA might not find the 
hypothesis acceptable. If the BA cannot infer an 
appropriate intention underlying an utterance, it 
would respond with FAILURE. If the BA can identify 
the intention but refuses (or is unable) to agree to 
it, it would respond with UNACCEPTABLE, with an 
optional reason: In systems we have implemented 
so far the most common reason is that the agent 
cannot perform the requested task or action because 
there are not sufficient resources.

With a FAILURE, the CPS manager can suggest an 
alternative from its list of candidates and the BA 
will evaluate its appropriateness. This EVALUATE- 
COMMIT cycle (figure 10) is critical for enabling 
intention recognition that exploits both the linguistic  
context (that is, the exact phrasing of utterances 
and the discourse context) and the domain-specific 
problem-solving context.

In certain cases, the structure of the utterance and 
the problem-solving context might not be sufficient 
for the CPS manager to identify the problem-solving  
intention. The CPS manager can then send an under-
specified intention to the BA and have it identify 
the intention. For instance, consider a dialogue in a 
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collaborative blocks-world task where either the user 
or the system can manipulate the blocks: 

User: Let’s build a tower.
System: OK
User: I will move the blocks.

 

Without specific knowledge of the domain, the CPS 
manager might not be able to determine the inten-
tion behind the assertion I will move the blocks. But it 
does hypothesize that the assertion is relevant to the 
current established goal of building a tower (call this 
G3) in some way. The message exchange is as follows:

CPS Manager BA
EVALUATE content (ASSERTION U as  

(CONTRIBUTES TO goal G

→

−

:

( : 1 :

: 3)))

BA CPS Manager
ACCEPTABLE what (ASSERTION U as

(CONTRIBUTES TO goal G effect 
( ADOPT U as (MODIFICATION of  G

→

−

:  

(  : 1 :

 : 3))) :

2 :  : 3))

CPS Manager BA
COMMIT content (ADOPT U as

(MODIFICATION of  G

→ :  

(  : 2 :

 : 3)))

The BA proposes that the assertion modifies the 
shared goal G3 (filling in a constraint about who 
will move the blocks to build the tower). If the CPS 
manager accepts it then it will commit to the crea-
tion of the modified shared goal. Not in this case, 
but another possible reply is that the BA deter-
mines that the assertion should make a subgoal of 
G3.

Managing the BA’s  
Contribution to the Dialogue: WHAT-NEXT
So far we have discussed how user utterances in a 
dialogue are interpreted to update the collaborative 
state. Here we will discuss how to manage the BA’s 
utterances. Unlike a majority of other dialogue sys-
tems, the CPS framework does not enforce strict turn 
taking. Both the user and the system may produce 
multiple utterances in a row (see for example the 
dialogue in figure 3). For the CPS manager to con-
trol and coordinate system behavior, the BA has to 
wait until asked before it can contribute to the joint 
CPS state and dialogue. We call this the WHAT-NEXT 
message. Every time the interpretation of a user 
utterance is completed, the CPS manager evaluates 
the current state and sends a WHAT-NEXT message if 
the system is allowed to take the turn. For instance, if 

Act Typical Use Example (Blocks World) Example (BoB)

PROPOSE Suggest a modification to the CPS Let’s build a tall tower. I want to find out what activates Ras.

ACCEPT Accept a modification to the CPS OK Sure.

REJECT Reject a modification to the CPS No I don’t want to do that.

ASSERTION Make a claim about the state of world We do not have any blue blocks. Ras activates Raf.

ASK-IF Ask whether something is true about  
the world or the CPS state

Are there any red blocks left? Does SB525334 decrease SMURF2 in the 
model?

ASK-WHAT-IS Ask for some object/value to be  
identified

How tall a tower? What proteins does SB52533 target?

ANSWER An assertion issued in response to  
a question (including yes/no)

Five blocks (answer to above  
question)

The nominal target of SB525334 is  
TGFBR1. (answer to above question)

Table 1. The Main Communicative Acts in CPS.

Communicative Act Relation Name Relation to Current CPS State

PROPOSE GOAL Proposed as a new top-level goal (that is, pursued for its own sake)

SUBGOAL :of G Proposed as a subgoal of an existing goal G

MODIFICATION :of G Proposed as a modification of an existing goal G

ASSERTION CONTRIBUTES-TO :goal G Asserted in relation to the specified goal G

ASK-IF ASK-WHAT-IS QUERY-IN-CONTEXT :goal G Query is in the context of goal G

Table 2. Different Relations of a New Act to the Current CPS State.
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there is pending user input, the user utterance takes 
priority and is processed first. This ensures that the 
system takes into account all the information from 
the user that could supplement or even modify the 
current state, to avoid situations where the system 
plans a response to the user’s first utterance before 
considering the second one. For example:
 

User: Let’s build a tower.
User: It should be 5 blocks tall.
System: How tall should it be?
< responding before considering the second user 

utterance >
 
 

The turn management allows both the user and 
the system to plan and execute multiple utterances 
within their turn.6

In response to the WHAT-NEXT request, the BA 
has a number of options. For example, it might 
invoke its planners and reasoners, or it might take 
an inventory of available resources. Eventually, 
however, it should respond to the CPS manager, 
even if just to say it is waiting for a task to finish. 
The CPS manager can then proceed to coordinate 
the next step in the collaborative problem-solving 
process. Table 3 summarizes a range of responses 
that might be returned.

A Generic Shell for CPS
The framework described in the last section defines 
the interface between the language interpretation/
dialogue management components and the AI 
reasoning systems but makes no commitment to 
how these components are implemented. Given 
the diversity of applications where CPS could be 
used, BAs may differ significantly in their struc-
ture, just as the back-end reasoning engines they 
use may differ dramatically. As long as they sup-
port this interface, they can be integrated into 
the CPS framework. The same is true of the lan-
guage and discourse processing components. How-
ever, a key strength of our approach is that much 
of the language and discourse processing can be 

implemented in a domain-independent fashion 
and be used in multiple collaborative systems in 
different domains and with radically different AI 
reasoning systems.

We have created a generic dialogue shell for sys-
tems that support collaborative problem-solving 
dialogues. This is described in detail in Galescu 
et al. (2018) and the code for the system (called 
Cogent) is publicly available on GitHub (the link 
is provided in the sidebar). This dialogue shell has 
been used to build systems in a range of domains, 
including a mixed-initiative system for planning 
and execution in blocks world (Perera et al. 2017); 
learning about structures in blocks world (Perera 
et al. 2018); an assistant to a biologist for build-
ing, visualizing, running, and modifying complex  
biologic causal models (Gyori et al. 2017; Burstein 
et al. 2020); helping a human composer create  
and edit music scores (Quick and Morrison 2017); 
playing cooperative games (Kim et al. 2018); and 
World Modeling (Allen and Teng 2019). Each 
one of these systems uses very different forms  
of domain-specific reasoning, but all use the same 
CPS framework and interface to the generic dia-
logue shell.

Generic Language Understanding for CPS
One of the unique strengths of Cogent, as exempli-
fied in its instantiations in vastly different domains, 
is that the language and discourse processing can 
be constructed in a domain-independent manner. 
In contrast, virtually all current dialogue systems 
use domain-specific slot-filling parsers (whether 
hand-built or learned), and a new parsing system  
needs to be custom-constructed for each new domain, 
often starting by collecting (and annotating) a 
large corpus. As mentioned earlier, the slot-filling 
approach is not viable for such tasks as the com-
plexity and variety of possible utterances require a 
compositional analysis of meaning. Progress will 
be greatly hampered unless we can build such a 
parsing system once and reuse it in new domains. 
In this section we briefly describe such a system. 
More details can be found in Allen and Teng (2017) 
and Allen et al. (2018a).

The core engine for processing language is the 
TRIPS parser. The name reflects its roots in the orig-
inal TRIPS system (Ferguson and Allen 1998), which 
focused on a transportation domain. In the twenty- 
plus years since, TRIPS has been developed into a 
domain-general, broad coverage, deep semantic 
parser for both dialogue and open text such as web 
pages and scientific articles. By broad coverage, we 
mean that the lexicon substantially covers typical 
English usage (on the scale of WordNet; Fellbaum 
1998). By deep, we mean that all words are assigned 
senses that are organized into an ontology, and that 
each sense has associated semantic roles, semantic 
preferences, syntactic linking templates, and axiom-
atization. By ontology, we mean not only a hierarchy 

CPS
Manager

Behavioral
Agent

EVALUATE CPSact

ACCEPTABLE CPSact

COMMIT CPSact

Figure 10. The EVALUATE-COMMIT Cycle for Intention Recognition.
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of concepts with inheritance of properties, but also 
axioms that capture the relationships between con-
cepts, especially temporal and causal relationships. 
The TRIPS parser produces a rich representation 
of the sentence’s meaning assigning word senses 
from its ontology to most words and linking them 
with well-founded semantic roles. Figure 11 shows 
a sample parse in graphical form. At a superficial 
level, the TRIPS representation looks similar to the 
abstract-meaning representation (Banarescu et al. 
2013), but there are fundamental differences. Most 
importantly, all words in the TRIPS representa-
tion have senses in the TRIPS ontology, whereas, 
in abstract-meaning representation, for the most 
part only verbal forms and their derivational forms 
have sense tags. In addition there is no distinction 
in abstract meaning representation between a state-
ment that a particular peach is juicy (for example, 
The peach is juicy) and a statement that all peaches 
are juicy (for example, Peaches are juicy). Such dis-
tinctions about quantifiers and others are critical 
for effective intention recognition. The TRIPS rep-
resentation has a formal semantics that generalizes 
other well-known formalisms such as minimal recur-
sion semantics (Copestake et al. 2005), hole seman-
tics (Bos 2002), and dominance constraints (Koller  
et al. 2003). Thus, while the basic logical form does 
not scope quantifiers, operators, and adverbials, it can 
encode scoping constraints and supports tractable 
algorithms for scope disambiguation (Manshadi et al 
2018).

The output from the parser is passed through a 
series of graph-based transformations, which rewrite 
and simplify the graphs into deeper representa-
tions. All of them use a subsystem that matches and 
rewrites graphs using rules defined in terms of the 
ontology. We say a pattern graph P matches a target 

graph T if there is a one-to-one mapping of the nodes 
and arcs in P to a subset of T such that the ontology 
type of each node in P is equal to or a supertype of 
the ontology type of the corresponding node in T. 
For example, a rule that identifies a likely intended 
speech act using conventional linguistic signals can 
be summarized as follows and shown graphically in 
figure 12 (terms with the prefix ONT:: are types in 
the TRIPS ontology):

If node A has a :content link to node B and B has a : 
modality link to node C, and (1) node A is ONT::SA_
YN-QUESTION, (2) node B is a subclass of ONT::EVENT-
OF-CHANGE, and (3) node C is a subclass of ONT:: 
ABILITY, then transform the graph into an ONT:: 
PROPOSE act with a :what link to node B.

Matching the parse for Can you analyze food insecu-
rity in Sudan next year (figure 11) against the above 
rule, we can derive that the sentence should be inter-
preted as an interaction act PROPOSE. This transfor-
mation mechanism is used in successive phases of 
interpretation described below.

Conventional Speech Act Interpretation

The first stage involves mapping the parsing output to 
a ranked set of possible intended speech act interpre-
tations based on its lexical/syntactic/semantic struc-
ture, building from work originally by Hinkelman 
and Allen (1989). The example discussed above and 
shown in figure 12 depicts a simple rule that maps 
sentences of the form Can you do X (for example, 
the sentence in figure 11) to a proposal to adopt X 
as a shared goal. There are approximately 100 hand-
built rules that identify common phrasings with 
likely intentions in English. For instance, there are 
multiple ways in which goals might be proposed, 
including: 

Response What It Means Example Utterances to Report Status to User

ANSWER BA provides an answer to a user question We have three blocks on the table (in answer to  
How many blocks are available?)

PROPOSE BA proposes a problem-solving operation to  
the user

ADOPT SUBGOAL: Let’s consider rainfall first.

ABANDON GOAL: Shall we give up?

BA asks the user a question ASK-WH: How tall should the tower be?

ASK-IF: Should I run the simulation?

FAILURE BA reports a failure to perform some action There are no more red blocks.

We can’t run the simulation as we have no rainfall data.

EXECUTION- 
STATUS

BA reports a goal/task is (successfully) completed I’ve built the tower.

The simulation is complete.

BA reports that a goal/task is in progress I’m still working on it.

I’m running the simulation now.

BA reports that it is waiting for the user I’m waiting for your decision.

Table 3. Possible BA Responses to WHAT-NEXT
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I want you to do X. Why don’t we do X?
Should/Can we do X? Let’s do X.

 

Other rules relate to common forms of accept-
ance, agreement, and rejection, as well as sentence 
fragments as answers (for example, two green blocks). 
Some of the more complex rules are patterns that 
match conditional statements and map to speech 
acts such as conditional ASK-IF (Is X if Y?) and 
ASK-WHAT-IS (What is X if Y?) acts. These patterns 
encode conventional language use for English and 
are independent of any domain, but in conjunc-
tion with domain-specific named entity recognition 
they can be deployed for utterances with specialized 
vocabularies (for example, Is Erk inactivated if I add 
Selumetinib?).

It is also important to note that multiple patterns 
might match an input. For instance, Do you know 

how to open the door? might be simply a yes-no ques-
tion about the hearer’s abilities to open the door or, 
more likely, a proposal that the hearer actually open 
the door. The output of this first phase is a ranked list 
of possible conventional interpretations.

Reference Resolution

Another phase of processing rewrites subgraphs that 
capture definite descriptions and other referring 
expressions to terms that they refer to. A typical case 
involves pronominal reference to objects in the dis-
course, for example,
 

U: Take a block out of the box.
U: Then put another block in it.

 

Other cases refer to described events and activities, 
for example, 

S: Should I compute a baseline estimate?
U: How long will it take?

 

TRIPS provides a rudimentary reference resolution 
capability that identifies likely antecedents of refer-
ring expressions by considering semantic compat-
ibility and salience heuristics based on recency and 
grammatical role. Often the semantic constraints are 
derived from knowledge of the types of arguments the 
relations can take. For instance, in the first example,  
the word in is disambiguated to a relation ONT:: 
IN-LOC in the TRIPS ontology, which is defined as a 
relation between two physical objects, the second of 
which is a container of some sort. To interpret the it 
reference, the system looks for the most recent men-
tion that could be a container, in this case the box. In 
the second example, it is the subject of take, which 
is disambiguated to ONT::TAKE-TIME. The semantic 

ONT::SA_YN-QUESTION

:content

ONT::EVENT-OF-CHANGE

ONT::ABILITY

ONT::PROPOSE

:what

ONT::EVENT-OF-CHANGE

Figure 12. A Simple Transformation Rule for a Conventional Proposal.

(SPEECHACT SA_YN-QUESTION)

:CONTENT

:TIME :TENSE :MODALITY

(:* ABILITY CAN)PRES

:FIGURE :FIGURE:LOCATION:NEUTRAL:AGENT

:LEX

INSECURITY (KIND (:*FOOD FOOD)) (THE TIME-LOC) (THE (:* GEOGRAPHIC-REGION SUDAN))

:LEX :LEX :LEX

:LEX

SUDAN SUDAN

NEXT-

:EXTENT:PROFORM

NEXT (:*YEAR YEAR)

IN

:GROUND :GROUND

:NAME-OF

:FIGURE:ASSOC-WITH:X

:U

(BARE (:*UNSAFE-SCALE INSECURITY))

:LEX

ANALYZE(F (:*SCRUTINY ANALYZE))

(F (:*IN-LOC IN))(F (:*SEQUENCE-VAL-NEXT NEXT))(F EVENT-TIME-REL)

Figure 11. A Fragment of the Parse for “Can you analyze food insecurity in Sudan next year?”
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constraints on this ontology type indicate that its 
subject should refer to an event or plan. Thus, it is 
resolved to the most salient event in the discourse, 
that is, the proposed action of computing a baseline. 
Although the reference resolution mechanism does 
not operate using rewriting rules, it does rewrite the 
relevant terms by adding appropriate referential chains 
from referring expressions to their antecedents.

Domain-Specific Ontology Simplification

This optional stage is domain-dependent, and allows 
the semantic representation obtained from the 
above graph rewriting to be further transformed 
into different structures, even in terms of a dif-
ferent (domain-specific) ontology. This allows the 
representation to be simplified and customized to 
facilitate reasoning in the BA. For instance, in bioc-
uration, a wide range of verb senses can be used to 
indicate the causal relation of regulation, which in 
the TRIPS ontology can be expressed as instances 
of ONT::CONTROL-MANAGE (for example, controls), 
ONT::OBJECTIVE-INFLUENCE (for example, affects, 
impacts) and others. Rather than having the BA deal 
with all these variations, we can define a single trans-
formation rule that maps any node labeled with one 
of these types to a new node with a domain-specific 
relation named, for example, BOB::REGULATE. Fur-
thermore, ONT::CONTROL-MANAGE has dozens 
of subtypes that are senses of additional relevant 
verbs (for example, govern, which belongs to ONT:: 
GOVERNING, a grandchild of ONT::CONTROL- 
MANAGE). These descendent types are automatically 
also included in the transformation. Such canoni-
calization and transformation can greatly simplify 
the reasoning the BA has to perform to interpret 
the user’s utterances. A detailed description of the 
ontology mapping mechanism as applied to event 
extraction in the biology domain can be found in 
Allen et al. (2015).

Managing the Collaboration
Starting from a semantic parse of the user input, an 
utterance is successively transformed into deeper, 
and if desired more domain-specific, representations 
using several levels of graph-based rewriting rules. The 
resulting output is then passed to the CPS manager, 
whose job is to manage the shared problem-solving 
state by coordinating the interactions between the 
human and the BA. The CPS manager maintains the 
state regarding the negotiation of goals. Each state 
has a set of graph patterns that determine the appro-
priate action at the CPS level as well as a transition 
to the next state. The graph-matching mechanism 
described above is used to determine the active tran-
sitions. On entering a new state, the system performs 
the actions associated with the state. For example, 
it may send a message to the BA, and its transitions 
would interpret the response from the BA. As an 
illustration, consider the user utterance Let's build a 
tower and a fragment of the state and transition spec-
ification that deals with a simple propose-and-accept 

interaction to establish a new goal (figure 13). The 
CPS manager starts in the state labeled START. One 
of the transitions from START specifies a pattern 
that matches if the user proposes an event of type 
ONT::EVENT-OF-CHANGE. This matches the building 
event obtained from the utterance, and the system  
moves to state S1 and issues a call to the BA to 
evaluate the hypothesis that the user is proposing 
to ADOPT a new goal. Two transitions leave S1, 
matching the ACCEPTABLE and UNACCEPTABLE 
responses from the BA, respectively. Following the 
ACCEPTABLE transition to S2, the system sends a 
COMMIT act to the BA and generates an ACCEPT 
act to inform the user, thus establishing the shared 
goal of building a tower. From S2, one of the transi-
tions (among others not shown) can be followed if 
there are no pending speech acts (that is, the user 
has not said anything else since we started this pro-
cessing), in which case the system moves to S4 where 
it issues a WHAT-NEXT request to the BA to allow the 
system to take initiative for a response. The complete 
transition network to manage the CPS interactions 
consists of about thirty states and 120 transitions. 
As with language interpretation, the collaboration 
management transition network is fully domain- 
independent and used in all applications.

The actual system is more complex as the CPS 
manager also needs to consider the current shared 
state to make decisions, such as whether a proposal 
should be considered a new top-level goal or a sub-
goal to an existing goal. The CPS manager can rank 
the hypotheses based on the current state as well as 
linguistic and other domain-independent constraints, 
but ultimately, the decision of which hypothesis to 
accept can only be made after consulting the BA with 
its domain-specific reasoning.

Instantiating a Cogent-Based System
Because Cogent provides generic natural language 
understanding and (CPS-based) dialogue manage-
ment, to create a new dialogue system the main 
effort is on the development of a BA that coordi-
nates the domain-specific back-end AI systems and 
an NLG component. There are no requirements 
for how these two components should be imple-
mented, except that the BA must implement the 
protocol described in the “Framework for Col-
laborative Problem-Solving Systems” section for 
managing the CPS state (the EVALUATE-COMMIT 
cycle for goals, handling WHAT-NEXT for taking ini-
tiative), and be able to map from CPS acts (ADOPT, 
ABANDON, RELEASE) to individual problem-solving 
acts it can execute. The BA also needs to be able to map 
the semantic interpretations produced by Cogent into 
possibly idiosyncratic representations used by the 
back-end AI systems. This process can be simplified 
by using the ontology mapping mechanism described 
in the “Generic Language Understanding for CPS” 
subsection.

The NLG component is highly domain-specific. 
Other than some domain-general speech acts (for 
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example, greetings, acknowledgments, reports of 
failure during natural language understanding) from 
the CPS manager, the content to be generated mainly 
comes from the BA itself, therefore it makes sense 
that both the BA and the NLG component be devel-
oped jointly. All Cogent-based systems currently 
implemented use some type of template-based NLG.

Regarding language understanding, the generic 
TRIPS parser and ontology provide reasonable cov-
erage of utterances encountered in any domain, 
except for specialized lexical items such as organi-
zation acronyms and protein names. Thus, for most 
domains it is essential to implement a named entity 
recognizer. In Cogent, a preprocessing component 
called TextTagger takes databases of domain-specific  
names and augments the parser input with appro-
priate ontology types together with standardized 
identification information relevant to the domain 
(for example, International Organization for Stand-
ardization codes). In some domains, such as the 
blocks world, this could be as simple as a list of 
names of blocks and other objects in the domain. 
In others, such as the biocuration domain, TextTagger 
reads and processes millions of terms from biologic 
terminology and ontology resources, including names 
of proteins, chemicals, and other relevant objects. In 
the World Modelers domain, TextTagger reads large 
resources providing information about geographical 
regions (for example, local districts, towns, states, 
regions, and countries). An application program inter-
face for augmenting parser input is provided such 
that developers can build their own named entity rec-
ognizers into the language-processing pipeline.

While our motivation for this framework is to facili-
tate the development of dialogue systems for domains 
of high complexity, we note that a BA at the level of 
complexity used in current dialogue-state tracking 
systems can easily work within Cogent. It would 
simply never use the PROPOSE act itself, because 

these systems do not ever have any initiative. The 
user may PROPOSE goals (I am looking for a cheap res-
taurant in Cambridge), ask questions (via ASK-IF/ASK-
WHAT-IS) or make ASSERTIONs to specify values for 
various parameters (slots). The BA may use ASK-IF/
ASK-WHAT-IS acts for getting values for its required 
slots, ANSWER for relaying answers to questions, 
and EXECUTION-STATUS to update the user when 
an action (for example, a booking) is done.

Evaluation
We described in this article a framework for devel-
oping systems that support dialogue-based interaction 
between humans and complex intelligent systems. 
It is hard to imagine how a conceptual framework 
could be evaluated directly. Rather, the worth of a 
framework is revealed by the breadth and depth of 
the systems that can be implemented in it, and to 
some extent the ease with which such systems can 
be developed and used. To draw an analogy with 
the state-based framework, researchers do not eval-
uate the state-based model of dialogue on its own, 
but rather they evaluate functional systems that are 
implemented using said state-based model. Similarly, 
here we describe a few studies of the BoB system, 
which is the most extensively studied and used system 
based on the CPS framework to date.

The BoB system described in the “Examples of 
Complex Collaborative Tasks” section was built on 
Cogent and involved a number of research teams in 
AI and biology. The BA, conforming to the specifica-
tion described in the “Framework for Collaboration 
Problem-Solving Systems” section, was developed by 
SIFT (Smart Information Flow Technologies). The BA 
manages several domain-specific agents developed 
by experts in molecular biology at Harvard Medical  
School, Tufts University, and Oregon Health & Science 
University. We extended Cogent with a number of 

test: No pending
speech act

test: there are NO
alternate interpretations

test: there are
alternate interpretations

pattern: REPORT: what
UNACCEPTABLEpattern: PROPOSE: what

EVENT-OF-CHANGE

pattern: REPORT: what
ACCEPTABLE

S4
action: call WHAT_NEXT

S3
S5

action: Generate
didn’t understand

S2
action: call COMMIT

(ADOPT GOAL)
action: Generate ACCEPT

S1
action: call

EVALUATE: content
(ADOPT GOAL)

START

Figure 13. A Fragment of the CPS Manager Model (Simplified).
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specialized named entity taggers for biology (includ-
ing genes, proteins, drugs, drug–protein and pro-
tein–protein interactions, cellular processes, and 
diseases), and with some domain-specific ontology 
mappings as described in the “Generic Language 
Understanding for CPS” section. Note that, however, 
parsing and interpretation are not specialized for the 
domain. The same domain general parsing and CPS 
manager are used across all Cogent-based systems, 
including BoB.7

BoB is under active development and has been 
regularly undergoing different types of evaluations, 
including some user studies. In one such study con-
ducted using an early version of the system, eight 
biologists (most of whom were well versed in molec-
ular biology but not necessarily experts in bio-
logic modeling) were recruited by Harvard Medical 
School, Tufts University, and Oregon Health and 
Science University to test the system on three types 
of problems. For two of the problems the goal was 
to formulate and test a hypothesis that explained 
an observation about the effect of a drug on one or 
more molecular targets. The user was to first construct 
a plausible biologic mechanism, and then build a 
model for this hypothesized mechanism and check 
its validity by running simulations with this model 
(figure 3 provides an example of a dialogue while 
solving this kind of problem). The third problem was 
more open-ended; it was to look for a drug candidate 
that had a desirable outcome on a set of genes involved 
in a particular type of cancer. The users were given a 
short video introduction to BoB and a list of typical 
questions and statements that BoB could understand, 
although they were encouraged to express themselves 
in any way they found natural.

The subjects worked under three scenarios: using 
BoB plus the occasional assistance of a BoB expert to 
help with the interaction (but not with solving the 
problem itself); using BoB alone; and using informa-
tion sources available online (a large list of resources 
was provided and the subjects were free to use any 
additional resources they were familiar with). In all 
scenarios, subjects were limited to thirty minutes 
per problem. Due to this time constraint and the 
complexity of the problems, full task completion 
was not expected (only one of the users, who was 
an expert modeler, completed his first two problems 
in full). Thus, standard evaluation metrics such as 
task-completion time, could not be used. Instead, a 
third-party evaluator (MITRE Corporation) devised a 
set of metrics for success in four subtasks (each with 
several milestones, which we will not go into here): 
discovering relevant information; finding complete 
molecular paths between the drug and the meas-
ured protein(s); building a biologically plausible 
model that addressed the experimental result; and 
successfully simulating the experimental result. The 
user performance for each of the four subtasks was 
assigned a score of 1 for completion, 0.5 when some 
but not all of the subtasks’ milestones were achieved, 
and 0 for no milestone achieved. These scores were 

summed up to compute the final task completion 
score, which ranged from 0 to 4. The results for all 
three evaluation scenarios are summarized in table 4. 
An analysis of the transcripts found that, for a total 
of 491 user inputs, the system responded appropri-
ately to seventy-two percent of them. In addition, 
the system was robust enough that users could con-
tinue (for example, by reformulating a request) even 
when the system did not understand or did not have 
the necessary problem-solving capability to respond 
appropriately initially.

The magnitude of the scores reflected the difficulty 
of the problems the users had to tackle, particularly 
for users who, while knowledgeable of molecular 
biology, were not modeling experts. However, all 
users were able to accomplish at least some of the 
subtasks. Based on the scores of the three test sce-
narios and responses from user surveys after the 
tasks, it was clear that the users found using BoB was 
far more efficient than using internet resources alone. 
They were able to progress much faster and further 
along toward solving the problems. They also found 
BoB fairly easy to use. It was reported that users had 
little need for assistance, and where assistance was 
provided (in the first test scenario), the users found 
it helpful and straightforward, which suggested that 
users inexperienced with BoB would need relatively 
little training with the system to be able to use it pro-
ductively. Many of the users judged that BoB was a 
very helpful tool that they would like to use. Indeed, 
some of the biologists at Harvard Medical School and 
Tufts have integrated BoB into their regular suite of 
tools used during their research.

MITRE is also carrying out periodical stress tests 
on BoB, using the following series of hallmarks for 
guidance. Robustness: The system’s language under-
standing and conversational capabilities are able to 
handle variations in how users might express them-
selves (lexical and syntactic variation, spelling errors) 
and conversational breakdowns (for example, the 
user not answering or providing incorrect answers 
to a question from the system, or switching topics). 
Explainability: The system can provide reasons for 
its behavior and explain its failures. Context aware-
ness: The system uses dialogue context to improve 
understanding. Habitability: The system guides and 
enables users to use language naturally within the 
constraints of the system. Bidirectionality: The system 
actively and meaningfully contributes to the problem 
solving (and the conversation), rather than simply 
responding to questions and directives.

While explainability and habitability are, by and 
large, functions of the BA and the system’s graphi-
cal user interface, Cogent’s natural language under-
standing capabilities play a large role in the system’s 
robustness. They also play a role in linguistic context 
awareness, although the testing was focused more 
on the task context (again, a function of the BA). 
The CPS model is crucial in enabling bidirection-
ality, although the content of the system’s contribu-
tions is based on its domain-specific problem-solving 
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capabilities. Figure 14 shows an example of the 
system taking initiative to make suggestions on how 
to improve a mechanistic model. The system also kept 
in sight the overall goal (finding how ERBB3 activates 
JUN) over the course of the dialogue. When the model 
under construction became capable of explaining the 
goal, BoB actively detected this change and informed 
the user of it, summarizing the causal explanation 
derived from the constructed model.

We will focus on robustness and bidirectionality 
in our discussion, as these metrics were most rele-
vant to the domain-independent dialogue and CPS 
model. MITRE designed a set of 124 test inputs (in 
the context of a dialogue). Overall, the system scored 
eighty-eight percent on handling the robustness tests 
(including indirect ways of asking questions, typos, 
and other spelling mistakes in every-day as well as 
biology-specific words, such as synonyms for biologic 
entities). On bidirectionality, the system achieved a 
score of seventy-five percent. From MITRE’s experi-
ence in evaluating such systems, it was judged that 
scores above sixty percent were expected to lead to a 
good user experience with the system.

These evaluations indicated that third parties were 
able to integrate sophisticated domain-specific AI 
systems within the Cogent shell, and build an effi-
cient and effective dialogue system capable of helping 
users solve complex problems. The underlying CPS 
model and the system’s domain-independent language 
understanding and dialogue management capabilities 
were a viable approach to solving complex tasks in col-
laboration with the human user.

It should be noted that, because these were stress 
tests, with deliberately ill-formed phrasings and 
spelling mistakes designed to resemble specific alter-
natives, they reflected an expectation of system per-
formance under a worst-case scenario. Nonetheless, 
although the results from both these tests and the 
user studies mentioned above were encouraging, fur-
ther and more extensive evaluation would be needed 
to better understand the behavior and performance 
of the model.8

Concluding Remarks
We have discussed a framework for dialogue systems 
that can partake in dialogues for tasks significantly 

more complex than possible with current state-based 
and machine learning-based approaches. This model 
supports dialogue systems in which humans can col-
laborate with AI reasoning systems to jointly tackle 
complex problem-solving tasks. By developing a 
system that exploits an abstraction of the CPS pro-
cess that is portable across domains, we provide a 
rich environment for building a wide range of new 
applications without the need to develop each system 
from scratch. Significantly, this model can be used in 
any domain that can be cast as CPS, including appli-
cations in which the task models cannot be defined 
in advance, which broadens the repertoire and com-
plexity of tasks that can be addressed by conversa-
tional agents.

Our solution provides a well-defined interface 
between the generic dialogue system and the 
domain-specific AI reasoning systems that vary from 
domain to domain. What is required to implement a 
new system is the development of a domain-specific 
BA that interacts with the generic CPS model and 
coordinates the back-end reasoning systems. More 
details on the BA for CWMS and how it drives vari-
ous agricultural and economic reasoning engines can 
be found in Allen and Teng (2019). More details on 
the BA in the BoB system, and how it drives multi-
ple biologic simulators and reasoning agents, can be 
found in Burstein et al. (to appear). The code for our 
generic dialogue components, including the parser, 
is available on GitHub and is described in Galescu 
et al. (2018).

While the framework has proven to be effective for 
building dialogue systems across a variety of complex 
domains, there is still much room for improvement. 
For language interpretation, the parser currently 
exploits only very simple features of the discourse 
context. Possible interpretations are ranked mostly 
based on static semantic preferences for arguments 
for each predicate, as well as domain-specific pref-
erences for senses. Taking better account of the 
nuances of the dynamically evolving context would 
result in more accurate parsing. In addition, more 
complex discourse interactions, such as answering 
multiple choice clarification questions, currently are 
handled fairly formulaically, putting the burden of 
fine disambiguation on the BA.

Task BoB + assist BoB Web Tools

Discovered supported information (0-1) 0.94 0.81 0.69

Completed paths (0-1) 0.69 0.50 0.44

Built a model (0-1) 0.63 0.50 0.38

Ran simulation(s) (0-1) 0.25 0.25 0.00

Total score (0-4) 2.50 2.06 1.50

Table 4. Average Scores for User Evaluations.
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For CPS state management, the system relies on 
a state transition network to determine the permis-
sible changes and the actions to be performed. The 
CPS manager can handle many common interac-
tion scenarios, including clarification dialogues and 
redirection and modification of the problem-solving 
subtasks. However, unexpected responses and inter-
ruptions sometimes could derail the problem-solving 

process. In most cases the system can recover and 
continue, but with some loss of context and state 
information. Refining and expanding the transition 
network to better manage the problem-solving states 
is one of our highest priorities.

Although our framework and system significantly 
reduce the efforts required to build AI systems that 
can collaborate with humans, this is not to say that 

Figure 14. Excerpt from a Dialogue with BoB Showing System Initiative.

Ben is the user; Bob is the system.

Links to TRIPS-Based Systems

For further details on TRIPS-based systems, the reader is referred to the following links:
trips.ihmc.us/parser/cgi/lex-ont, for browsing the TRIPS lexicon and ontology
trips.ihmc.us/parser, for on-line interfaces to the TRIPS parser customized for different domains, 

including CWMS, BoB, and Cabot (blocks world)
trips.ihmc.us/cogent/video, for examples of demos and dialogues carried out with several 

Cogent-based dialogue systems
github.com/wdebeaum/cogent, for source code for the generic dialogue shell based on CPS 

(Cogent), which includes the parser, dialogue management, and the CPS manager, but no BA

http://trips.ihmc.us/parser/cgi/lex-ont
http://trips.ihmc.us/parser
http://trips.ihmc.us/cogent/video
http://github.com/wdebeaum/cogent
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building such systems is now easy. The development 
of the BA remains a complex task, as most of the 
common-sense inference needed to understand the 
user intent and plan responses must be encoded 
there. Building a BA is, strictly speaking, outside the 
scope of Cogent. However, we will use our experi-
ence in interfacing with a variety of BAs (including 
some we built ourselves) to improve and support 
their integration and development.

While many challenges remain for building truly 
robust collaborative systems, we believe that the parti-
tion of responsibilities we have outlined in this article, 
with the dialogue being modeled by our domain- 
general model of CPS, will provide a framework for 
building truly useful systems in the future — systems 
that are capable of meaningful collaboration with 
humans to tackle tasks of a complexity found in real-
life problems.
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Notes
1. �www.microsoft.com/en-us/research/event/dialog-state- 

tracking-challenge

2. �Semantic Scholar shows 174 publications for the query 
(ATIS “intent detection” “slot filling” “neural network”) 
since 2003, over half of which have been published in 
the last 3 years. The ATIS task domain is over 30 years 
old.

3. �See trips.ihmc.us/cogent/video

4. �A publicly available web-based interface to the BoB  
system is available at www.dialogue.bio.

5. �www.w3.org/TR/voicexml21

6. �The CPS “manager” also manages real-time aspects of the 
dialogue. If the user does not respond to a question or 
request within a certain amount of time, it reminds the 
user that it is waiting for a response, and ultimately sends 
a WHAT-NEXT request to the BA to allow it to decide what 
to do next.

7. �BoB itself has been used, without change, as the dia-
logue component for a multimodal speech-based system 
for visualization and exploration of bioinformatic data 
(Hutchens et al. 2020).

8. �As of this writing, another user study is being planned for 
a new version of BoB, with improved natural language 
understanding and problem-solving capabilities. In this 
study users will be biology experts who will try to use 
BoB to explore problems in their own areas of research.
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