
Innovative AI Applications

Copyright © 2020, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602 Fall 2020  45

The landscape of modern information technology
service delivery is changing, with increased focus
on automation and optimization. Most information

technology vendors today have service platforms aimed
toward end-to-end automation for carrying out mundane,
repetitive labor-intensive tasks and even for tasks requiring
human cognizance. One such task is ticket assignment
and dispatch, where the service requests submitted by the
end-users to the vendor in the form of tickets are reviewed
by a centralized dispatch team and assigned to the appro-
priate service team and resolver group.

The dispatch of a ticket to the correct group of practi-
tioners is a critical step in the speedy resolution of a ticket.
Incorrect dispatch decisions can significantly increase the
total turnaround time for ticket resolution, as observed in a
study of an actual production system (Agarwal, Sindhgatta,
and Sengupta 2012). When such delays occur, it causes cus-
tomer dissatisfaction as well as monetary penalties for the
vendor due to service-level-agreement breaches. Several fac-
tors make the dispatcher’s job challenging, namely the need
for in-depth knowledge of the roles and responsibilities of
various groups, the heterogeneous and informal nature of
email text, and the high attrition rate in service delivery
teams (Mandal et al. 2018).

Given the fact that inefficiencies in dispatch have seri-
ous business consequences, there has been a lot of interest
in automating the assignment process. A number of differ-
ent approaches have been proposed for automating ticket
dispatch (Agarwal, Sindhgatta, and Sengupta 2012; Shao
et al. 2008a, 2008b; Parvin, Bose, and Van Oyen 2009).

 In this article, we present an end-
to-end automated helpdesk email ticket
assignment system driven by high
accuracy, coverage, business continu-
ity, scalability, and optimal usage of
computational resources. The primary
objective of the system is to determine
the problem mentioned in an incoming
email ticket and then automatically
dispatch it to an appropriate resolver
group with high accuracy. While meet-
ing this objective, it should also meet
the objective of being able to operate
at desired accuracy levels in the face
of changing business needs by auto-
matically adapting to the changes. The
proposed system uses a system of clas-
sifiers with separate strategies for han-
dling frequent and sparse resolver groups
augmented with a semiautomatic rule
engine and retraining strategies to ensure
that it is accurate, robust, and adaptive
to changing business needs. Our system
has been deployed in the production of
six major service providers in diverse
service domains and currently assigns
100,000 emails per month, on an aver-
age, with an accuracy close to ninety
percent and covering at least ninety
percent of email tickets. This translates
to achieving human-level accuracy and
results in a net savings of more than
50,000 man-hours of effort per annum.
To date, our deployed system has already
served more than two million tickets in
production.

Automated
Assignment of Helpdesk

Email Tickets: An Artificial
Intelligence Life-Cycle Case Study

Shivali Agarwal, Jayachandu Bandlamudi,
Atri Mandal, Anupama Ray, Giriprasad Sridhara

Innovative AI Applications

46 A I MAGAZINE

We propose a highly reliable and accurate cognitive
system for assignment of tickets that come in the form
of email. The tickets may be raised in different ways
such as through voice, web forms, or emails to a cen-
tralized helpdesk team. Our proposed system focuses
on email tickets only, but can be applied to other
forms of tickets that use text.

Challenges in Cognitive Email Assignment
At first glance, email assignment may look like a simple
text-classification problem — but it becomes quite
complex and challenging when considered at indus-
try scale.

First, for most big companies the number of resolver
groups is quite large — of the order of 500, in some
cases. Many of these resolver groups cater to overlap-
ping problems that can be disambiguated only with
domain-specific knowledge. Empirical observation
shows that it is difficult for training algorithms to
understand such subtle differences. Second, in most
businesses, the helpdesk teams themselves undergo
constant changes for better efficiency and produc-
tivity. Business decisions often may lead to resolver
groups being split, merged, or renamed. All of these
changes inevitably impact the accuracy of machine-
learning classifiers. By continuous retraining, the
model may catch up with the changes — but by
the time it actually catches up, a number of tickets
would have been incorrectly assigned, causing dis-
ruptions in the business and a poor customer experi-
ence. For splits and merges, the impact is worse. Third,
the problems assigned to resolver groups themselves
slowly change over time. This may not happen over
a week, or a month, but over several quarters. As such
a once-trained model becomes outdated over time,
it cannot effectively assign tickets mentioning new
problems or old problems with a different terminology
(Mandal et al. 2018).

Main Contributions
This article presents an end-to-end automated ticket
dispatch system that addresses all these challenges
faced in an enterprise dealing with large volumes of
tickets on a daily basis. The system uses a combina-
tion of classifiers with separate strategies for han-
dling frequent and sparse resolver groups (referred to
in this article as the short-head and long-tail, respec-
tively). To deal with ambiguity in resolver-group
assignment, we have designed a rule engine that cap-
tures the domain-specific knowledge required for
disambiguation.

The need for retraining is a reality in enterprise arti-
ficial intelligence (AI)-based solutions due to a gradual
shift in business and technology focus that we deal
with by having a focused retraining strategy and
automatic rule-mining capability for the rule engine.
Subtle changes in email utterances over a period of
time can lead to loss of accuracy and this is handled
by having an intelligent retraining strategy. The
automatic rule mining helps in discovering new,
merged, or phased-out resolver groups to ensure

business continuity. It can be observed that our read-
ily deployable end-to-end automatic email dispatch
system is an embodiment of a system that encapsu-
lates complete AI life cycle. It has the following four
key features:

Classification Models to Predict
Mandatory Fields for Ticket Dispatch

A ticketing tool mandates fields like ticket category
and priority or severity to be populated before a ticket
can be dispatched to the predicted resolver group. We
use different classification models to predict manda-
tory ticketing fields. To predict the resolver group,
we use an ensemble-based classification engine that
uses supervised machine learning to understand the
nature of the problem from free unstructured email
text and assign accurately. We also use a second set
of support-vector-machine (SVM)–based classifiers to
predict other mandatory fields that are required for
creation of the ticket.

Long-Tail Strategy

A few-shot learning strategy based on Siamese net-
works for the rarely occurring classes (or long tail).
By training the long tail separately from the short
head, we reduce noise in the training data and also
eliminate the problem of class imbalance to a large
extent.

Automatic Rule Mining

The rules are designed to strategically combine with
machine-learning methods for effective disambigua-
tion of classes. Rules are extracted automatically using
a technique based on Gini impurity and association
rule mining followed by a verification step. The
automatic rule-mining technique removes most of
the manual labor involved in understanding resolver-
group issues and designing rules from scratch.

Retraining

An effective retraining strategy that combines sliding
window-based training with active learning technique.
This ensures that the models are up-to-date with the
changes that happen over time in the email utterances
and resolver-group organization, and at the same time
the accuracy is maintained at a desired level.

The results are presented with real customer data
from three different datasets — with the largest of them
having more than 700,000 emails and as many as
428 resolver groups. We were able to achieve human
level accuracy with more than ninety-percent cov-
erage on all the datasets with the proposed system
using minimal computational resources.

To the best of our knowledge, this is the first time
that human-level accuracy has been reported for a
deployed assignment engine at this scale of automa-
tion, delivered consistently across datasets of vary-
ing sizes and forms. The remainder of the article is
organized as follows. First is a description of the type
of work involved (Related Work), and then we give

Innovative AI Applications

Fall 2020  47

an explanation of the system used for ticket classifi-
cation (System Overview). We go on to discuss the
different components of the system (Assignment
Engine Components), present our experimental
results (Classification Models), offer our remarks
(Evaluation), and then conclude (Conclusions and
Future Work).

Related Work
Ticket dispatch is a known problem that has been
addressed in the past through different approaches.
These approaches have handled the dispatch prob-
lem almost in isolation and have not addressed the
systemic level issues that arise in a real deployment.
We discuss the key known approaches in the follow-
ing paragraphs.

Ticket dispatch has been addressed by Agarwal,
Sindhgatta, and Sengupta (2012) using SVMs and a
discriminative keyword approach. They propose a
semiautomated approach based on confidence scores.
We have surpassed their work to reach human level
accuracy using advanced ensemble techniques for
automated dispatch, scaled it to hundreds of resolver
groups, and incorporated retraining strategies to adapt
to changing data. Several other researchers have
studied different aspects of the problem of routing
tickets to resolver groups (Shao et al. 2008a, 2008b;
Parvin, Bose, and Van Oyen 2009). The work pre-
sented by Shao et al. (2008b) approaches the problem
by mining-resolution-sequence data and does not
access ticket description at all. The work by Shao et al.
(2008a) focuses on ticket transfers between groups
(given an initial assignment) without looking at the
ticket-text content. It mines historical ticket data
and develops a probabilistic model of an enterprise
social network representing functional relationships.
The work by Parvin, Bose, and Van Oyen (2009) is
different and approaches the problem from a queue
perspective. This is more related to the issue of service
times and becomes particularly relevant for agent
assignment within a group. There are some papers
that apply text-classification techniques to handle
tickets (Dasgupta et al. 2014; Zeng et al. 2017). The
idea is that once ticket category is identified, then the
assignment to resolver groups can be done by manual
dispatchers quickly. However, none of the works talk
about the scale and retraining required in real-life
deployment. In Di Lucca (2002), tickets are automat-
ically classified based on description to route them to
the right group. However, the work was applied on a
small ticket set with only eight groups. The work by
Kadar et al. (2011) attempts to classify the incoming
change requests into one of the fine-grained activities
in a catalog. Some other works by Potharaju, Jain, and
Nita-Rotaru (2013) and Agarwal et al. (2017) talk about
a holistic approach of ticket category classification,
cause analysis, and resolution recommendation. How-
ever, they do not automate the process of assignment.

A rule engine is an important part of our system to
handle domain-specific cases. There exists a body of

literature that attempts automated mining of classi-
fication rules in a human-understandable way. The
work by De Falco, Cioppa, and Tarantino (2002) pre-
sents a genetic programming framework, capable of
performing an automatic discovery of classification
rules easily comprehensible by humans. The work by
Shang et al. (2016) describes the mining of discrimi-
native patterns, which are the prefix paths from root
to nodes in a tree-based classification task. These
feature discriminative patterns that are concise, and
offers high interpretability of the model. Our work
leverages a Gini-impurity-based (D’Ambrosio and
Tutore 2011) decision-tree model to extract prefix
paths, and then applies association rule mining to
obtain fine-grained human-understandable rules.

Another challenge that we have to deal with is
long-tail classification. This problem can be mapped
to few-shot learning, where the model can be learned
with a very limited number of training samples. There
have been lot of recent advancements in the area of
few-shot learning. One of the more prominent works
is the one by Mueller and Thyagarajan (2016), which
proposed Siamese-architecture language models to
learn the semantic similarity between sentences for
few-shot text classification. Another body of work
(Bao et al. 2019) uses metalearning with distribu-
tional signatures for few-shot text classification.

System Overview
Figure 1 shows the system architecture along with the
data flow diagram. Historical email ticket data are down-
loaded from the ticketing tool (for example, Remedy
[Remedy Corporation], ServiceNow [ServiceNow Inc.])
using custom-built adapters. The downloaded emails
are passed through two stages of preprocessing for data
enrichment. The data enrichment module uses tech-
niques like resolver-group merging, long-tail cutoff, and
so forth, to reduce the noise in the email data. The train-
ing data are further cleaned using text preprocessing
methods (Manning et al. 2014). The cleaned email data
are then trained using an ensemble of machine-learn-
ing classifiers, and the trained models are serialized and
stored in a database. For periodic retraining, we use an
active-learning–based strategy that has sliding windows
along with informative sample selection.

When a user sends an email to the helpdesk account,
a ticket is automatically generated and stored in the
backend ticketing tool. The newly generated tickets
are downloaded by the adapter and classified using
a system of classifiers, a dispatcher, and the rule
engine. The classification system returns predictions
for mandatory ticketing fields along with the corre-
sponding confidence scores. If the confidence score
is above a configured threshold, the ticket is routed
to the predicted resolver group. Otherwise, the ticket
is assigned to the manual queue for inspection by
human agent. The combination of classifiers and rule
engine ensures that a high percentage of tickets (more
than ninety percent) are assigned automatically by our
system with a low error rate.

Innovative AI Applications

48 A I MAGAZINE

We will now define key terms used in the rest of
the article. Let N be the total number of email tickets.
In the manual assignment case, let NH1 be the num-
ber of tickets for which the ticket was ultimately
resolved by the same group to which the ticket was
initially assigned. Let NH2 be the number of tickets
for which the initial and final groups differ. Then,
human-level accuracy Hacc can be defined as a ratio of
NH1 to total tickets N. In the automated email assign-
ment scenario, tickets are assigned by the assignment
engine, which combines the machine-learning clas-
sifiers and rule engine. Let NX be the total number
of tickets actually assigned by the classifier system;
NXcorr be the number of tickets that were predicted
by the ensemble and for which the resolver group
predicted correctly (that is, the ticket was ultimately
resolved by the predicted resolver group); NR be the
number of tickets where the resolver group was pre-
dicted by the rule engine; and NRcorr be the number
of tickets predicted by the rule engine and for which
the resolver group predicted correctly. Then we can

define Classifier Accuracy (Xacc) as the ratio of NXcorr
to NX; Classifier Coverage (Xcov) as the ratio of NX to
N; Assignment Engine Accuracy (Eacc) as the ratio of
the sum of NXcorr and NRcorr with the sum of NX and
NR; and Assignment Engine Coverage (Ecov) as the sum
of NX and NR to N.

Assignment Engine Components
Having defined the system, we now describe in detail
the different functional components of the assignment
engine.

Preparation of Training Data
This section explains the bootstrapping phase of our
system. The ticketing tool (Remedy, ServiceNow, and
others) organizes email data into structured fields
containing relevant information about the ticket such
as incident type, creation date, problem description,
resolver group, and so forth. We use custom adapt-
ers to connect to the ticketing tool and extract fields

Ticketing System (ServiceNow/Remedy/Salesforce)

Training/Runtime Adapters

Assignment Engine
Pull historical
tickets

Create and assign ticket
based on learning and rules

Classi�er/Rule Engine output

Automatic Rule
Extraction

Long Tail/Short
head Classi�cationData

Enrichment
Historical
Tickets

Retraining
Sample

Selection

New Emails

Text pre-
processing

Training/
Retraining

Model
Selection and

Dispatch
Rule Engine

Manual
Queue

Store trained
model

Models DB

Training
Runtime Low con�dence

tickets

Figure 1. Architecture of the Proposed System.

Innovative AI Applications

Fall 2020  49

relevant for training. Currently, the adapter extracts
only the text portion of the email (namely, email subject
and body) along with the resolver group for training.
The extracted email data are passed through several
layers of enrichment (Mandal et al. 2019). For the sake
of completeness, we next discuss the main points.

Merging Related Resolver Groups

Some of the resolver-group labels in the training data
can be merged. Merging increases the size of the train-
ing data and at the same time reduces the number of
unique labels, thus improving training accuracy. We
found that there are at least two types of resolver
groups that can be merged for assignment purposes —
resolver groups with varying escalation levels, and
region-specific resolver groups. For more details, we
refer the reader to the work by Mandal et al. (2019).

Long-Tail Cutoff

For better training, we divided historical email-ticket
data into two parts: IT = IH + IL, where IT is the com-
plete data downloaded for training, IH is the data
corresponding to the frequently occurring resolver
groups (short head), and IL is the data corresponding
to the sparse resolver groups (long tail; Mandal et al.
2019). Resolver groups belonging to IT are classified
using an ensemble classifier, and those belonging to IL
are handled using a few-shot learning strategy that is
described later in this section. In our system, we use
this strategy to retain at least ninety percent of data in
the short head while cutting down the resolver group
count by about eighty percent. The evaluation results
are shown later in the evaluation section.

Text Preprocessing

We applied some text preprocessing on the training
data (IT and IL) before using it to train a model: we
replaced multiple tabs and spaces with a single space,
removed control characters, non-ASCII characters, and
hypertext-markup-language tags. Other methods such
as stemming, lemmatization, and extractive summari-
zation were also tried. We used training data augmen-
tation techniques such as paraphrasing and sample
duplication (Mitchell 1997) for resolver groups with
small numbers of samples.

Classification Models
This section presents our study on the performance
of various machine-learning classifiers in classifica-
tion of email data, in terms of accuracy and training
time. We follow separate strategies for predicting the
resolver group as opposed to other mandatory fields.
So, first we talk about the prediction of the resolver
group and then move on to the prediction of other
ticketing fields.

For training the classification models, we concate-
nate the subject and the body of the email (descrip-
tion) with a space in between and use the resulting
string as our training data. The resolver group acts as
the label for our training data.

Short-Head Classification

We convert the training-data samples into word-vector
representation before applying machine-learning
algorithms. We observed that using term frequency-
inverse document frequency (tf-idf) representation
increased the accuracy of traditional machine-learning
algorithms for all datasets by at least three to four per-
cent. Furthermore, use of bigrams also improved the
accuracy for some datasets. Intuitively, we can argue
that this is so because some bigrams such as account
creation, account deletion, or password reset are use-
ful indicators in deciding the resolver group. The
hyperparameters were chosen experimentally over
10-fold cross validation on the datasets.

However, for deep-neural-network learning, tf-idf
representation, being extremely sparse, is not useful.
Our article (Mandal et al. 2019) shows the impact of
various traditional machine learning models (Mitchell
1997) and deep-neural-network models (Goodfellow,
Bengio, and Courville 2016) in short-head classifi-
cation. To improve classification accuracy and cov-
erage of the overall service, we used an ensemble
(Kuncheva 2004). Each pair of models was combined,
and the final ensemble classifier was chosen based
on the accuracy and coverage. Our results suggest
that a combination of linear SVM- and multilayer-
perceptron (MLP)–based classifiers performs best.

Long-Tail Classification

Long-tail classes typically account for about five to
ten percent of the training data and have very few
training samples per resolver group. For these classes,
traditional classifier performance using tf-idf input
features is not satisfactory, because models cannot
understand the semantic similarity from the few
available samples. As such, Mandal et al. (2019)
refrains from using machine learning to predict these
classes; instead, they use a configurable rule engine.
The drawback is that a lot of rules need to be manu-
ally created and maintained. To solve this problem,
we used a few-shot learning strategy. Specifically,
a Siamese adoption of a Long Short Term Memory
(LSTM) network with a Manhattan distance metric for
learning semantic similarity (Mueller and Thyagarajan
2016) was used. Our approach uses LSTM representa-
tions to map ticket descriptions to fixed-length fea-
ture vectors and Siamese architecture adoption is used
for learning semantic similarity between tickets of dif-
ferent classes. Figure 2 shows a Siamese architecture
that comprises two identical LSTM networks and the
model is trained to learn similarity between pairs of
ticket descriptions.

For each pair of tickets, we create training data
using the tuple: (TDa, TDb, similarity), where TDa is
description of ticket Ta, TDb is description of ticket
Tb, and similarity is a binary label (1 or 0) . Depend-
ing on whether Ta and Tb are chosen from the same
resolver group or from different ones, the value
of similarity will be 1 or 0, respectively. So, if there
are N long-tail classes (LTC1, LTC2, ..., LTCN) and LTCi

Innovative AI Applications

50 A I MAGAZINE

has ni tickets, then from each ticket Tx belonging to
LTCi we can create (ni − 1) similar tuples and (n1
+ n2 + ... + ni−1 + ni+1 + ... + nN) dissimilar tuples. This
technique also ensures that we have sufficient train-
ing data despite having only a few training samples
per class.

We train the Siamese LSTM using the training
data obtained above with TDa, TDb as inputs to the
LSTMs, and similarity as label. Model training param-
eters are LSTM with five hidden units, dropout = 0.5,
and ADAM optimizer.1 The trained Siamese LSTM

model predicts the class label for each ticket by finding
the most similar ticket with respect to the Manhattan
distance metric.

Long-tail classification results are shown in table 1
for three of our biggest datasets. The results indicate
that while the Siamese networks are better suited for
long-tail classification, SVM is not very far behind. In
fact, we observed that when the sparse classes have
ten samples or more, SVM often performs better than
the Siamese networks. So if storing Siamese-based
models is a concern, SVM can be used instead.

y

similarity

LSTMa

Embedding layer Embedding layer

TDa (Ticket description) TDb (Ticket description)

LSTMb

h1
(a) h2

(a) h3
(a)

x1
(a) x2

(a) x3
(a) x1

(b) x2
(b) x3

(b)

h1
(b) h2

(b) h3
(b)

–|| h3
(a) – h3

(b) ||1exp

Figure 2. Siamese Architecture.

Innovative AI Applications

Fall 2020  51

Predicting Other Mandatory Fields
Although, as we discussed, predicting the resolver
group is the most difficult, we also need to predict
other mandatory fields so that the ticket can be
created and dispatched successfully. Some of these
other fields include incident type (incident or service
request, or service restoration), problem category, and
priority/severity. These ticketing fields usually have
only a few classes and there are enough samples for
each class. So the problem of long-tail and class imbal-
ance is virtually nonexistent. As such, we use a sim-
ple linear SVM (with our scheme)-based classifier for
predicting these fields. We could achieve satisfactory
accuracy of greater than eighty-five percent with this
method, so we do not use a confidence threshold for
these fields, as imposing a cutoff will bring down the
coverage of the entire system (as all the fields need to
have confidence above cutoff).

Rule Engine
The rule engine is one of the key components of our
end-to-end system used to handle scenarios that are
typical of an enterprise. Such scenarios generally cor-
respond to business design and decisions and are not
amenable to machine-learning or deep-learning clas-
sifiers. The three main scenarios are as follows:

Resolver Group
Perturbations Driven by Business Decisions

Often resolver groups are either renamed or split or
merged to form new resolver groups. These decisions
are mostly taken to remove duplication of effort,
or to address macro-economic changes. As most of
these decisions are sudden, machine-learning mod-
els are not able to handle classification for the newly
formed classes, which affects services in production.

Resolver Groups Belonging to the Long Tail

As discussed previously, in most datasets, twenty
percent of the classes account for more than ninety
percent of the tickets. The remaining eighty percent
of the classes are predicted separately, using a few-
shot learning strategy. However good our few-shot
learning model might be, it cannot match the accu-
racy of the short-head ensemble classifier or that of
humans. Hence, to keep the overall accuracy high
and at par with human accuracy levels, we have to
design rules for predicting these classes.

Presence of Resolver Groups
with Similar or Overlapping Email Format

Helpdesk teams usually have a default group that han-
dles lots of different types of tickets. The kinds of prob-
lems this default group handle are often very similar to
the problems handled by other, more focused groups.
As such, the user utterances are also quite similar and
hence confusing for machine-learning algorithms.
Many helpdesk organizations use fixed templates for
submission of certain types of issues. The same tem-
plate can be used for multiple resolver groups. When
these tickets are used to train the machine-learning
model, it learns the template structure rather than
the actual content. So the classification accuracy is
very low for such resolver groups. The rule engine
addresses this issue for the confusing classes by over-
riding the decision of the machine-learning classifier.

Design of the Rule Engine

The rule engine is designed to have a customer-
independent framework for rule specification, and
is easy to configure using a user interface. The user
interface allows the specification of rules that use
values of ticket parameters such as email subject,
description, and so forth, as well as the output of the
machine-learning classifier. The rule engine can over-
ride the output of the classifier in certain cases. Each
rule in the rule engine can be generically expressed
using implies relation. The left-hand side is conjunc-
tions of atoms of form (fi ⊇ si), (CE = R). The right-
hand side is CF, where fi values are the ticket fields
(for example, description, title, sender email, recipient
email) that are used in the representation of the rule;
si is the value of field fi (si can be a singleton or a set
of terms); CE is the ensemble-classifier-predicted class;
R denotes the resolver group for which the rule is
applicable; and CF is the final resolver group pre-
dicted after application of rule engine.

Some sample rules are shown in table 2 for better
understanding.2 The first rule is for renamed resolver
groups (R5 renamed to R63). If the ensemble-predicted
class is R5, the final prediction will be R63, irrespec-
tive of the field values. The second rule is used for
commonly confused sets of resolver groups. Here, the
ensemble is used to determine the commonly confused
set (R17, R42); then the rule is applied to determine the
exact resolver group within the set. The third rule uses
a combination of values from three different fields to

Dataset SVM Siamese Networks Logistic Regression Naive Bayes MLP

A 68 76 63.3 65 68

B 33 66.7 44.5 22 55.6

C 63.6 72.7 55 50.6 59

Table 1. Comparison of Long-Tail Classification Methods.

Innovative AI Applications

52 A I MAGAZINE

override machine-learning prediction. The fourth rule
is similar to the third, except that it uses a value of only
one field to make a prediction. However, the important
thing to note is that there is an order of precedence
between rules 2 and 4. Rules 2 and 4 have a common
match criterion for field f1 (namely, use of the keyword
HSS). In these cases, we match the more-restrictive rule
first to minimize the chance of false positives.

Automatic Rule Mining

Mandal et al. (2019) relies on manual maintenance of
the rule engine. However, as the ticket corpus grows
in size, the task of maintaining a wide variety of rules
becomes tedious, and having an automated rule-
mining strategy becomes inevitable. We use a semi-
automatic rule-mining strategy that is able to mine
rules with high recall, but relatively low precision.
High recall ensures that we don’t miss any valid rules;
low precision means that there will be a few false
positives. As such, the mined rules are passed on to
subject-matter experts (SMEs), who verify the rules
and retain or remove them, as necessary.

Our approach uses a random-forest model with a
Gini-impurity split-criterion on the processed ticket
corpus. A random-forest model offers a high level of
interpretability and debuggability, which is impor-
tant for our purpose, as the extracted rules need to
be manually verified. (The rule extraction can also
be done using complex deep-learning models. But in
that case, the generated rules will have little or no
human interpretability.) The steps followed in auto-
matic rule mining are described in the sections that
follow.

Step 1: Obtaining Confusion
Matrix and Confused Resolver-Group Sets

The first step in automated rule mining is to build
the confusion matrix. Next, we analyze the confusion
matrix and identify the confused sets (consisting of
two or more resolver groups). Several such sets can be
mined from the confusion matrix. The construction
of the confusion matrix, and retrieving the confused
class sets, is done automatically using scripts.

Step 2: Extracting Decision-Tree Paths

After obtaining ticket corpus for a confused set, we
follow below the steps to obtain decision paths from

a random-forest model. The same procedure is fol-
lowed for all confused sets.

Ticket Corpus Preprocessing. At first, the ticket corpus
is preprocessed by using techniques such as tokeni-
zation, lemmatization, and named-entity recognition.
The preprocessed corpus is then converted to bigram
tf-idf features consisting of important tokens, phrases,
and entities.

Decision Tree with Gini Impurity. Using the tf-idf features,
we train a decision-tree classifier with Gini-impurity
split criterion (D’Ambrosio and Tutore 2011). Reason
for choosing Gini impurity is due to its interesting
property that, at a given split s, if all records belong to
one class, then Gini impurity becomes zero and the
decision-tree path from root to the current-node split
always results in a single class or resolver group. In
decision-tree-model training, multiple splits happen
at each parent node based on the Gini information
gain (D’Ambrosio and Tutore 2011). Gain is calculated
for all possible features and the feature with highest
gain will be used for the split. These splits happen
iteratively until the stopping criterion is met. In our
approach, we let the splits happen in an unpruned
manner — that is, until all records in a leaf node
belong to a single resolver group or the leaf node
contains a single record.

Figure 3 shows the example decision tree for two
classes in the confused class pair (R12, R189) trained
on training samples from dataset C(3) using tf-idf fea-
tures. For example, the decision path (postpaid ≤ 0.5 ∩
order ≥ 0.5 ∩ mobile ≤ 0.5) ⇒ R12 results in a leaf node
containing all eleven samples belonging to R12 class.
It is to be inferred that if the ticket description does
not contain [postpaid,mobile] but it contains order,
then the decision-tree model predicts the class as R12,
and there are eleven such examples in the training set
(out of 200) that follow this decision path. The deci-
sion path from root to corresponding node with gini = 0
always results in single class prediction.

Decision Paths Extraction. Each node in the decision
tree corresponds to a ticket feature; hence extracted
decision paths explain the class assignment for each
ticket in terms of input ticket features and offers
high interpretability. It is possible to extract sever-
al paths, but we are only interested in those with

f1 f2 f3 CE CF

— — — R5 R63

Contains “HSS” only — — R17 R42

Contains “replenish team” (abc) (xyz) — R54

Contains both “HSS” and “EWM” — — — R43

Table 2. Sample Rules.

Innovative AI Applications

Fall 2020  53

leaf node having zero Gini impurity and support
above a specified cutoff value. The support threshold
ensures that we have enough evidence that the
decision path is valid, and a rule can be extracted
from it.

A single-decision–tree model is prone to over-fitting,
and decision paths extracted from just one decision
tree are not robust. So we trained a random-forest

model that is an ensemble of several decision trees.
From each decision tree in the random-forest model,
we extracted Gini-criterion decision paths for the
next step.

Step 3: Applying Association Rule Mining

One problem with using decision paths extracted
from a Gini-impurity–based random forest model is

postpaid ≤ 0.5
gini = 0.5

samples = 200
value = [100, 100]

class = R12

True False

gini = 0.0
samples = 54

value = [54, 100]
class = R12

order ≤ 0.5
gini = 0.432

samples = 146
value = [46, 100]

class = R189

number ≤ 0.5
gini = 0.337

samples = 126
value = [27, 99]

class = R189

cid ≤ 0.5
gini = 0.188

samples = 105
value = [11, 94]

class = R12

gini = 0.115
samples = 98

value = [6, 92]
class = R189

mobile ≤ 0.5
gini = 0.363
samples = 21

value = [16, 5]
class = R12

gini = 0.0
samples = 11

value = [11, 0]
class = R12

gini = 0.198
samples = 9

value = [8, 1]
class = R12

gini = 0.0
samples = 8

value = [8, 0]
class = R12

gini = 0.473
samples = 13
value = [8, 5]
class = R12

gini = 0.408
samples = 7

value = [5, 2]
class = R12

mobile ≤ 0.5
gini = 0.095
samples = 20

value = [19, 1]
class = R12

Figure 3. Gini-Impurity Tree.

Innovative AI Applications

54 A I MAGAZINE

that a lot of decision paths are generated, some of
which may not be useful. To obtain more concise
and robust rules, association rule mining (Zhang
and Zhang 2002) is applied on top of the extracted
decision paths. Association rule mining finds rela-
tions and dependencies between elements in an
item set. In our case, the item set is a decision path
and each element in the item set is a phrase. Some
examples of decision paths extracted for resolv-
er-group R189 using Gini impurity are as follows:
[information error screenshot, browser, recipient];
[information error screenshot, imsi msisdn imsi,
confidential, firewall access raise]; [mobile device,
information error screenshot, imsi msisdn imsi,
internet, firewall access raise, update]. The down-
side of these decision paths, which eventually form
the rules, is that they overlap with one another and
are also long and tedious. All three of these deci-
sion paths contain an information error screenshot,
and it is a generic phrase that appears in most of
the decision paths, but the underlined items infor-
mation error screenshot, imsi msisdn imsi, and fire-
wall access raise appeared together and there exists
a strong relation among them. After application of
association rule mining, we get only the following
association rule for resolver group R189: (information
error screenshot,imsi msisdn imsi) → (firewall access
raise). This means whenever information error screen-
shot or imsi msisdn imsi appear together, firewall
access raise will be there for tickets in resolver-group
R189.

The quality and the robustness of association rules
are evaluated based on the constraint metrics Support
and Confidence.

The mined association rules are evaluated by SMEs
before updating the rule engine. Table 3 shows the
mined rules for one such resolver group in one of
our datasets.

Model Selection and Ticket Dispatch
The email ticket dispatcher assigns the ticket to a
specific resolver group and updates the ticket. The
dispatcher combines the results of the two classifiers
and rule engine using a dispatch algorithm to output
the final prediction and confidence score.

The classifiers are invoked in a specific order for
best results. As more than ninety percent of the tickets
belong to the short head, the ensemble classifier is
invoked first. The long-tail classifier is invoked next,
but only if the confidence from the ensemble classi-
fier is below a preconfigured threshold. Finally, the
rule engine is invoked irrespective of the output of the
classifiers. This is done because the predicted resolver
group may belong to one of the confused classes; so
there is room for ambiguity even if the classifier pre-
diction has high confidence. If a rule is matched by
the rule engine, the classifier output is overridden. If
no rule is matched, then we fall back to the classifier
that was invoked last in the process. If the confidence
from that classifier is high, we retain its prediction,
otherwise we assign the ticket to the manual queue.

Retraining
We have already discussed how the rule engine
takes care of changes happening in email data due
to resolver groups getting renamed, merged, or split.
However, there are still other changes in training
data that need to be handled, such as subtle changes
in email utterances over time. These changes can
happen due to various factors like resolver groups
taking on new problems, increased automation, and
so forth. To capture these changes effectively, we use
a sliding-window–based retraining strategy. The slid-
ing window ensures that training data are refreshed
periodically and the most recent changes are retained,
so the classifiers remain up-to-date.

Description ML Predicted Final Class Correct? Found by SME?

cancel order R12 R189 No No

msisdn imsi R12 R189 Yes Yes

mention impacted mobile R12 R189 Yes Yes

[firewall access raise, information error
screenshot, imsi msisdn imsi]

R12 R189 Yes No

mention apps impacted R12 R189 No No

service delivery R12 R189 No No

pending order R12 R189 No No

raise tickets remedy R31 R189 No No

imsi additional information R31 R189 Yes No

impacted mobile imsi R31 R189 Yes Yes

firewall access raise R31 R189 No No

Table 3. Correctness of Rules Extracted for a Resolver Group in Dataset C (R189).

Innovative AI Applications

Fall 2020  55

The length (W) of the sliding window is determined
such that the training data are sufficient for good
accuracy. The slide interval (T) is determined by the
average time it takes for a ticket to be fully resolved
in the system.

Maintaining Model Accuracy Over Time
In addition to the sliding window data, we also retain
the most informative samples from previous periods
so that we keep learning from past mistakes. We try
to automate the process of informative sample selec-
tion using active-learning strategies. The most com-
monly used strategies to retain informative samples
are least-confidence, margin sampling, and entropy
sampling (Settles 2009). Prior studies have suggested
that out of these three techniques, margin and least-
confidence metrics are the most suitable for reduc-
ing classification error rate, whereas entropy is more
appropriate for minimizing the loss function (Fu, Zhu,

and Li 2012). Other prior studies have clearly sug-
gested margin sampling as the most effective strategy
for multiclass classification problems (Schein and
Ungar 2007; Reyes, Altalhi, and Ventura 2018). Based
on the evidence given in these articles, we adopt
margin sampling as our sample-selection strategy for
retraining.

Deployment and Maintenance
The automated assignment engine is currently
deployed as a single tenant service hosted in a
Kubernetes-cluster deployment architecture (figure 4)
with three representational-state transfer, application-
program–interface endpoints: train — this call-to-
train method is asynchronous, and returns a training
id; status — this checks the status of a training in
progress; and classify — this calls the classifier to
predict the resolver group. The ensemble classifier is
run periodically on a graphics-processing-unit cluster

Ticketing Server Client Data Server

Cloud Object
Store

TrainingClient

Training
Server

API Server

Kubernetes

Dockerized
Services

Pod

REST

REST

GPU
Models

SSHRDBMS

JDBC

SOAP/REST

Adapter (JDK)

Remedy/
ServiceNow

Figure 4. Deployment Architecture.

Innovative AI Applications

56 A I MAGAZINE

Resolver Groups Dataset A Dataset B Dataset C Dataset D Dataset E Dataset F

Number of Resolver Groups 70 403 428 73 2,892 31

Duration of the Training Dataset 6 months 12 months 15 months 12 months 12 months 6 months

Email Tickets (N) in Training Set 11,562 423,343 712,320 28,940 23,811 6,529

Duration in Deployment 31 months 15 months 28 months 10 months 8 months 6 months

Tickets Served/Month (T) 2,000 40,000 50,000 2,000 2,000 1,000

Total Tickets Served to Date 62,000 600,000 1,400,000 20,000 16,000 6,000

Assignment Engine Accuracy (Eacc) 92.73% 88.66% 92.13% 93.1 91.5 91.2

Assignment Engine Coverage (Ecov) 97.84% 93.3% 95.5% 96.1 94.5 93

Table 4. Dataset Size, Usage, and Results.

and the trained models serialized (using Python
object serialization, or pickle) and stored in a cloud-
based object store. The model id, data-source name,
and creation timestamp are stored separately in a
metadata store. The requests for training are han-
dled sequentially. The end point for classify can
handle multiple requests in parallel. The automatic-
rule-mining script is also run periodically and the
new rules (if any) are stored in the rule engine.

There is only one component of the assignment
engine that needs active maintenance — the rule
engine. The maintenance activity involves active
supervision of the newly mined rules and retain-
ing only the valid ones in the system. The rule
verification is handled by SMEs at the helpdesk
and requires about two hours of manual effort per
week. The scripts for generation of misclassifica-
tion reports, triggering retraining and the entire

80

82

84

86

88

90

92

94

96

98

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

LSTM-G Accuracy

MLP Accuracy
Emsemble Accuracy

LinearSVM Accuracy
Human Accuracy

Figure 5. Assignment Accuracy at Different Confidence Thresholds.

Innovative AI Applications

Fall 2020  57

assignment engine code, are maintained by a team
of two developers (working for five hours per week
per account).

Evaluation
This section enumerates the results of evaluation of
our system. For evaluation, we have used real data-
sets from three major helpdesk-service-provider
accounts. The client accounts are from two different
domains — Telecom and Supply-Chain/Logistics.
To preserve client confidentiality, we refer to
these datasets as dataset A, dataset B, and data-
set C, respectively. The datasets were divided into
training and test sets with a 90:10 split, and we
used 10-fold cross validation on the datasets. All
our experiments were run on a NVIDIA Tesla K80
GPU cluster with four CUDA-enabled nodes. We
used the open-source machine-learning libraries
Python scikit-learn,3 PyTorch,4 and Keras5 for our
experiments. The deployed system is similar to
our experimental setup, but not identical. The
numbers in production may vary slightly. For
confidentiality reasons, we cannot reveal exact
details of the production setup and accuracy
results. The dataset statistics as well as the final
accuracy numbers achieved by our system are
described in table 4.

Human Accuracy versus
Assignment Engine Accuracy
We next look at the optimal selection of algorithms
that maximize accuracy and coverage. It is impor-
tant to note that, for business purposes, the algo-
rithms need to have at least human-level accuracy
along with reasonably high coverage. To compute
human accuracy, we mined audit logs of the ticket-
ing systems. Our experiments reveal that, across all
datasets, the accuracy achieved by human agents is
about eighty-five percent. Therefore, we select the
confidence threshold such that the expected accu-
racy of prediction is at least eighty-five percent.
This ensures that the selected classifiers operate at
least at human-level efficiency. Figures 5 and 6 show
the performance of the best three algorithms at dif-
ferent confidence levels (ranging from 0.1 to 0.9).
For dataset C, a combination of linear SVM (con-
fidence ≥ 0.5) and MLP (confidence ≥ 0.6) gave a
slightly higher accuracy (89.61 percent) than that
of generalized LSTM (confidence ≥ 0.5) and linear
SVM (Xacc = 88.38 percent), although the individual
accuracy was marginally higher for generalized LSTM
compared with MLP. For this reason, and for other
practical considerations such as memory and central-
processing-unit constraints as well as training time,
our deployment in production uses an ensemble of

0

20

40

60

80

100

120

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

LSTM-G Coverage
LinearSVM Coverage
MLP Coverage
Emsemble Coverage

Figure 6. Assignment Coverage at Different Confidence Thresholds.

Innovative AI Applications

58 A I MAGAZINE

linear SVM and MLP. For the other two datasets, SVM
and MLP were the clear winners.

Rule Mining Accuracy
Table 3 shows the results for rule mining for a par-
ticular resolver group in our largest dataset, dataset C.
These rules are extracted specifically to resolve the
ambiguity among the commonly confused resolver
groups R12, R31, and R189. For this experiment, we
used a random-forest model with a bagging strategy
having the parameters number of trees = 20 and sample
size = 0.2. We set support and confidence thresholds to
ninety percent and 0.9, respectively.

It is important to note that Gini-based rule mining
was able to detect each and every rule (3/3) for this
resolver group that were earlier predicted by the SMEs,
giving a recall value of 100 percent. On the other hand,
there were two rules (rules 4 and 9 in table 3) that were
not detected by the SMEs, but were found to be valid
rules for our dataset. Specifically, rule 4 in the table
is a complex rule containing three separate phrases
that were correctly mined by our system. These kinds
of rules are extremely difficult to create manually.
This underscores the usefulness of our rule-mining
method. As expected, there were a few false positives —
rules that were identified by the Gini method, but

found to not be valid. Overall, for this resolver group,
the observed precision was 45.45 percent (5:11).

At the same time, it must be remembered that
verifying the validity of a rule is much easier for an
SME than coming up with the rules from scratch. As
such, our method of automatic rule mining reduces
the manual labor of SMEs to a large extent.

The overall accuracy of the assignment engine is sig-
nificantly improved by the use of these SME-validated
rules. Experimental results show that the classifi-
cation accuracy of the long-tail classes can improve by
as much as thirty percent with the rule engine. Some
of the confused classes in the short head can also be
predicted with higher accuracy using the rule engine
shown in the paper by Mandal et al. (2019).

Performance and Scalability
Figures 7, 8, and 9 demonstrate the impact of the dif-
ferent training optimization techniques on the accu-
racy of prediction, the training time, and the model
size of SVM. These charts are shown for only the larg-
est dataset (dataset C), but the trend is fairly similar
across other datasets as well. The results can be sum-
marized as follows.

Merging coupled with long-tail optimization
brings down the number of resolver groups by about

60

65

70

75

80

85

90

95

100

No-merge Merged LongTail T	df Ngrams Feature
Selection

Ensemble Rule
Engine

Accuracy(%)

Figure 7. Effect of Different Optimization Techniques on Classification Accuracy.

Innovative AI Applications

Fall 2020  59

0

1000

2000

3000

4000

5000

6000

7000

8000

No-merge Merged LongTail T�df Ngrams Feature
Selection

Training Time(s)

Figure 8. Effect of Different Optimization Techniques on Training Time.

eighty-four percent (438:72) along with a forty-percent
reduction in training time, twenty-seven percent
reduction in model size, and five-percent improve-
ment in accuracy. This demonstrates the effective-
ness of the long-tail approach. We also found that
using the tf-idf approach with bigrams proved to be
effective across most machine-learning algorithms,
including SVM. To optimize on the number of fea-
tures and model size, we used the tf-idf approach
with parameters maximum df = 0.8 and minimum
df = 5. Finally, we used the chi-square statistic (with
best k features) to further reduce the model size.
Overall, using these approaches, we were able to
achieve a ninety-nine percent reduction in model
size, 93.5 percent reduction in training time, and a
thirteen-percent increase in accuracy for dataset C
while keeping the coverage constant at about ninety-
eight percent. We also achieved significant speedup
in classification time using asynchronous requests
and batching. Figure 10 shows the peak per-day
ticket volumes recorded during the entire training
period for each account. Our system was able to
achieve a runtime throughput of about 286 requests
per second, which is equivalent to about 1,500 times
the peak hourly volume (696 requests per hour), as
shown in the figure.

Business Impact
Automated assignment of helpdesk tickets results in
considerable saving in human effort for large compa-
nies having clients across geographies. It reduces the
time taken for ticket assignment and, at the same time,
minimizes human error. This enables the companies
to focus more on innovation and core business needs.
Based on our results as summarized in table 3, we give
an estimate of human-effort saving across all accounts.
Assuming that a human agent takes about three min-
utes to read and assign each ticket, the net savings (in
minutes) for an account can be calculated as: Si = T ×
Ecov × 3. Summed across all three accounts, this gives a
total saving of 52,380 hours per annum. To date, our
system has served more than two million tickets in
production across the deployed accounts.

Observations
There are a few important takeaways from our eval-
uation results above. The most important and useful
observation is that our assignment engine performs
better than all traditional machine-learning and
deep-learning algorithms. This indicates that sim-
ple machine-learning algorithms like SVM and MLP
fare better than more computationally expensive

Innovative AI Applications

60 A I MAGAZINE

0

5

10

15

20

25

30

35

40

45

No Opt Long Tail min_df/max_df Chi-square

SVM Model Size (G)

Figure 9. Model Size Optimization (SVM).

deep-learning algorithms in the task of helpdesk
email assignment. This result is somewhat surprising
and unexpected, but is very significant from a prod-
uct development standpoint as these algorithms are
easy to implement, require minimal computational
resources, and still provide better performance at
runtime. However, we also observed that with very
large training data (more than five million), LSTM
starts outperforming MLP. As such, if we have a large
dataset and infrastructure is not a concern, then we
can include generalized LSTM in the ensemble.

Another key observation is that we need to focus
more on resolver-group level preprocessing rather
than any kind of text preprocessing. Approaches like
merging resolver-group training data and having
separate classifiers for short head and long tail are
actually much more effective than techniques such
as stopword removal or extractive summarization of
text. However, data augmentation techniques such
as paraphrasing and sample duplication resulted in
small improvements in long-tail accuracy for some of
the datasets. The rule-mining technique is designed
to have high interpretability and high recall. This
ensures that SMEs can easily verify whether a rule
is correct and discard if needed. Finally, our results
(shown in table 4) clearly indicate the importance
of the rule engine. It increases the overall accuracy
and coverage of the system, and it ensures business

continuity. We also see a clear benefit of having
automatic rule mining in saving human labor.

Conclusion and Future Work
In this article, we have proposed an end to end
ticket dispatch automation system that encapsulates
the full AI life cycle. The proposed system achieves
human-level accuracy and has already been deployed
successfully for six customers in production.

However, there is still some scope for improvement
of the system. Firstly, the proposed rule engine is still
not completely automated. Although we automatically
extract rules, it still requires some amount of man-
ual supervision to verify whether the rule is correct.
The challenge here will be to make this process com-
pletely automatic without compromising the neces-
sity for continuity in business operations. Secondly,
we need to look at email attachments in addition to
text for classification. In a lot of cases, users will only
send a screenshot or log snippet with hardly any text.
These cases cannot be handled by the present system.
Alternate modalities such as voice and video can also
be considered in future. Thirdly, for some information-
technology operations systems, the tickets cannot be
understood properly without looking at other artifacts,
such as runtime execution logs. For these systems,
we need to combine our ticket understanding with

Innovative AI Applications

Fall 2020  61

0

100

200

300

400

500

600

700

800
0:

00

1:
00

2:
00

3:
00

4:
00

5:
00

6:
00

7:
00

8:
00

9:
00

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

23
:0

0

Dataset A
Dataset B
Dataset C

Figure 10. Ticket Volumes for a Single Day.

log-mining techniques for accu-
rate dispatch. We are currently
working on implementing such a
system.

Notes
1. �As referenced in the book: A Method

for Stochastic Optimization, Diederik
P. Kingma and Jimmy Ba, 2014,
eprint={1412.6980}, archivePrefix=
{arXiv}, primaryClass={cs.LG}

2. �Resolver group names (columns CF
and CE) are anonymized to preserve
confidentiality.

3. �See the article, “Machine learning
in Python” (2011), by Pedregosa
et al., in the Journal of Machine
Learning Research, volume 12,
October, 2825-2830

4. �“An Imperative Style, High-Perfor-
mance Deep Learning Library”, by
Paszke et al. (2019) in the book
“Advances in Neural Information
Processing Systems”, edited by H.
Wallach et al., 8024–8035, published
by Curran Associates, Inc., url =
http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-
performance-deep-learning-library.
pdf

5. �Keras, written by Chollet et al.
(2015) published by GitHub, url -
https://github.com/fchollet/keras

References
Agarwal, S.; Aggarwal, V.; Akula, A. R.;
Dasgupta, G. B.; and Sridhara, G.
2017. Automatic Problem Extraction
and Analysis From Unstructured Text
in IT Tickets. IBM Journal of Research
and Development 61(1): 41–52. doi.
org/10.1147/JRD.2016.2629318.

Agarwal, S.; Sindhgatta, R.; and
Sengupta, B. 2012. SmartDispatch: En
abling Efficient Ticket Dispatch in an It
Service Environment. In Proceedings of the
14th Association for Computing Machinery
(ACM) Special Interest Group on Knowl-
edge Discovery and Data Mining (SIGKDD)
International Conference. New York, NY:
Association for Computing Machinery.
doi.org/10.1145/2339530.2339744.

Bao, Y.; Wu, M.; Chang, S.; and Barzilay,
R. 2019. Few-Shot Text Classification with
Distributional Signatures. arXiv:1908.
06039. Ithaca, NY: Cornell University
Library.

D’Ambrosio, A., and Tutore, V. A. 2011.
Conditional Classification Trees by

Weighting the Gini Impurity Measure.
In New Perspectives in Statistical Mod-
eling and Data Analysis, S. Ingrassia,
R. R. Rocci, and M. Vichi, eds., 273–80.
Berlin, Germany: Springer. doi.org/
10.1007/978-3-642-11363-5_31.

Dasgupta, G.; Nayak, T. K.; Akula, A. R.;
Agarwal, S.; and Nadgowda, S. J. 2014.
Towards Auto-Remediation in Services
Delivery: Context-Based Classification
of Noisy and Unstructured Tickets.
In Service-Oriented Computing: 12th
International Conference, Volume
8831, Lecture Notes in Computer Sci-
ence. Berlin, Germany: Springer.

De Falco, I. D.; Cioppa, A. D.; and
Tarantino, E. 2002. Discovering
Interesting Classification Rules with
Genetic Programming. Applied Soft
Computing 1(4): 257–69. doi.org/
10.1016/S1568-4946(01)00024-2.

Di Lucca, G. 2002. An Approach to Clas-
sify Software Maintenance Requests.
In 18th International Conference on
Software Maintenance (ICSM 2002).
Piscataway, NJ: Institute of Electrical
and Electronics Engineers (IEEE). doi.
org/10.1109/ICSM.2002.1167756.

Fu, Y.; Zhu, X.; and Li, B. 2012. A Survey on
Instance Selection for Active Learning.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/fchollet/keras

Innovative AI Applications

62 A I MAGAZINE

Knowledge and Information Systems
35(2): 249–83. doi.org/10.1007/s10115-
012-0507-8.

Goodfellow, I.; Bengio, Y.; and Courvi-
lle, A. 2016. Deep Learning. Cambridge,
MA: The MIT Press.

Kadar, C.; Wiesmann, D.; Iria, J.;
Husemann, D.; and Lucic, M. 2011.
Automatic Classification of Change
Requests for Improved IT Service
Quality. In Service Research and Inno-
vation Institute Global Conference.
Piscataway, NJ: Institute of Electrical
and Electronics Engineers (IEEE). doi.
org/10.1109/SRII.2011.95.

Kuncheva, L. I. 2004. Combining Pat-
tern Classifiers: Methods and Algorithms.
New York: Wiley-Interscience. doi.
org/10.1002/0471660264.

Mandal A., Malhotra N., Agarwal S.,
Ray A., Sridhara G. (2018) Cognitive
System to Achieve Human-Level
Accuracy in Automated Assignment
of Helpdesk Email Tickets. In: Pahl
C., Vukovic M., Yin J., Yu Q. (eds)
Service-Oriented Computing. ICSOC
2018. Lecture Notes in Computer
Science, vol 11236. Springer, Cham.

Mandal, A.; Malhotra, N.; Agarwal, S.;
Ray, A.; and Sridhara, G. 2019. Auto-
mated Dispatch of Helpdesk Email
Tickets: Pushing the Limits With AI.
Proceedings of the AAAI Conference on
Artificial Intelligence. 33(1): IAAI-19. doi.
org/10.1609/aaai.v33i01.3301938a.

Manning, C.; Surdeanu, M.; Bauer, J.;
Finkel, J.; Bethard, S.; and McClosky,
D. 2014. The Stanford Corenlp Natural
Language Processing Toolkit. In Proceed-
ings of the 52nd Annual Meeting of the
Association for Computational Linguistics
(System Demonstrations). Stroudsberg,
PA: Association for Computational Lin-
guistics. doi.org/10.3115/v1/P14-5010.

Mitchell, T. M. 1997. Machine Learning.
New York, NY: McGraw-Hill.

Mueller, J., and Thyagarajan, A. 2016.
Siamese Recurrent Architectures for
Learning Sentence Similarity. In Pro-
ceedings of the Thirtieth Association
for the Advancement of Artificial Intel-
ligence (AAAI) Conference, 2786–92.
Palo Alto, CA: Association for the
Advancement of Artificial Intelligence
(AAAI) Press.

Parvin, H.; Bose, A.; and Van Oyen, M.
P. 2009. Priority-Based Routing with
Strict Deadlines and Server Flexibil-
ity under Uncertainty. In Proceedings
of the 2009 Winter Simulation Conference
(WSC) 2009. New York, NY: Association
for Computing Machinery (ACM). doi.
org/10.1109/WSC.2009.5429275.

Potharaju, R.; Jain, N.; and Nita-Rotaru, C.
2013. Juggling The Jigsaw: Towards

Automated Problem Inference From
Network Trouble Tickets. Paper pre-
sented at the 10th USENIX Sympo-
sium on Networked Systems Design
and Implementation (NSDI 2013),
Lombard, IL, April 2–5. www.usenix.
org/conference/nsdi13/technical-
sessions/presentation/potharaju.

Reyes, O.; Altalhi, A.; and Ventura, S.
2018. Statistical Comparisons of Active
Learning Strategies Over Multiple Data-
sets. Knowledge-Based Systems 145(4):
275–88.

Schein, A. I., and Ungar, L. H. 2007.
Active Learning for Logistic Regression:
An Evaluation. Machine Learning 68(3):
235–65. doi.org/10.1007/s10994-007-
5019-5.

Settles, B. 2009. Active Learning Lit-
erature Survey. Computer Sciences
Technical Report 1648, University of
Wisconsin–Madison. www.burrsettles.
com/pub/settles.activelearning.pdf.

Shang, J.; Tong, W.; Peng, J.; and Han, J.
2016. Dpclass: An Effective but Concise
Discriminative Patterns-Based Classifica-
tion Framework. In Proceedings of the 2016
SIAM International Conference on Data
Mining, 567–5. Philadelphia, PA: Society
for Industrial and Applied Mathematics.
doi.org/10.1137/1.9781611974348.64.

Shao, Q.; Chen, Y.; Tao, S.; Yan, X.;
and Anerousis, N. 2008a. Easyticket:
A Ticket Routing Recommendation
Engine for Enterprise Problem Reso-
lution. In 34th International Confer-
ence on Very Large Data Bases (VLDB).
New York, NY: Association for Com-
puting Machinery. doi.org/10.14778/
1454159.1454193.

Shao, Q.; Chen, Y.; Tao, S.; Yan, X.; and
Anerousis, N. 2008b. Efficient Ticket
Routing by Resolution Sequence Mining.
In Proceedings of the 14th Association
for Computing Machinery (ACM) Special
Interest Group on Knowledge Discovery
and Data Mining (SIGKDD) Interna-
tional Conference. New York, NY: Asso-
ciation for Computing Machinery. doi.
org/10.1145/1401890.1401964.

Zeng, C.; Zhou, W.; Li, T.; Shwartz, L.;
and Grabarnik, G. Y. 2017. Knowl-
edge Guided Hierarchical Multi-Label
Classification Over Ticket Data. IEEE
eTransactions on Network and Service
Management 14(2): 246–60. doi.org/
10.1109/TNSM.2017.2668363.

Zhang, C., and Zhang, S., editors. 2002.
Association Rule Mining: Models and Algo-
rithms. Berlin, Germany: Springer. doi.
org/10.1007/3-540-46027-6.

Shivali Agarwal is a senior researcher
at IBM Research, Bengaluru, India. She
holds a PhD in Computer Science in
the area of Programming Languages

from the Tata Institute of Fundamen-
tal Research, Mumbai. She joined the
IBM Research Lab, Delhi, in the Pro-
gramming Languages and Software
Engineering group in 2008 soon after
receiving her PhD. A year later, she
joined the group working on services
research and has since made signif-
icant contributions to optimize and
automate the information-technol-
ogy operations for IBM’s service deliv-
ery business. She also has more than
twenty-four conference publications,
book chapters, and journal papers,
and holds sixteen patents in her
area of work. Currently, she is work-
ing in the hybrid-cloud department,
where she is leading the research on
applying AI and software engineering
techniques for the modernization of
enterprise legacy applications.

Jayachandu Bandlamudi is a staff
engineer at IBM Research, India with
a Master’s degree from the University
of Illinois at Urbana-Champaign. He
is highly familiar with building scal-
able AI systems. His research inter-
ests are in data mining, machine
learning, and natural language pro-
cessing. In his spare time, he likes
to fix motorcycles and ride in the
countryside.

Atri Mandal is a senior research engi-
neer at IBM Research, India. Mandal
received his Masters degree in Infor-
mation and Computer Science from
the University of California, Irvine. He
has over seventeen years of experience
in software development and research
and has worked on many interesting
and complex research problems in the
areas of log analytics, distributed data
mining, hybrid-cloud, machine learn-
ing, and DevOps.

Anupama Ray is a research scientist at
IBM Research, India. She joined IBM in
January 2017 after receiving her PhD in
Electrical Engineering from the Indian
Institute of Technology, Delhi. Her
research focuses on developing and
applying machine learning algorithms
for neuro-linguistic programming, nat-
ural language generation, and multi-
modal applications.

Giriprasad Sridhara is a research
software engineer with IBM Research,
India. He has a PhD in computer
science from the University of Del-
aware (USA). His research interests
include software engineering, machine
learning, deep learning, and natural
language processing. He has over six-
teen publications in leading interna-
tional conferences and holds sixteen
patents.

http://www.usenix.org/conference/nsdi13/technical-sessions/presentation/potharaju
http://www.usenix.org/conference/nsdi13/technical-sessions/presentation/potharaju
http://www.usenix.org/conference/nsdi13/technical-sessions/presentation/potharaju
http://www.burrsettles.com/pub/settles.activelearning.pdf
http://www.burrsettles.com/pub/settles.activelearning.pdf

