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The landscape of modern information technology 
service delivery is changing, with increased focus 
on automation and optimization. Most information 

technology vendors today have service platforms aimed 
toward end-to-end automation for carrying out mundane, 
repetitive labor-intensive tasks and even for tasks requiring 
human cognizance. One such task is ticket assignment 
and dispatch, where the service requests submitted by the 
end-users to the vendor in the form of tickets are reviewed 
by a centralized dispatch team and assigned to the appro-
priate service team and resolver group.

The dispatch of a ticket to the correct group of practi-
tioners is a critical step in the speedy resolution of a ticket. 
Incorrect dispatch decisions can significantly increase the 
total turnaround time for ticket resolution, as observed in a 
study of an actual production system (Agarwal, Sindhgatta, 
and Sengupta 2012). When such delays occur, it causes cus-
tomer dissatisfaction as well as monetary penalties for the 
vendor due to service-level-agreement breaches. Several fac-
tors make the dispatcher’s job challenging, namely the need 
for in-depth knowledge of the roles and responsibilities of 
various groups, the heterogeneous and informal nature of 
email text, and the high attrition rate in service delivery 
teams (Mandal et al. 2018).

Given the fact that inefficiencies in dispatch have seri-
ous business consequences, there has been a lot of interest 
in automating the assignment process. A number of differ-
ent approaches have been proposed for automating ticket 
dispatch (Agarwal, Sindhgatta, and Sengupta 2012; Shao  
et al. 2008a, 2008b; Parvin, Bose, and Van Oyen 2009). 

 In this article, we present an end-
to-end automated helpdesk email ticket 
assignment system driven by high 
accuracy, coverage, business continu-
ity, scalability, and optimal usage of 
computational resources. The primary 
objective of the system is to determine 
the problem mentioned in an incoming 
email ticket and then automatically 
dispatch it to an appropriate resolver 
group with high accuracy. While meet-
ing this objective, it should also meet 
the objective of being able to operate 
at desired accuracy levels in the face 
of changing business needs by auto-
matically adapting to the changes. The  
proposed system uses a system of clas-
sifiers with separate strategies for han-
dling frequent and sparse resolver groups 
augmented with a semiautomatic rule 
engine and retraining strategies to ensure 
that it is accurate, robust, and adaptive 
to changing business needs. Our system 
has been deployed in the production of 
six major service providers in diverse 
service domains and currently assigns 
100,000 emails per month, on an aver-
age, with an accuracy close to ninety 
percent and covering at least ninety 
percent of email tickets. This translates 
to achieving human-level accuracy and 
results in a net savings of more than 
50,000 man-hours of effort per annum. 
To date, our deployed system has already 
served more than two million tickets in 
production.
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We propose a highly reliable and accurate cognitive 
system for assignment of tickets that come in the form 
of email. The tickets may be raised in different ways 
such as through voice, web forms, or emails to a cen-
tralized helpdesk team. Our proposed system focuses 
on email tickets only, but can be applied to other 
forms of tickets that use text.

Challenges in Cognitive Email Assignment
At first glance, email assignment may look like a simple 
text-classification problem — but it becomes quite 
complex and challenging when considered at indus-
try scale.

First, for most big companies the number of resolver 
groups is quite large — of the order of 500, in some 
cases. Many of these resolver groups cater to overlap-
ping problems that can be disambiguated only with 
domain-specific knowledge. Empirical observation 
shows that it is difficult for training algorithms to  
understand such subtle differences. Second, in most 
businesses, the helpdesk teams themselves undergo 
constant changes for better efficiency and produc-
tivity. Business decisions often may lead to resolver 
groups being split, merged, or renamed. All of these  
changes inevitably impact the accuracy of machine- 
learning classifiers. By continuous retraining, the 
model may catch up with the changes — but by 
the time it actually catches up, a number of tickets 
would have been incorrectly assigned, causing dis-
ruptions in the business and a poor customer experi-
ence. For splits and merges, the impact is worse. Third, 
the problems assigned to resolver groups themselves 
slowly change over time. This may not happen over 
a week, or a month, but over several quarters. As such 
a once-trained model becomes outdated over time, 
it cannot effectively assign tickets mentioning new 
problems or old problems with a different terminology 
(Mandal et al. 2018).

Main Contributions
This article presents an end-to-end automated ticket 
dispatch system that addresses all these challenges 
faced in an enterprise dealing with large volumes of 
tickets on a daily basis. The system uses a combina-
tion of classifiers with separate strategies for han-
dling frequent and sparse resolver groups (referred to  
in this article as the short-head and long-tail, respec-
tively). To deal with ambiguity in resolver-group 
assignment, we have designed a rule engine that cap-
tures the domain-specific knowledge required for 
disambiguation.

The need for retraining is a reality in enterprise arti-
ficial intelligence (AI)-based solutions due to a gradual 
shift in business and technology focus that we deal 
with by having a focused retraining strategy and 
automatic rule-mining capability for the rule engine. 
Subtle changes in email utterances over a period of 
time can lead to loss of accuracy and this is handled 
by having an intelligent retraining strategy. The 
automatic rule mining helps in discovering new, 
merged, or phased-out resolver groups to ensure 

business continuity. It can be observed that our read-
ily deployable end-to-end automatic email dispatch 
system is an embodiment of a system that encapsu-
lates complete AI life cycle. It has the following four 
key features:

Classification Models to Predict  
Mandatory Fields for Ticket Dispatch

A ticketing tool mandates fields like ticket category 
and priority or severity to be populated before a ticket 
can be dispatched to the predicted resolver group. We 
use different classification models to predict manda-
tory ticketing fields. To predict the resolver group, 
we use an ensemble-based classification engine that 
uses supervised machine learning to understand the 
nature of the problem from free unstructured email 
text and assign accurately. We also use a second set 
of support-vector-machine (SVM)–based classifiers to 
predict other mandatory fields that are required for 
creation of the ticket.

Long-Tail Strategy

A few-shot learning strategy based on Siamese net-
works for the rarely occurring classes (or long tail). 
By training the long tail separately from the short 
head, we reduce noise in the training data and also 
eliminate the problem of class imbalance to a large 
extent.

Automatic Rule Mining

The rules are designed to strategically combine with 
machine-learning methods for effective disambigua-
tion of classes. Rules are extracted automatically using 
a technique based on Gini impurity and association 
rule mining followed by a verification step. The 
automatic rule-mining technique removes most of 
the manual labor involved in understanding resolver- 
group issues and designing rules from scratch.

Retraining

An effective retraining strategy that combines sliding 
window-based training with active learning technique. 
This ensures that the models are up-to-date with the 
changes that happen over time in the email utterances 
and resolver-group organization, and at the same time 
the accuracy is maintained at a desired level.

The results are presented with real customer data 
from three different datasets — with the largest of them 
having more than 700,000 emails and as many as 
428 resolver groups. We were able to achieve human 
level accuracy with more than ninety-percent cov-
erage on all the datasets with the proposed system 
using minimal computational resources.

To the best of our knowledge, this is the first time 
that human-level accuracy has been reported for a 
deployed assignment engine at this scale of automa-
tion, delivered consistently across datasets of vary-
ing sizes and forms. The remainder of the article is 
organized as follows. First is a description of the type 
of work involved (Related Work), and then we give 
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an explanation of the system used for ticket classifi-
cation (System Overview). We go on to discuss the 
different components of the system (Assignment 
Engine Components), present our experimental 
results (Classification Models), offer our remarks 
(Evaluation), and then conclude (Conclusions and 
Future Work).

Related Work
Ticket dispatch is a known problem that has been 
addressed in the past through different approaches. 
These approaches have handled the dispatch prob-
lem almost in isolation and have not addressed the 
systemic level issues that arise in a real deployment. 
We discuss the key known approaches in the follow-
ing paragraphs.

Ticket dispatch has been addressed by Agarwal, 
Sindhgatta, and Sengupta (2012) using SVMs and a 
discriminative keyword approach. They propose a  
semiautomated approach based on confidence scores. 
We have surpassed their work to reach human level 
accuracy using advanced ensemble techniques for 
automated dispatch, scaled it to hundreds of resolver 
groups, and incorporated retraining strategies to adapt 
to changing data. Several other researchers have  
studied different aspects of the problem of routing 
tickets to resolver groups (Shao et al. 2008a, 2008b; 
Parvin, Bose, and Van Oyen 2009). The work pre-
sented by Shao et al. (2008b) approaches the problem 
by mining-resolution-sequence data and does not 
access ticket description at all. The work by Shao et al.  
(2008a) focuses on ticket transfers between groups 
(given an initial assignment) without looking at the 
ticket-text content. It mines historical ticket data 
and develops a probabilistic model of an enterprise 
social network representing functional relationships. 
The work by Parvin, Bose, and Van Oyen (2009) is 
different and approaches the problem from a queue 
perspective. This is more related to the issue of service 
times and becomes particularly relevant for agent 
assignment within a group. There are some papers 
that apply text-classification techniques to handle 
tickets (Dasgupta et al. 2014; Zeng et al. 2017). The 
idea is that once ticket category is identified, then the 
assignment to resolver groups can be done by manual 
dispatchers quickly. However, none of the works talk 
about the scale and retraining required in real-life 
deployment. In Di Lucca (2002), tickets are automat-
ically classified based on description to route them to 
the right group. However, the work was applied on a 
small ticket set with only eight groups. The work by 
Kadar et al. (2011) attempts to classify the incoming 
change requests into one of the fine-grained activities 
in a catalog. Some other works by Potharaju, Jain, and 
Nita-Rotaru (2013) and Agarwal et al. (2017) talk about 
a holistic approach of ticket category classification, 
cause analysis, and resolution recommendation. How-
ever, they do not automate the process of assignment.

A rule engine is an important part of our system to 
handle domain-specific cases. There exists a body of 

literature that attempts automated mining of classi-
fication rules in a human-understandable way. The 
work by De Falco, Cioppa, and Tarantino (2002) pre-
sents a genetic programming framework, capable of 
performing an automatic discovery of classification 
rules easily comprehensible by humans. The work by 
Shang et al. (2016) describes the mining of discrimi-
native patterns, which are the prefix paths from root 
to nodes in a tree-based classification task. These 
feature discriminative patterns that are concise, and 
offers high interpretability of the model. Our work 
leverages a Gini-impurity-based (D’Ambrosio and 
Tutore 2011) decision-tree model to extract prefix 
paths, and then applies association rule mining to 
obtain fine-grained human-understandable rules.

Another challenge that we have to deal with is 
long-tail classification. This problem can be mapped 
to few-shot learning, where the model can be learned 
with a very limited number of training samples. There 
have been lot of recent advancements in the area of 
few-shot learning. One of the more prominent works 
is the one by Mueller and Thyagarajan (2016), which 
proposed Siamese-architecture language models to 
learn the semantic similarity between sentences for 
few-shot text classification. Another body of work 
(Bao et al. 2019) uses metalearning with distribu-
tional signatures for few-shot text classification.

System Overview
Figure 1 shows the system architecture along with the 
data flow diagram. Historical email ticket data are down-
loaded from the ticketing tool (for example, Remedy 
[Remedy Corporation], ServiceNow [ServiceNow Inc.]) 
using custom-built adapters. The downloaded emails 
are passed through two stages of preprocessing for data 
enrichment. The data enrichment module uses tech-
niques like resolver-group merging, long-tail cutoff, and 
so forth, to reduce the noise in the email data. The train-
ing data are further cleaned using text preprocessing 
methods (Manning et al. 2014). The cleaned email data 
are then trained using an ensemble of machine-learn-
ing classifiers, and the trained models are serialized and 
stored in a database. For periodic retraining, we use an 
active-learning–based strategy that has sliding windows 
along with informative sample selection.

When a user sends an email to the helpdesk account, 
a ticket is automatically generated and stored in the 
backend ticketing tool. The newly generated tickets 
are downloaded by the adapter and classified using 
a system of classifiers, a dispatcher, and the rule 
engine. The classification system returns predictions 
for mandatory ticketing fields along with the corre-
sponding confidence scores. If the confidence score 
is above a configured threshold, the ticket is routed 
to the predicted resolver group. Otherwise, the ticket 
is assigned to the manual queue for inspection by 
human agent. The combination of classifiers and rule 
engine ensures that a high percentage of tickets (more 
than ninety percent) are assigned automatically by our 
system with a low error rate.
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We will now define key terms used in the rest of 
the article. Let N be the total number of email tickets. 
In the manual assignment case, let NH1 be the num-
ber of tickets for which the ticket was ultimately 
resolved by the same group to which the ticket was 
initially assigned. Let NH2 be the number of tickets 
for which the initial and final groups differ. Then, 
human-level accuracy Hacc can be defined as a ratio of 
NH1 to total tickets N. In the automated email assign-
ment scenario, tickets are assigned by the assignment 
engine, which combines the machine-learning clas-
sifiers and rule engine. Let NX be the total number 
of tickets actually assigned by the classifier system; 
NXcorr be the number of tickets that were predicted 
by the ensemble and for which the resolver group 
predicted correctly (that is, the ticket was ultimately 
resolved by the predicted resolver group); NR be the 
number of tickets where the resolver group was pre-
dicted by the rule engine; and NRcorr be the number 
of tickets predicted by the rule engine and for which 
the resolver group predicted correctly. Then we can 

define Classifier Accuracy (Xacc) as the ratio of NXcorr 
to NX; Classifier Coverage (Xcov) as the ratio of NX to 
N; Assignment Engine Accuracy (Eacc) as the ratio of 
the sum of NXcorr and NRcorr with the sum of NX and 
NR; and Assignment Engine Coverage (Ecov) as the sum 
of NX and NR to N.

Assignment Engine Components
Having defined the system, we now describe in detail 
the different functional components of the assignment 
engine.

Preparation of Training Data
This section explains the bootstrapping phase of our 
system. The ticketing tool (Remedy, ServiceNow, and 
others) organizes email data into structured fields 
containing relevant information about the ticket such 
as incident type, creation date, problem description, 
resolver group, and so forth. We use custom adapt-
ers to connect to the ticketing tool and extract fields 
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Figure 1. Architecture of the Proposed System.
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relevant for training. Currently, the adapter extracts 
only the text portion of the email (namely, email subject 
and body) along with the resolver group for training. 
The extracted email data are passed through several 
layers of enrichment (Mandal et al. 2019). For the sake 
of completeness, we next discuss the main points.

Merging Related Resolver Groups

Some of the resolver-group labels in the training data 
can be merged. Merging increases the size of the train-
ing data and at the same time reduces the number of  
unique labels, thus improving training accuracy. We 
found that there are at least two types of resolver 
groups that can be merged for assignment purposes —  
resolver groups with varying escalation levels, and 
region-specific resolver groups. For more details, we 
refer the reader to the work by Mandal et al. (2019).

Long-Tail Cutoff

For better training, we divided historical email-ticket 
data into two parts: IT = IH + IL, where IT is the com-
plete data downloaded for training, IH is the data 
corresponding to the frequently occurring resolver 
groups (short head), and IL is the data corresponding 
to the sparse resolver groups (long tail; Mandal et al. 
2019). Resolver groups belonging to IT are classified 
using an ensemble classifier, and those belonging to IL 
are handled using a few-shot learning strategy that is 
described later in this section. In our system, we use 
this strategy to retain at least ninety percent of data in 
the short head while cutting down the resolver group 
count by about eighty percent. The evaluation results 
are shown later in the evaluation section.

Text Preprocessing

We applied some text preprocessing on the training 
data (IT and IL) before using it to train a model: we 
replaced multiple tabs and spaces with a single space, 
removed control characters, non-ASCII characters, and 
hypertext-markup-language tags. Other methods such  
as stemming, lemmatization, and extractive summari-
zation were also tried. We used training data augmen-
tation techniques such as paraphrasing and sample 
duplication (Mitchell 1997) for resolver groups with 
small numbers of samples.

Classification Models
This section presents our study on the performance 
of various machine-learning classifiers in classifica-
tion of email data, in terms of accuracy and training 
time. We follow separate strategies for predicting the 
resolver group as opposed to other mandatory fields. 
So, first we talk about the prediction of the resolver 
group and then move on to the prediction of other 
ticketing fields.

For training the classification models, we concate-
nate the subject and the body of the email (descrip-
tion) with a space in between and use the resulting 
string as our training data. The resolver group acts as 
the label for our training data.

Short-Head Classification

We convert the training-data samples into word-vector  
representation before applying machine-learning 
algorithms. We observed that using term frequency- 
inverse document frequency (tf-idf) representation 
increased the accuracy of traditional machine-learning 
algorithms for all datasets by at least three to four per-
cent. Furthermore, use of bigrams also improved the 
accuracy for some datasets. Intuitively, we can argue 
that this is so because some bigrams such as account 
creation, account deletion, or password reset are use-
ful indicators in deciding the resolver group. The 
hyperparameters were chosen experimentally over 
10-fold cross validation on the datasets.

However, for deep-neural-network learning, tf-idf 
representation, being extremely sparse, is not useful. 
Our article (Mandal et al. 2019) shows the impact of 
various traditional machine learning models (Mitchell  
1997) and deep-neural-network models (Goodfellow,  
Bengio, and Courville 2016) in short-head classifi-
cation. To improve classification accuracy and cov-
erage of the overall service, we used an ensemble 
(Kuncheva 2004). Each pair of models was combined, 
and the final ensemble classifier was chosen based 
on the accuracy and coverage. Our results suggest 
that a combination of linear SVM- and multilayer- 
perceptron (MLP)–based classifiers performs best.

Long-Tail Classification

Long-tail classes typically account for about five to 
ten percent of the training data and have very few 
training samples per resolver group. For these classes, 
traditional classifier performance using tf-idf input 
features is not satisfactory, because models cannot  
understand the semantic similarity from the few 
available samples. As such, Mandal et al. (2019) 
refrains from using machine learning to predict these 
classes; instead, they use a configurable rule engine. 
The drawback is that a lot of rules need to be manu-
ally created and maintained. To solve this problem, 
we used a few-shot learning strategy. Specifically, 
a Siamese adoption of a Long Short Term Memory 
(LSTM) network with a Manhattan distance metric for 
learning semantic similarity (Mueller and Thyagarajan 
2016) was used. Our approach uses LSTM representa-
tions to map ticket descriptions to fixed-length fea-
ture vectors and Siamese architecture adoption is used 
for learning semantic similarity between tickets of dif-
ferent classes. Figure 2 shows a Siamese architecture 
that comprises two identical LSTM networks and the 
model is trained to learn similarity between pairs of 
ticket descriptions.

For each pair of tickets, we create training data 
using the tuple: (TDa, TDb, similarity), where TDa is 
description of ticket Ta, TDb is description of ticket 
Tb, and similarity is a binary label (1 or 0) . Depend-
ing on whether Ta and Tb are chosen from the same 
resolver group or from different ones, the value 
of similarity will be 1 or 0, respectively. So, if there 
are N long-tail classes (LTC1, LTC2, ..., LTCN) and LTCi  
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has ni tickets, then from each ticket Tx belonging to 
LTCi we can create (ni − 1) similar tuples and (n1 
+ n2 + ... + ni−1 + ni+1 + ... + nN) dissimilar tuples. This 
technique also ensures that we have sufficient train-
ing data despite having only a few training samples 
per class.

We train the Siamese LSTM using the training 
data obtained above with TDa, TDb as inputs to the 
LSTMs, and similarity as label. Model training param-
eters are LSTM with five hidden units, dropout = 0.5, 
and ADAM optimizer.1 The trained Siamese LSTM 

model predicts the class label for each ticket by finding 
the most similar ticket with respect to the Manhattan 
distance metric.

Long-tail classification results are shown in table 1 
for three of our biggest datasets. The results indicate 
that while the Siamese networks are better suited for 
long-tail classification, SVM is not very far behind. In 
fact, we observed that when the sparse classes have 
ten samples or more, SVM often performs better than 
the Siamese networks. So if storing Siamese-based 
models is a concern, SVM can be used instead.
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Figure 2. Siamese Architecture.
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Predicting Other Mandatory Fields
Although, as we discussed, predicting the resolver 
group is the most difficult, we also need to predict 
other mandatory fields so that the ticket can be 
created and dispatched successfully. Some of these 
other fields include incident type (incident or service 
request, or service restoration), problem category, and 
priority/severity. These ticketing fields usually have 
only a few classes and there are enough samples for 
each class. So the problem of long-tail and class imbal-
ance is virtually nonexistent. As such, we use a sim-
ple linear SVM (with our scheme)-based classifier for 
predicting these fields. We could achieve satisfactory 
accuracy of greater than eighty-five percent with this 
method, so we do not use a confidence threshold for 
these fields, as imposing a cutoff will bring down the 
coverage of the entire system (as all the fields need to 
have confidence above cutoff).

Rule Engine
The rule engine is one of the key components of our 
end-to-end system used to handle scenarios that are 
typical of an enterprise. Such scenarios generally cor-
respond to business design and decisions and are not 
amenable to machine-learning or deep-learning clas-
sifiers. The three main scenarios are as follows:

Resolver Group  
Perturbations Driven by Business Decisions

Often resolver groups are either renamed or split or 
merged to form new resolver groups. These decisions 
are mostly taken to remove duplication of effort, 
or to address macro-economic changes. As most of 
these decisions are sudden, machine-learning mod-
els are not able to handle classification for the newly 
formed classes, which affects services in production.

Resolver Groups Belonging to the Long Tail

As discussed previously, in most datasets, twenty 
percent of the classes account for more than ninety 
percent of the tickets. The remaining eighty percent 
of the classes are predicted separately, using a few-
shot learning strategy. However good our few-shot 
learning model might be, it cannot match the accu-
racy of the short-head ensemble classifier or that of 
humans. Hence, to keep the overall accuracy high 
and at par with human accuracy levels, we have to 
design rules for predicting these classes.

Presence of Resolver Groups  
with Similar or Overlapping Email Format

Helpdesk teams usually have a default group that han-
dles lots of different types of tickets. The kinds of prob-
lems this default group handle are often very similar to 
the problems handled by other, more focused groups. 
As such, the user utterances are also quite similar and 
hence confusing for machine-learning algorithms. 
Many helpdesk organizations use fixed templates for 
submission of certain types of issues. The same tem-
plate can be used for multiple resolver groups. When 
these tickets are used to train the machine-learning 
model, it learns the template structure rather than 
the actual content. So the classification accuracy is 
very low for such resolver groups. The rule engine 
addresses this issue for the confusing classes by over-
riding the decision of the machine-learning classifier.

Design of the Rule Engine

The rule engine is designed to have a customer- 
independent framework for rule specification, and 
is easy to configure using a user interface. The user 
interface allows the specification of rules that use 
values of ticket parameters such as email subject, 
description, and so forth, as well as the output of the 
machine-learning classifier. The rule engine can over-
ride the output of the classifier in certain cases. Each 
rule in the rule engine can be generically expressed 
using implies relation. The left-hand side is conjunc-
tions of atoms of form (fi ⊇ si), (CE = R). The right-
hand side is CF, where fi values are the ticket fields 
(for example, description, title, sender email, recipient 
email) that are used in the representation of the rule; 
si is the value of field fi (si can be a singleton or a set  
of terms); CE is the ensemble-classifier-predicted class; 
R denotes the resolver group for which the rule is 
applicable; and CF is the final resolver group pre-
dicted after application of rule engine.

Some sample rules are shown in table 2 for better 
understanding.2 The first rule is for renamed resolver 
groups (R5 renamed to R63). If the ensemble-predicted 
class is R5, the final prediction will be R63, irrespec-
tive of the field values. The second rule is used for 
commonly confused sets of resolver groups. Here, the 
ensemble is used to determine the commonly confused 
set (R17, R42); then the rule is applied to determine the 
exact resolver group within the set. The third rule uses 
a combination of values from three different fields to 

Dataset SVM Siamese Networks Logistic Regression Naive Bayes MLP

A 68 76 63.3 65 68

B 33 66.7 44.5 22 55.6

C 63.6 72.7 55 50.6 59

Table 1. Comparison of Long-Tail Classification Methods.
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override machine-learning prediction. The fourth rule 
is similar to the third, except that it uses a value of only 
one field to make a prediction. However, the important 
thing to note is that there is an order of precedence 
between rules 2 and 4. Rules 2 and 4 have a common 
match criterion for field f1 (namely, use of the keyword 
HSS). In these cases, we match the more-restrictive rule 
first to minimize the chance of false positives.

Automatic Rule Mining

Mandal et al. (2019) relies on manual maintenance of 
the rule engine. However, as the ticket corpus grows 
in size, the task of maintaining a wide variety of rules 
becomes tedious, and having an automated rule- 
mining strategy becomes inevitable. We use a semi-
automatic rule-mining strategy that is able to mine 
rules with high recall, but relatively low precision. 
High recall ensures that we don’t miss any valid rules; 
low precision means that there will be a few false 
positives. As such, the mined rules are passed on to 
subject-matter experts (SMEs), who verify the rules 
and retain or remove them, as necessary.

Our approach uses a random-forest model with a 
Gini-impurity split-criterion on the processed ticket 
corpus. A random-forest model offers a high level of 
interpretability and debuggability, which is impor-
tant for our purpose, as the extracted rules need to 
be manually verified. (The rule extraction can also 
be done using complex deep-learning models. But in 
that case, the generated rules will have little or no 
human interpretability.) The steps followed in auto-
matic rule mining are described in the sections that 
follow.

Step 1: Obtaining Confusion  
Matrix and Confused Resolver-Group Sets

The first step in automated rule mining is to build 
the confusion matrix. Next, we analyze the confusion 
matrix and identify the confused sets (consisting of 
two or more resolver groups). Several such sets can be 
mined from the confusion matrix. The construction 
of the confusion matrix, and retrieving the confused 
class sets, is done automatically using scripts.

Step 2: Extracting Decision-Tree Paths

After obtaining ticket corpus for a confused set, we 
follow below the steps to obtain decision paths from 

a random-forest model. The same procedure is fol-
lowed for all confused sets.

Ticket Corpus Preprocessing. At first, the ticket corpus 
is preprocessed by using techniques such as tokeni-
zation, lemmatization, and named-entity recognition. 
The preprocessed corpus is then converted to bigram 
tf-idf features consisting of important tokens, phrases, 
and entities.

Decision Tree with Gini Impurity. Using the tf-idf features, 
we train a decision-tree classifier with Gini-impurity 
split criterion (D’Ambrosio and Tutore 2011). Reason 
for choosing Gini impurity is due to its interesting 
property that, at a given split s, if all records belong to 
one class, then Gini impurity becomes zero and the 
decision-tree path from root to the current-node split 
always results in a single class or resolver group. In 
decision-tree-model training, multiple splits happen 
at each parent node based on the Gini information 
gain (D’Ambrosio and Tutore 2011). Gain is calculated 
for all possible features and the feature with highest 
gain will be used for the split. These splits happen 
iteratively until the stopping criterion is met. In our 
approach, we let the splits happen in an unpruned 
manner — that is, until all records in a leaf node 
belong to a single resolver group or the leaf node 
contains a single record.

Figure 3 shows the example decision tree for two 
classes in the confused class pair (R12, R189) trained 
on training samples from dataset C(3) using tf-idf fea-
tures. For example, the decision path (postpaid ≤ 0.5 ∩ 
order ≥ 0.5 ∩ mobile ≤ 0.5) ⇒ R12 results in a leaf node 
containing all eleven samples belonging to R12 class. 
It is to be inferred that if the ticket description does 
not contain [postpaid,mobile] but it contains order, 
then the decision-tree model predicts the class as R12, 
and there are eleven such examples in the training set 
(out of 200) that follow this decision path. The deci-
sion path from root to corresponding node with gini = 0 
always results in single class prediction.

Decision Paths Extraction. Each node in the decision 
tree corresponds to a ticket feature; hence extracted 
decision paths explain the class assignment for each 
ticket in terms of input ticket features and offers 
high interpretability. It is possible to extract sever-
al paths, but we are only interested in those with 

f1 f2 f3 CE CF

— — — R5 R63

Contains “HSS” only — — R17 R42

Contains “replenish team” (abc) (xyz) — R54

Contains both “HSS” and “EWM” — — — R43

Table 2. Sample Rules.
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leaf node having zero Gini impurity and support 
above a specified cutoff value. The support threshold  
ensures that we have enough evidence that the  
decision path is valid, and a rule can be extracted 
from it.

A single-decision–tree model is prone to over-fitting, 
and decision paths extracted from just one decision 
tree are not robust. So we trained a random-forest 

model that is an ensemble of several decision trees. 
From each decision tree in the random-forest model, 
we extracted Gini-criterion decision paths for the 
next step.

Step 3: Applying Association Rule Mining

One problem with using decision paths extracted 
from a Gini-impurity–based random forest model is 

postpaid ≤ 0.5
gini = 0.5

samples = 200
value = [100, 100]

class = R12

True False

gini = 0.0
samples = 54

value = [54, 100]
class = R12

order ≤ 0.5
gini = 0.432

samples = 146
value = [46, 100]

class = R189

number ≤ 0.5
gini = 0.337

samples = 126
value = [27, 99]

class = R189

cid ≤ 0.5
gini = 0.188

samples = 105
value = [11, 94]

class = R12

gini = 0.115
samples = 98

value = [6, 92]
class = R189

mobile ≤ 0.5
gini = 0.363
samples = 21

value = [16, 5]
class = R12

gini = 0.0
samples = 11

value = [11, 0]
class = R12

gini = 0.198
samples = 9

value = [8, 1]
class = R12

gini = 0.0
samples = 8

value = [8, 0]
class = R12

gini = 0.473
samples = 13
value = [8, 5]
class = R12

gini = 0.408
samples = 7

value = [5, 2]
class = R12

mobile ≤ 0.5
gini = 0.095
samples = 20

value = [19, 1]
class = R12

Figure 3. Gini-Impurity Tree.
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that a lot of decision paths are generated, some of 
which may not be useful. To obtain more concise 
and robust rules, association rule mining (Zhang 
and Zhang 2002) is applied on top of the extracted 
decision paths. Association rule mining finds rela-
tions and dependencies between elements in an 
item set. In our case, the item set is a decision path 
and each element in the item set is a phrase. Some 
examples of decision paths extracted for resolv-
er-group R189 using Gini impurity are as follows: 
[information error screenshot, browser, recipient]; 
[information error screenshot, imsi msisdn imsi, 
confidential, firewall access raise]; [mobile device, 
information error screenshot, imsi msisdn imsi, 
internet, firewall access raise, update]. The down-
side of these decision paths, which eventually form 
the rules, is that they overlap with one another and 
are also long and tedious. All three of these deci-
sion paths contain an information error screenshot, 
and it is a generic phrase that appears in most of 
the decision paths, but the underlined items infor-
mation error screenshot, imsi msisdn imsi, and fire-
wall access raise appeared together and there exists 
a strong relation among them. After application of 
association rule mining, we get only the following 
association rule for resolver group R189: (information  
error screenshot,imsi msisdn imsi) → (firewall access 
raise). This means whenever information error screen-
shot or imsi msisdn imsi appear together, firewall 
access raise will be there for tickets in resolver-group 
R189.

The quality and the robustness of association rules 
are evaluated based on the constraint metrics Support 
and Confidence.

The mined association rules are evaluated by SMEs 
before updating the rule engine. Table 3 shows the 
mined rules for one such resolver group in one of 
our datasets.

Model Selection and Ticket Dispatch
The email ticket dispatcher assigns the ticket to a 
specific resolver group and updates the ticket. The 
dispatcher combines the results of the two classifiers 
and rule engine using a dispatch algorithm to output 
the final prediction and confidence score.

The classifiers are invoked in a specific order for 
best results. As more than ninety percent of the tickets 
belong to the short head, the ensemble classifier is 
invoked first. The long-tail classifier is invoked next, 
but only if the confidence from the ensemble classi-
fier is below a preconfigured threshold. Finally, the 
rule engine is invoked irrespective of the output of the 
classifiers. This is done because the predicted resolver 
group may belong to one of the confused classes; so 
there is room for ambiguity even if the classifier pre-
diction has high confidence. If a rule is matched by 
the rule engine, the classifier output is overridden. If 
no rule is matched, then we fall back to the classifier 
that was invoked last in the process. If the confidence 
from that classifier is high, we retain its prediction, 
otherwise we assign the ticket to the manual queue.

Retraining
We have already discussed how the rule engine 
takes care of changes happening in email data due 
to resolver groups getting renamed, merged, or split. 
However, there are still other changes in training 
data that need to be handled, such as subtle changes 
in email utterances over time. These changes can 
happen due to various factors like resolver groups 
taking on new problems, increased automation, and 
so forth. To capture these changes effectively, we use 
a sliding-window–based retraining strategy. The slid-
ing window ensures that training data are refreshed 
periodically and the most recent changes are retained, 
so the classifiers remain up-to-date.

Description ML Predicted Final Class Correct? Found by SME?

cancel order R12 R189 No No

msisdn imsi R12 R189 Yes Yes

mention impacted mobile R12 R189 Yes Yes

[firewall access raise, information error 
screenshot, imsi msisdn imsi]

R12 R189 Yes No

mention apps impacted R12 R189 No No

service delivery R12 R189 No No

pending order R12 R189 No No

raise tickets remedy R31 R189 No No

imsi additional information R31 R189 Yes No

impacted mobile imsi R31 R189 Yes Yes

firewall access raise R31 R189 No No

Table 3. Correctness of Rules Extracted for a Resolver Group in Dataset C (R189).
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The length (W) of the sliding window is determined 
such that the training data are sufficient for good 
accuracy. The slide interval (T) is determined by the 
average time it takes for a ticket to be fully resolved 
in the system.

Maintaining Model Accuracy Over Time
In addition to the sliding window data, we also retain 
the most informative samples from previous periods 
so that we keep learning from past mistakes. We try 
to automate the process of informative sample selec-
tion using active-learning strategies. The most com-
monly used strategies to retain informative samples  
are least-confidence, margin sampling, and entropy 
sampling (Settles 2009). Prior studies have suggested 
that out of these three techniques, margin and least- 
confidence metrics are the most suitable for reduc-
ing classification error rate, whereas entropy is more 
appropriate for minimizing the loss function (Fu, Zhu, 

and Li 2012). Other prior studies have clearly sug-
gested margin sampling as the most effective strategy 
for multiclass classification problems (Schein and 
Ungar 2007; Reyes, Altalhi, and Ventura 2018). Based 
on the evidence given in these articles, we adopt 
margin sampling as our sample-selection strategy for 
retraining.

Deployment and Maintenance
The automated assignment engine is currently 
deployed as a single tenant service hosted in a 
Kubernetes-cluster deployment architecture (figure 4)  
with three representational-state transfer, application- 
program–interface endpoints: train — this call-to-
train method is asynchronous, and returns a training 
id; status — this checks the status of a training in 
progress; and classify — this calls the classifier to 
predict the resolver group. The ensemble classifier is 
run periodically on a graphics-processing-unit cluster 

Ticketing Server Client Data Server

Cloud Object
Store

TrainingClient

Training
Server

API Server

Kubernetes

Dockerized
Services

Pod

REST

REST

GPU
Models

SSHRDBMS

JDBC

SOAP/REST

Adapter (JDK)

Remedy/
ServiceNow

Figure 4. Deployment Architecture.
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Resolver Groups Dataset A Dataset B Dataset C Dataset D Dataset E Dataset F

Number of Resolver Groups 70 403 428 73 2,892 31

Duration of the Training Dataset 6 months 12 months 15 months 12 months 12 months 6 months

Email Tickets (N) in Training Set 11,562 423,343 712,320 28,940 23,811 6,529

Duration in Deployment 31 months 15 months 28 months 10 months 8 months 6 months

Tickets Served/Month (T) 2,000 40,000 50,000 2,000 2,000 1,000

Total Tickets Served to Date 62,000 600,000 1,400,000 20,000 16,000 6,000

Assignment Engine Accuracy (Eacc) 92.73% 88.66% 92.13% 93.1 91.5 91.2

Assignment Engine Coverage (Ecov) 97.84% 93.3% 95.5% 96.1 94.5 93

Table 4. Dataset Size, Usage, and Results.

and the trained models serialized (using Python 
object serialization, or pickle) and stored in a cloud-
based object store. The model id, data-source name, 
and creation timestamp are stored separately in a 
metadata store. The requests for training are han-
dled sequentially. The end point for classify can 
handle multiple requests in parallel. The automatic- 
rule-mining script is also run periodically and the 
new rules (if any) are stored in the rule engine.

There is only one component of the assignment 
engine that needs active maintenance — the rule 
engine. The maintenance activity involves active 
supervision of the newly mined rules and retain-
ing only the valid ones in the system. The rule 
verification is handled by SMEs at the helpdesk 
and requires about two hours of manual effort per 
week. The scripts for generation of misclassifica-
tion reports, triggering retraining and the entire 
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assignment engine code, are maintained by a team 
of two developers (working for five hours per week 
per account).

Evaluation
This section enumerates the results of evaluation of 
our system. For evaluation, we have used real data-
sets from three major helpdesk-service-provider 
accounts. The client accounts are from two different  
domains — Telecom and Supply-Chain/Logistics.  
To preserve client confidentiality, we refer to 
these datasets as dataset A, dataset B, and data-
set C, respectively. The datasets were divided into 
training and test sets with a 90:10 split, and we 
used 10-fold cross validation on the datasets. All 
our experiments were run on a NVIDIA Tesla K80 
GPU cluster with four CUDA-enabled nodes. We 
used the open-source machine-learning libraries 
Python scikit-learn,3 PyTorch,4 and Keras5 for our 
experiments. The deployed system is similar to 
our experimental setup, but not identical. The 
numbers in production may vary slightly. For 
confidentiality reasons, we cannot reveal exact 
details of the production setup and accuracy 
results. The dataset statistics as well as the final 
accuracy numbers achieved by our system are 
described in table 4.

Human Accuracy versus  
Assignment Engine Accuracy
We next look at the optimal selection of algorithms 
that maximize accuracy and coverage. It is impor-
tant to note that, for business purposes, the algo-
rithms need to have at least human-level accuracy 
along with reasonably high coverage. To compute 
human accuracy, we mined audit logs of the ticket-
ing systems. Our experiments reveal that, across all 
datasets, the accuracy achieved by human agents is 
about eighty-five percent. Therefore, we select the 
confidence threshold such that the expected accu-
racy of prediction is at least eighty-five percent. 
This ensures that the selected classifiers operate at 
least at human-level efficiency. Figures 5 and 6 show 
the performance of the best three algorithms at dif-
ferent confidence levels (ranging from 0.1 to 0.9). 
For dataset C, a combination of linear SVM (con-
fidence ≥ 0.5) and MLP (confidence ≥ 0.6) gave a 
slightly higher accuracy (89.61 percent) than that 
of generalized LSTM (confidence ≥ 0.5) and linear 
SVM (Xacc = 88.38 percent), although the individual 
accuracy was marginally higher for generalized LSTM 
compared with MLP. For this reason, and for other 
practical considerations such as memory and central- 
processing-unit constraints as well as training time, 
our deployment in production uses an ensemble of 
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linear SVM and MLP. For the other two datasets, SVM 
and MLP were the clear winners.

Rule Mining Accuracy
Table 3 shows the results for rule mining for a par-
ticular resolver group in our largest dataset, dataset C. 
These rules are extracted specifically to resolve the 
ambiguity among the commonly confused resolver 
groups R12, R31, and R189. For this experiment, we 
used a random-forest model with a bagging strategy 
having the parameters number of trees = 20 and sample 
size = 0.2. We set support and confidence thresholds to 
ninety percent and 0.9, respectively.

It is important to note that Gini-based rule mining 
was able to detect each and every rule (3/3) for this 
resolver group that were earlier predicted by the SMEs, 
giving a recall value of 100 percent. On the other hand, 
there were two rules (rules 4 and 9 in table 3) that were 
not detected by the SMEs, but were found to be valid  
rules for our dataset. Specifically, rule 4 in the table 
is a complex rule containing three separate phrases 
that were correctly mined by our system. These kinds 
of rules are extremely difficult to create manually. 
This underscores the usefulness of our rule-mining 
method. As expected, there were a few false positives —  
rules that were identified by the Gini method, but 

found to not be valid. Overall, for this resolver group, 
the observed precision was 45.45 percent (5:11).

At the same time, it must be remembered that 
verifying the validity of a rule is much easier for an 
SME than coming up with the rules from scratch. As 
such, our method of automatic rule mining reduces 
the manual labor of SMEs to a large extent.

The overall accuracy of the assignment engine is sig-
nificantly improved by the use of these SME-validated 
rules. Experimental results show that the classifi-
cation accuracy of the long-tail classes can improve by 
as much as thirty percent with the rule engine. Some 
of the confused classes in the short head can also be 
predicted with higher accuracy using the rule engine 
shown in the paper by Mandal et al. (2019).

Performance and Scalability
Figures 7, 8, and 9 demonstrate the impact of the dif-
ferent training optimization techniques on the accu-
racy of prediction, the training time, and the model  
size of SVM. These charts are shown for only the larg-
est dataset (dataset C), but the trend is fairly similar 
across other datasets as well. The results can be sum-
marized as follows.

Merging coupled with long-tail optimization 
brings down the number of resolver groups by about 
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eighty-four percent (438:72) along with a forty-percent 
reduction in training time, twenty-seven percent 
reduction in model size, and five-percent improve-
ment in accuracy. This demonstrates the effective-
ness of the long-tail approach. We also found that 
using the tf-idf approach with bigrams proved to be 
effective across most machine-learning algorithms, 
including SVM. To optimize on the number of fea-
tures and model size, we used the tf-idf approach  
with parameters maximum df = 0.8 and minimum 
df = 5. Finally, we used the chi-square statistic (with 
best k features) to further reduce the model size. 
Overall, using these approaches, we were able to 
achieve a ninety-nine percent reduction in model 
size, 93.5 percent reduction in training time, and a 
thirteen-percent increase in accuracy for dataset C  
while keeping the coverage constant at about ninety- 
eight percent. We also achieved significant speedup 
in classification time using asynchronous requests 
and batching. Figure 10 shows the peak per-day 
ticket volumes recorded during the entire training 
period for each account. Our system was able to 
achieve a runtime throughput of about 286 requests 
per second, which is equivalent to about 1,500 times 
the peak hourly volume (696 requests per hour), as 
shown in the figure.

Business Impact
Automated assignment of helpdesk tickets results in 
considerable saving in human effort for large compa-
nies having clients across geographies. It reduces the 
time taken for ticket assignment and, at the same time, 
minimizes human error. This enables the companies 
to focus more on innovation and core business needs. 
Based on our results as summarized in table 3, we give 
an estimate of human-effort saving across all accounts. 
Assuming that a human agent takes about three min-
utes to read and assign each ticket, the net savings (in 
minutes) for an account can be calculated as: Si = T × 
Ecov × 3. Summed across all three accounts, this gives a 
total saving of 52,380 hours per annum. To date, our 
system has served more than two million tickets in 
production across the deployed accounts.

Observations
There are a few important takeaways from our eval-
uation results above. The most important and useful 
observation is that our assignment engine performs 
better than all traditional machine-learning and 
deep-learning algorithms. This indicates that sim-
ple machine-learning algorithms like SVM and MLP 
fare better than more computationally expensive 
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deep-learning algorithms in the task of helpdesk 
email assignment. This result is somewhat surprising 
and unexpected, but is very significant from a prod-
uct development standpoint as these algorithms are 
easy to implement, require minimal computational 
resources, and still provide better performance at 
runtime. However, we also observed that with very 
large training data (more than five million), LSTM 
starts outperforming MLP. As such, if we have a large 
dataset and infrastructure is not a concern, then we 
can include generalized LSTM in the ensemble.

Another key observation is that we need to focus 
more on resolver-group level preprocessing rather 
than any kind of text preprocessing. Approaches like 
merging resolver-group training data and having 
separate classifiers for short head and long tail are 
actually much more effective than techniques such 
as stopword removal or extractive summarization of 
text. However, data augmentation techniques such 
as paraphrasing and sample duplication resulted in 
small improvements in long-tail accuracy for some of 
the datasets. The rule-mining technique is designed 
to have high interpretability and high recall. This 
ensures that SMEs can easily verify whether a rule 
is correct and discard if needed. Finally, our results 
(shown in table 4) clearly indicate the importance 
of the rule engine. It increases the overall accuracy 
and coverage of the system, and it ensures business 

continuity. We also see a clear benefit of having 
automatic rule mining in saving human labor.

Conclusion and Future Work
In this article, we have proposed an end to end 
ticket dispatch automation system that encapsulates 
the full AI life cycle. The proposed system achieves 
human-level accuracy and has already been deployed 
successfully for six customers in production.

However, there is still some scope for improvement 
of the system. Firstly, the proposed rule engine is still 
not completely automated. Although we automatically 
extract rules, it still requires some amount of man-
ual supervision to verify whether the rule is correct. 
The challenge here will be to make this process com-
pletely automatic without compromising the neces-
sity for continuity in business operations. Secondly, 
we need to look at email attachments in addition to 
text for classification. In a lot of cases, users will only 
send a screenshot or log snippet with hardly any text. 
These cases cannot be handled by the present system. 
Alternate modalities such as voice and video can also 
be considered in future. Thirdly, for some information- 
technology operations systems, the tickets cannot be 
understood properly without looking at other artifacts, 
such as runtime execution logs. For these systems, 
we need to combine our ticket understanding with 
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Figure 10. Ticket Volumes for a Single Day.

log-mining techniques for accu-
rate dispatch. We are currently 
working on implementing such a 
system.

Notes
1. �As referenced in the book: A Method 

for Stochastic Optimization, Diederik  
P. Kingma and Jimmy Ba, 2014, 
eprint={1412.6980}, archivePrefix= 
{arXiv}, primaryClass={cs.LG}

2. �Resolver group names (columns CF 
and CE) are anonymized to preserve 
confidentiality.

3. �See the article, “Machine learning 
in Python” (2011), by Pedregosa 
et al., in the Journal of Machine 
Learning Research, volume 12, 
October, 2825-2830

4. �“An Imperative Style, High-Perfor-
mance Deep Learning Library”, by 
Paszke et al. (2019) in the book 
“Advances in Neural Information 
Processing Systems”, edited by H.  
Wallach et al., 8024–8035, published 
by Curran Associates, Inc., url = 
http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-
performance-deep-learning-library.
pdf

5. �Keras, written by Chollet et al. 
(2015) published by GitHub, url - 
https://github.com/fchollet/keras
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