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Machine learning (ML) is a subset of artificial intelli-
gence (AI) methodologies in which the AI system 
learns from experience. Experience can include 

observational data, labeled training data, interactions of 
the AI system with its user and environment, and teacher 
demonstrations and instruction. Today, ML approaches 
are ubiquitous in real-world applications including online 
assistants and computer vision. ML systems can formulate 
natural-sounding language responses and recognize faces to 
unlock phones. There are also lesser-known ML application 
areas such as manufacturing, health and medicine, finance, 
law, and agriculture. The Defense Advanced Research Pro-
jects Agency (DARPA) has invested heavily in developing 
ML technologies since before computer hardware was pow-
erful enough to realize their potential.

This article describes four threads of ML research sup-
ported and guided by DARPA. The first thread concerns 
probabilistic modeling, which was first developed by DARPA 

 Machine learning methods pro-
vide a way for artificial intelligence 
systems to learn from experience. 
This article describes four threads of 
machine learning research supported 
and guided by the Defense Advanced 
Research Projects Agency — probabilistic 
modeling for speech recognition, prob-
abilistic relational models, the inte-
gration of multiple machine learning 
approaches into a task-specific sys-
tem, and neural network technology. 
These threads illustrate the Defense 
Advanced Research Projects Agency 
way of creating timely advances in 
a field.
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in the context of speech recognition. Through a 
long series of steps, this thread led to the develop-
ment of probabilistic graphical models (also known 
as Bayesian networks) that enabled AI systems to 
reason efficiently with uncertainty. The second 
thread — probabilistic relational models (PRMs) — 
was launched by the Evidence Extraction and Link 
Discovery (EELD) program; research in this thread 
developed ways of combining logical and probabil-
istic reasoning, enabling, for example, AI systems 
to reason about the various tuples and relations in 
relational databases. using such models, researchers 
were able to develop systems for populating knowl-
edge bases by reading news stories, web pages, and 
Wikipedia articles. The third thread concerns meth-
ods for combining multiple ML components into 
an integrated AI system that can be trained end-to-
end. The final thread involves the progressive devel-
opment of neural network (NN) technologies from 
the earliest days of single-unit networks to the mul-
tilayer perceptrons of the 1990s, and finally to the 
deep learning (DL) techniques that revolutionized 
computer vision, speech recognition, and natural 
language processing in the 2010s.

Each of the four threads illustrates the power 
of the DARPA Way in which a program manager, 
working with the research community, articulates 
a technical challenge and a performance target 
that guides performers to rapidly and significantly 
advance the field.

ML Overview
Although often there is little distinction between AI 
and ML as colloquial terms, on a technical level ML 
is a clear subset of AI. ML itself has several subdisci-
plines, including NNs and statistical methods such 
as support vector machines (SVMs). Table 1 summa-
rizes the three main ML tasks and eight major ML 
technologies.

Different from AI in general, ML technologies use 
one of the three methods to learn from experience: 
supervised learning, reinforcement learning, or unsu-
pervised learning.

Supervised learning, or learning to perform a task 
through imitation, can be considered learning from 
a teacher whereby the system is shown the correct 
output for each set of inputs. After some number of 
repetitions (dependent on the exact technique), the 
system can reproduce what the teacher does. This is 
used for image and sound classification and is the 
main method for DL in computer vision and speech 
recognition.

Reinforcement learning, or learning to perform 
a task through trial and error, can be considered 
learning from a critic that does not show the correct 
answer but indicates whether the system’s answer 
should be rewarded with some numerical score or an 
up or down vote.

unsupervised learning has no signal for learning 
other than the structure of the data itself, or by 

learning structural relationships in the world that 
can be used in subsequent problem solving. If many 
of the patterns are similar, they form clusters that 
serve to organize the data into groups of similar 
patterns.

The earliest supervised learning methods bor-
rowed techniques from statistics and engineering 
(for example, linear discriminant analysis, quadratic 
discriminant analysis, linear threshold perceptrons). 
Samuel’s Checkers Player (Samuel 1959) was the 
first reinforcement learning system. Clustering and 
principal component analysis were among the earli-
est unsupervised learning methods. The same three 
learning methods are still used today.

Suitable AI Tasks for ML
To apply ML to a problem, we must first repre-
sent the solution in a learnable representation, 
described below with an example. Then we must 
collect or present data (for supervised and unsu-
pervised learning) or provide a way for the learning 
system to collect data itself by interacting with the 
environment (for reinforcement learning). Finally, 
we must define a measure of accuracy or error; 
this is known variously as the loss function, the 
cost function, or the reward function. The goal of 
learning is to find a specific representation in the 
space of learnable representations that optimizes 
the loss function when measured on new data.

For example, suppose we wish to read handwritten 
letters and numerals. Following the lead of a research 
group at AT&T in the 1990s, we will choose a five-
layer convolutional NN similar to the one shown in 
figure 1. The computational behavior of this network 
is determined by a set of numerical weights in each 
layer. We collect training data in the form of labeled 
training examples in which the input is a black-and-
white image that contains one letter or numeral and 
the known output is the corresponding label that 
specifies the letter or numeral. Learning consists 
of adjusting the weights in the network such that 
the loss function (which measures the difference 
between the correct answer and the answer com-
puted by the network) is minimized.

We can use the character recognition example 
above to explain a learnable representation. A learn-
able representation must have an algorithm that 
can find an instantiation of the representation that 
minimizes the loss on the data. The easiest tasks 
to approach with ML are one-step prediction tasks 
such as character recognition, as described above. In 
such tasks, the goal is to learn a function. There is 
no memory or inference in such tasks. The input is 
transformed through a series of one or more steps 
into the output.

Slightly more complex are sequence-to-sequence 
mapping problems. For example, suppose we have 
an image containing a handwritten word and we 
want to transform this into the sequence of letters 
in the word. We could map each one separately, but 
if we learn a model for typical letter sequences (for 
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example, that g is often followed by h in English), 
then we can do a more accurate job. In other words, 
if there are correlations among the component steps 
(i.e., recognizing the individual characters), then we 
can learn and exploit those correlations to improve 
performance. A simple way to do this is to replace the 
function with a finite state transducer. Probabilistic 
finite state transducers are known as hidden Markov 
models (HMMs). NN transducers include recurrent 
NNs, which process one input at a time while main-
taining an internal state, and transformer networks 
(Vaswani et al. 2017), which learn to pay attention 
to the parts of the input sequence that are relevant 
to producing each output element.

Even more complex than sequence-to-sequence 
problems are tasks that include some form of opti-
mization. For example, suppose we want to design 

music playlists. Music recommendation systems can 
recommend individual songs based on the songs a 
person has liked in the past. But to create a good 
playlist, we need to select a set of songs that consti-
tutes a good playlist, meaning that the sequencing 
of the songs should make an overall playlist good for 
a particular user. This can be accomplished by first 
choosing an optimization algorithm that can take a 
set of candidate songs as an input and arrange them 
into a good sequence of the desired length. Then a 
learning algorithm is given two tasks: first to learn 
the user’s definition of a good sequence and second 
to learn to produce lists of songs that, when given to 
the optimizer, will result in a good playlist. This is 
known as learning through an optimizer.

Similar challenges arise in playing games. One 
way to create a game-playing program is to learn an 

Tasks and 
Techniques

Probabilistic  
Graphical  

Models

Nonparametric  
Probabilistic  

Models
Decision  

Trees SVMs

Nearest  
Neighbor  
Methods

Linear  
Models

1- and  
2-Layer  

NNs
Deep  
NNs

Supervised 
Learning

X X X X X X X X

Reinforcement 
Learning

X X X X

unsupervised 
Learning

X X X X X X X

X indicates where there is a well-established approach to solving the selected task using the indicated technique.

Table 1. Summary of ML Tasks and Techniques.
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Figure 1. A Convolutional Neural Net, LeNet-5.

From Lecun et al. (1998), ©1998, IEEE, reprinted with permission.
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evaluation function that assigns a goodness score to 
each game state such that a limited-horizon search 
algorithm (such as Monte Carlo Tree Search) will 
find a sequence of moves that leads to a win. Learn-
ing a good evaluation function is another example 
of learning through an optimizer — in this case 
through a search procedure.

Many interesting AI tasks have been formulated and 
solved using ML. In natural language processing, tasks 
such as language modeling, part-of-speech tagging, 
named-entity recognition, semantic role labeling, 
dependency parsing, and many forms of information 
extraction have all been attempted. In computer vision, 
tasks such as object recognition, object detection, 
object segmentation, object counting, object tracking, 
gait recognition, and activity recognition have been 
studied. Many problems in science, engineering, and 
medicine have been addressed via ML including rank-
ing precancerous cells in medical images, disease diag-
nosis, and treatment planning.

Although there have been many successes, it 
is also constructive to consider tasks that have 
resisted ML. Extended conversations in natural 
language, for example, require a theory of mind in 
which Participant A must reason about what Partic-
ipant B thinks Participant A believes. Attempts to 
learn this from observed conversations have largely 
failed, presumably because we lack an effective way 
to represent the required knowledge. Self-driving  
cars are another application with challenges that 
ML has not solved. For example, a driver who 
looks in the mirror at a car following too closely 
may infer that the following car’s driver wants to 
pass and will move over, but self-driving cars have 
been unable to incorporate this theory of mind. 
Other examples include those with limited train-
ing data such as training a robot by demonstration 
to perform novel manipulation tasks. People can 
generally learn from one demonstration, but exist-
ing methods for generalizable imitation learning 

Pushing DARPA in New Directions

I was a very young junior faculty member at Stanford when I first received funding from DARPA. 
At that time, the reigning approaches for reasoning and even learning were largely based on 
symbolic logic. I had come from the world of probabilistic modeling and ML, and was hoping 
to use those methods for reasoning about complex, richly structured domains. Dave Gunning, 
the program manager for the High Performance Knowledge Base (HPKB) program, was willing to 
give me some funding, even though the approach I was advocating was a major departure from 
the other methods used in this program. Through a series of conversations, I convinced Dave 
Gunning that probabilistic methods could be useful for analyzing relational data such as the links 
between people, places, organizations, and so on. These methods turned out to be better able to 
deal with the high degree of uncertainty in these networks and consequently produce more robust 
and reliable results.

While my work was an outlier in the original program, the success of these methods induced 
Dave and others at DARPA to incorporate them into the Broad Agency Announcement for the 
EELD program, from which I also subsequently received funding. My initial experience with HPKB 
and EELD taught me that DARPA is open to considering new methodologies, even if they are a 
departure from the original trajectory of the agency. The key is to have deep technical discussions 
with program managers, and to be able to demonstrate that these alternative techniques solve real 
problems that are relevant to DARPA’s mission.

These programs were central in providing support for the work of my students Avi Pfeffer, Lise 
Getoor, and Ben Taskar in the formalization of the framework of PRMs and the development of 
efficient algorithms for learning and reasoning with these models. These provided the impetus for 
the creation of a research community that studies Statistical Relational Learning and continues to 
hold regular workshops. This line of work, and the associated funding by EELD and the Transfer 
Learning program, was also the inception of the seminal paper by my students Ben Taskar and 
Carlos Guestrin on Max-Margin Markov Networks.

DARPA’s willingness to let us explore an alternative and untrodden path in the early days 
of HPKB provided both a catalyst and the support for a new and important paradigm shift in 
ML — the move away from simple single-outcome prediction problems, and toward the broader 
paradigm of structured prediction, where the goal is to simultaneously label sequences, grids, 
graphs, or even general networks of interrelated objects. While the ML approaches have evolved 
considerably, this perspective of discriminative models for complex domains remains, and is 
now routinely applied across multiple real-world applications in natural language understand-
ing, computer vision, and even computational biology, where I hope that it will allow us to 
provide a new approach for improving human health.

– Daphne Koller
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or reinforcement learning typically require hun-
dreds or thousands of trials. Finally, existing ML 
methods only work in closed worlds where the 
situations encountered at run time are similar to 
the training data. Extending ML methods to deal 
robustly with surprises in open worlds is an open 
and important research challenge.

DL and NN History
ML has been revolutionized by the advent of a par-
ticular NN method known as DL or deep NNs, the 
focus of the fourth thread of this paper. Deep neural 
nets are NN models that are vastly larger and more 
complex than all previous ML models. Consequently, 
they are able to solve much more complex tasks at the 
expense of more training data and computation. The 
DL revolution was sparked by a combination of three 
factors: much larger data sets; algorithmic innova-
tions that could train these complex networks; and 
implementation of those algorithms on graphical pro-
cessing units (GPus) that could deliver the required 
computation.

One large data set is ImageNet LSVRC-2010, which 
contains 1.2 million images labeled with 1,000 cate-
gories of objects. In 2012, a DL model developed by 
Krizhevsky et al. (2012) won the annual ImageNet 
competition by a huge margin. Since that moment, 
DL has come to dominate the landscape for recogniz-
ing images and videos, understanding speech, and 
translating language. It has become commercially 
valuable, especially in large technology companies 
such as Google, Amazon, Microsoft, and Baidu. For 
example, Facebook employs DL methods with many 
layers of neuron-like processing to recognize faces. 
DL is being applied to perception and decision-making 
for self-driving cars. Financial firms are trading secu-
rities using DL prediction on the data from stocks 
and bonds.

The history of NN approaches to ML dates from 
1943 when neurophysiologist Warren McCulloch 
and mathematician Walter Pitts modeled a simple 
binary state threshold neuron with weighted syn-
aptic inputs. Networks of such devices with binary 
inputs could implement ANDs and ORs, and there-
fore, any Boolean function. In 1949, Donald Hebb 
proposed that weights increase when connecting 
neurons fire simultaneously. Sophisticated variants 
of such simple neurons and Hebb’s simple synaptic 
weight adjustment rule, or learning algorithm, along 
with architectures of neural connections, comprise 
NN learning today.

The perceptron learning algorithm for simple 
binary NN was invented in 1957 at Cornell by Frank 
Rosenblatt. In 1959, Bernard Widrow and Marcian 
Hoff of Stanford developed similar models for analog 
values called ADALINE and Multiple Adaptive Lin-
ear Elements (MADALINE). Still, in 1970 the Marvin 
Minsky and Seymour Papert book Perceptrons sug-
gested that the single-layer NN approach, which was 
the only approach with a known learning algorithm, 
was hopelessly limited. This was partially responsible 

for the decline of NN funding, known as the neu-
ral net winter; traditional von Neumann architecture 
dominated AI research and funding in the 15 years 
following.

The 1980s saw the return of biologically inspired 
AI starting with a brain-like NN model of vision by 
Kunihiko Fukushima called the neocognitron based 
on earlier neuroscience results. This model has 
similarities to the convolutional NNs in use by DL 
vision systems today. In 1982, physicist John Hop-
field of Caltech presented a content-addressable  
memory with bidirectional connections between 
McCulloch-Pitts neurons and, as a result, many peo-
ple became interested in NNs again. The Boltzmann 
Machine (Ackley, Hinton, and Sejnowski 1985) 
extended this model with a learning rule that 
could learn synaptic weights in two or more lay-
ers. In 1986, several groups of researchers came up 
with similar ideas to extend analog ADALINEs to 
multiple layers. This method is called back-propa-
gation of errors (Rumelhart, Hinton, and Williams 
1986) and is more computationally efficient than 
the Boltzmann Machine. This started a revolution 
in which many applications for NNs were demon-
strated. The hardware, software, and training data 
available allowed for learning two layers of weights 
which, in theory, is all that is necessary for learn-
ing any function.

In the 1990s, statistical methods such as decision 
trees, SVMs, and Bayesian techniques were shown to 
have properties similar to NNs but with better theo-
retical foundations. Consequently, they dominated 
the ML landscape until the DL techniques of the past 
decade showed their superiority and brought NN 
methods back into vogue.

Many layers of interconnected neurons were 
shown to be learnable in the 2010s (the deep con-
volutional character recognition model of Lecun, 
Bouttou, Bengio, and Haffner [1998] previewed this 
revolution), allowing sophisticated feature hierar-
chies to be learned rather than hand-coded, which 
led to spectacular improvements in performance. The 
needed learnability for deep networks eluded earlier 
researchers largely because the scale of computation 
necessary was not available. Current approaches rely 
on the availability of GPus to parallelize and accel-
erate the necessary computations for learning on the 
massive datasets assembled by using internet data 
and other sources.

This history is sketched in figure 2 with funding 
milestones by DARPA. The four colors represent 
the four threads to be discussed in the next section. 
uncolored areas represent the dates of other DARPA 
programs and significant events.

Four Important Threads  
in DARPA-Sponsored ML
Over the years, DARPA has sponsored research in 
many aspects of AI. Early programs did not fund 
ML directly, but rather included it as part of larger 
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efforts. This is typical of the DARPA style, which is 
to pose a challenge to the research community with-
out specifying exactly how that challenge should be 
achieved. Some teams developed ML approaches to 
meet those challenges. A good example of this is the 
role of ML in speech recognition.

ML Approaches to Speech Recognition

In 1971, DARPA launched a program on speech under-
standing systems; the first thread of ML.

Instead of setting vague objectives, DARPA and the re-
search community proposed a set of specific performance 
goals (Newell et al. 1971). The system was required to 
accept connected speech from many speakers based on 
a 1000-word vocabulary task-oriented grammar, within 
a constrained task. The system was expected to perform 
with less than 10% semantic errors, using about 300 mil-
lion instructions per second of speech (MIPSS) and to be 
operational within a five-year period. (Carnegie Mellon 
university Computer Science Speech Group 1977, p. 1.)

At Carnegie Mellon university, two teams attacked 
the challenge. One team, which involved many 
people including Lee Erman, Frederick Hayes-Roth, 
Victor Lesser, and Raj Reddy, developed the Hearsay-I  
and Hearsay-II systems based on what came to 
be known as the Blackboard Architecture (Erman  
et al. 1980). The second team, consisting of James 
Baker and Raj Reddy, developed the DRAGON sys-
tem (Baker, 1975) based on building and training a 
HMM. Both systems were very influential in subse-
quent years. The Blackboard architecture was devel-
oped into a reusable platform for creating complex 
problem-solving systems. Meanwhile, the applica-
tion of HMMs (and closely-related models) contin-
ues to the present.

An HMM is an example of a probabilistic genera-
tive model. The model is designed by imagining that 
the person speaking chooses a meaning to express as 
speech. To express the meaning, the speaker gener-
ates a sentence (as a sequence of words). To generate 
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the speech, the sequence of words is expanded into 
a sequence of phones, which are then expanded into 
an acoustic waveform. We can summarize the model 
as a conditional probability distribution P(AS|M), 
where AS is the acoustic signal and M is the mean-
ing. To recognize a spoken sentence, this generative 
model can be inverted by applying the Bayes’ theo-
rem to compute

( ) ( ) ( )arg max  | arg max | .=
M M

P M AS P AS M P M

In the case of HMMs, this computation can be per-
formed relatively efficiently using the Viterbi dynamic  
programming algorithm. The probabilities in the 
model were computed from a set of training data.

The Harpy system, a successor that adopted  
the DRAGON approach, incorporated several ideas 
from HEARSAY-I and was able to surpass the pro-
gram goals within the five-year period. By today’s 
standards, the system was very limited. The train-
ing and test data came from a fixed set of five speak-
ers and the set of possible utterances was quite 
narrow. Despite these limitations, the approach 
of applying ML (in the form of a complex prob-
abilistic model) was general. It was a precursor to 
the development of probabilistic graphical models 
(also known as Bayesian Networks) that burst onto 
the AI scene in 1988 with the publication of Pearl’s 
book Probabilistic Reasoning in Intelligent Systems 
(Pearl 1988).

The Speech understanding Systems program is 
an excellent example of the way in which DARPA 
designed a program with ambitious performance tar-
gets in consultation with the research community. 
While the goals were precisely specified, the means 
of achieving them was left open. This resulted in 
remarkable innovation with two highly-influential 
AI system architectures developed.

EELD: Probabilistic Relational Models

The EELD program was created in 2002 in the wake of 
the 9/11 attacks with the goal of uncovering terror-
ist networks through the analysis of multiple diverse 
information sources (DARPA 2003). From a technical 
standpoint, the project involved identifying entities 
and relationships that make up a graph and then 
predicting additional relationships, or links, missing 
from the graph. EELD marked the start of the second 
ML thread.

Among the many research directions that were 
explored, the one with the greatest impact was an 
approach combining probabilistic modeling, rela-
tional logic, and ML to create PRMs (Getoor, Friedman, 
Koller, and Pfeffer 2001). Prior to EELD, probabilistic 
models in AI and ML were essentially the probabilistic 
versions of propositional logic. Such models cannot 
represent the concepts of objects and the relations 
between them. For this, we need to use relational struc-
tures provided by first-order logic. A long-standing  
goal in knowledge representation had been to find 
an approach to incorporating probabilities into 

first-order logic. PRMs took an important step in this 
direction by handling a subset of first-order logic suf-
ficient to model relational databases.

Given a relational database and its associated enti-
ty-relationship model, the structure and probability 
distributions of a corresponding probabilistic rela-
tional model can be learned. Then, as new entities are 
added to the database, the learned model can predict 
the probability that specified relationships will hold. 
This is precisely the ability to predict links missing 
from a graph. For example, although EELD predated 
the creation of modern social networks such as Face-
book, the tools that it developed have facilitated the 
creation of the field of computational social science 
that seeks to understand social structures based on 
evidence such as social network information.

PRMs and the EELD program have also had a huge 
impact in the development of more mature tools for 
extracting structured knowledge from the internet. 
For example, DARPA has funded research that aims to 
automatically populate a knowledge base by extract-
ing information from news stories and other public 
documents on the web. Tom Mitchell’s group at Car-
negie Mellon university produced the Never Ending 
Language Learner, which builds a large knowledge 
base of entities and relationships this way (Mitchell 
et al. 2015). The National Institute of Standards and 
Technology regularly holds the Text Analysis Con-
ference-Knowledge Base Population challenge for 
evaluating systems of this type. All of these rely on 
methods first developed under EELD.

Prior to EELD, ML and probabilistic modeling 
could only be applied to problems involving prop-
ositional logic (or feature vectors, in ML terminol-
ogy). DARPA set an ambitious goal with the EELD 
program — motivated by a national security need — 
that produced dramatic innovation and technologi-
cal improvements.

Integrated AI Systems with  
Multiple Learned Components

The third ML thread launched in 2003 with DARPA’s 
Personal Assistant that Learns (PAL) program — the 
goal was to create an integrated AI system for the 
desktop knowledge worker. Two large teams were 
funded, one led by SRI that produced the CALO sys-
tem (Cognitive Agent that Learns and Organizes) and 
the other led by Carnegie Mellon university (and later 
also SRI) that produced the RADAR system (Reflective 
Agents with Distributed Adaptive Reasoning). The 
PAL program addressed a wide range of capabilities 
including organizing email and documents; planning, 
scheduling, and dynamically rescheduling events; 
assisting the user in preparing documents (especially 
PowerPoint presentations); and assisting teams dur-
ing meetings (for example, by transcribing the con-
versation, recording the action items, deadlines, and 
assigned parties, and so on.)

ML pervaded all aspects of CALO and RADAR. 
Supervised learning and clustering methods were 
developed for organizing email and documents and 
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for helping prepare PowerPoint presentations. To 
teach CALO to execute procedures, three different 
methods were developed that involved a mix of 
demonstrations and verbal explanations. A general 
scheduling algorithm learned the preferences of each 
user in a flexible way and was able to coordinate 
multiple meetings involving overlapping groups 
of people. The meeting understanding component 
included several forms of supervised learning.

One of the core challenges in building large sys-
tems such as CALO and RADAR is the integration of 
multiple, separately-learned components. As a simple 
example, CALO contained both an email classifier that 
predicted to which project an email message belongs 
and a document classifier that predicted to which pro-
ject a document belongs. These classifiers needed to be 
different because email has different properties than 
documents. In particular, the email message contains 
the list of recipients, which is very useful for identi-
fying the relevant project, while such information is 
often less obvious in a document; yet, we would like 
the two classifiers to learn from each other because the 
two tasks are very similar. This was achieved in CALO 
through a process of relational co-training that took 
advantage of the fact that many email messages have 
documents attached to them. It is highly likely that 
if an email message M1 belongs to Project K then its 
attached files F1 and F2 also belong to the same pro-
ject. Hence, when the user labels an email message 
M1 with “Project K,” this label can also be passed 
to the document classifier to provide training exam-
ples for F1 and F2. The process can then iterate. If 
the document classifier changes its prediction about 
some other document F3 that was attached to email 
message M2, the updated prediction can be passed 
to the email classifier to provide a (probabilistic) 
label for M2. This technique is a step toward achiev-
ing end-to-end learning for AI systems composed 
of multiple, separately-engineered ML components 
(Dietterich and Bao 2008).

The task learning components of CALO had the 
biggest impact. A reusable integrated task learning 
system was built that combined three of the task 
learning components into a single system. It was 
then integrated into the Army’s Command Post of 
the Future (CPOF) to make it easy for CPOF users to 
teach CALO-CPOF routine procedures (e.g., for the 
morning daily briefing or for configuring the CPOF 
workspace to prepare standard reports).

The most visible spinout from CALO is Siri, the 
Apple voice assistant. Siri was a startup company 
(spun out from SRI) that included some of the CALO 
researchers as cofounders. The original vision was to 
allow vendors and end-users to teach Siri new proce-
dures, but of course, the deployed product delivers 
a more limited, but more robust, capability. At the 
time of writing, Apple, Google, Microsoft, and Ama-
zon all offer speech-based assistants.

The Personal Assistant that Learns program shows 
how DARPA can push forward applied research by 
sponsoring the development of integrated systems. 

As AI research advances, the systems integration 
challenges will become increasingly critical. There 
is significant merit in setting an AI system integra-
tion challenge every 10 years to test integration 
methods and identify AI capability gaps. DARPA is 
the only funding agency in the uS Government that 
can fund such large efforts. Each such effort uncov-
ers and highlights fundamental research questions 
as well as practical engineering issues. In CALO, the 
problem of end-to-end learning was one such issue. 
A second issue was the problem of requiring all com-
ponents in a large system to work within a single 
shared ontology, a problem discussed in detail in the 
Knowledge Representation and Reasoning article in  
this issue.

NN Methods and DL

Although neural net research at DARPA has revived 
recently with the advent of DL successes, it actually 
has a long history at DARPA. This fourth ML thread 
began in 1987, soon after the promising NN learn-
ing algorithms of the Boltzmann Machine (Ackley, 
Hinton, and Sejnowski 1985) and back-propagation 
(Rumelhart, Hinton, and Williams 1986) were pub-
lished. At that point, DARPA funded a study through 
the Massachusetts Institute of Technology Lincoln 
Labs on NNs. In an atmosphere of excitement about 
the promise of this technology, two years of fund-
ing was allocated for the Artificial Neural Network 
Technology exploratory program that started in 
1988. Successes in this initial phase led to a full-scale 
program that continued for a total of eight years. 
Many of the methods that we take for granted in ML 
today began during this period. Evaluations of the 
technology for speech recognition, automatic target 
recognition, and sonar signal detection showed clear 
superiority. Very large-scale integration chips of both 
analog and digital hardware systems for learning 
and classification were developed (Alspector et al. 
1991; Graf and Henderson 1990; Griffin et al. 1991). 
Although Intel developed their own analog Electron-
ically Trainable Analog Neural Network chip (Intel 
1990), the relentless progress in digital technology 
paced by Moore’s Law superseded such specialized 
chips. Theoretical results led to SVMs as an alter-
native ML technology (Cortes and Vapnik 1995), 
which, unlike neural nets, had a clear mathematical 
foundation for performance.

After a bit of a downturn in neural net funding, 
the DL program commenced in 2009. At the time, 
the best example of learning in a deep system (more 
than two layers of learnable-weighted connections 
between neurons) was a deep belief net with a dis-
criminative, bottom-up path from inputs to out-
puts and a generative, top-down path from output 
to input (Hinton, Osindero, and Teh 2006). The 
learning algorithm, similar to that of the Boltzmann 
Machine, was local to the neurons involved except 
for a global value signal, and used a form of Hebbian 
learning called contrastive divergence. The history 
of DL since then, mirroring its counterpart in the 
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1980s, has been mostly of purely discriminative (as 
opposed to generative) training using the nonlocal 
back-propagation algorithm. This has led to better 
than human performance in narrowly-defined tasks; 
however, the future of ML will likely depend on 
learning model-based, generative methods that can 
retain knowledge and extract new lessons from that 
knowledge and its context. A DL method called 
generative adversarial networks uses generative mod-
els to produce unparalleled levels of accuracy and 
is part of the standard DL toolkit. However, back- 
propagation is still the workhorse used to train these 
architectures.

DL over the last five years has met, or exceeded, 
human capabilities in object recognition, language 
translation, navigation, and other narrowly-defined 
tasks. Personal assistants use DL in speech recogni-
tion, synthesis, and language understanding and 
translation. Driverless cars use DL for scene under-
standing, navigation, and control. Photo services 
and social networks use DL for face recognition 
and identification. The results have propelled AI to 
the forefront of public consciousness and had large 
impacts on industry as well. Experts in AI command 

superstar salaries in large internet, automotive, finan-
cial, and other companies.

Before about 2010, NN methods had largely been 
confined to two layers of adjustable weights and 
had declined in popularity and somewhat in per-
formance, relative to other ML statistical methods, 
especially SVMs. SVMs were attractive because they 
came with some mathematical guarantees of opti-
mality given the input features (usually carefully 
hand-coded) to be used, and output classes to be 
learned. DL extended the number of layers able to 
be learned by a variety of new methods, by using 
massive datasets for training, and by the steadily 
increasing computing power of microchips, espe-
cially GPus that can accelerate the types of compu-
tation needed. These improvements in algorithms, 
data, and hardware enabled learning better features  
than those from hand-coding. For example, in figure 3,  
a DL system learns layers of a visual hierarchy for 
training images of only well-posed faces.

The first layer of the hierarchy is composed mostly 
of edge detectors of various orientations. This is sim-
ilar to features constructed by hand for image rec-
ognition. However, the higher layers capture more 

Hardware for NL — DARPA

Because of the massive amount of computation that is required, there have been many attempts 
over the years to create specialized hardware for NN emulation and training. Neural models are 
highly parallel and relatively regular and consist primarily of matrix operations.

In the late 1980s and early 1990s, several commercial NN chips were developed. These include 
the CNAPS chip designed by my company, Adaptive Solutions, and two chips, an analog chip, 
Electronically Trainable Analog Neural Network, and a low precision digital chip, Ni1000, designed 
by Intel. In both of these commercial efforts as well as of a number of experimental technologies, 
DARPA played a key role investing and guiding the efforts.

We have now entered a new era in NN technology. Although algorithm improvements and 
the development of large data sets have been important, we should not underestimate the role 
Moore’s Law has played. Processors today are thousands of times faster than those of the early 90s, 
and primary memory is thousands of times larger and faster.

Moore’s Law has also led to the development of more specialized architectures such as the GPus 
with almost 20 billion transistors and computing at 10 TeraFlops.

More recently, DARPA programs such as The unconventional Processing of Signals for Intelli-
gent Data Exploitation (probabilistic analog computing) and the Cortical Processor (biologically 
inspired ML) have been focused on the synergy of algorithms and hardware for AI.

A number of companies are now developing neural-net chips. Google has its Tensor Processor 
unit and Intel has numerous chip efforts. Likewise, there are around 40 start-ups developing var-
ious kinds of digital and analog NN chips.

Moore’s Law is now ending. NN algorithms will continue to tackle ever more complex appli-
cations. But without Moore’s Law how can we maintain our current momentum? In some ways 
Moore’s Law has inhibited architecture innovation: Why design a new architecture when I will 
get a 2× performance/price-increase by just moving to a new process? Many, including DARPA, 
believe that the end of Moore’s Law may unleash even more creative chip design!

DARPA has responded with their Electronics Resurgence Initiative, one of whose objectives is to 
make it easier to build large, complex chips. Although NNs are not the specific target of the Elec-
tronics Resurgence Initiative, the initiative will create tools and other capabilities that will allow 
rapid exploration of the neural/ML architecture space. We are in for an exciting time!

– Dan Hammerstrom
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Figure 3. A Layered Hierarchy of Features Learned from Face Images.

Adapted with permission from Andrew Ng.1
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face-specific features of the data presented for train-
ing, unlike hand-coded techniques, making face 
identification easy. These improved features from 
end-to-end learning led to spectacular improvements 
in accuracy and other measures of performance. DL 
systems match human performance in object identi-
fication in images and word identification in speech. 
These systems surpass human capabilities in games 
such as Atari and Go. In the Atari system pictured 
in figure 4 (Mnih et al. 2015), a DL network learns 
by trial-and-error, from playing millions of games, to 
control a joystick using reinforcement learning. The 
only inputs are the screen pixels and whether it won 
or reached its goal after a very long sequence of moves. 
This general method of learning control can be used to 
train autonomous systems such as cars or drones.

DARPA investment in the basic-research DL 
program bore fruit after the 2012 ImageNet result 
(Krizhevsky et al 2012), when DL methods began rev-
olutionizing important applications. Current DARPA 
AI programs include Probabilistic Programming 

to Advance Machine Learning, Cortical Processor, 
Explainable AI, Lifelong Learning Machines, Radio 
Frequency Machine Learning Systems, Learning 
with Less Labels, Guaranteeing AI Robustness 
against Deception, and Machine Common Sense. 
DARPA will continue to fund $2B worth of AI pro-
grams over the next five years as part of its “AI 
Next” initiative.

More Methods of ML and Future Directions

ML builds a model of the environment based on 
data collected. As evidenced by the great variety of 
ML methods discussed, the field is not yet mature. 
It has swung from structured symbolic methods 
to data-driven neural methods, and this diversity 
will probably continue in the future. It is likely 
that more-semantic and symbolic methods will be 
incorporated into data-driven methods, as we have 
seen in recent years. Context and knowledge will 
certainly be added to ML, and DARPA programs 
such as Machine Common Sense and Lifelong 

Convolution Convolution Fully connected Fully connected

No input

Figure 4. A Deep Network for Control of a Joystick in Atari Games.

Reprinted by permission from Springer Nature (Mnih et al. 2015).
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Learning Machines are exemplars of this trend. 
Specialized hardware for ML had been a feature 
of early neural net research and this trend is now 
reappearing; GPu processors are increasingly used 
for the fast multiply-adds needed in the inner loop 
of DL computations, ML hardware startups are 
being acquired by chip companies, and some com-
panies, such as Intel, are developing their own spe-
cialized chips again (Davies and Srinivasa 2018). 
DARPA has funded some of this hardware work in 
programs such as Cortical Processor.

Now that AI and ML methods have become main-
stream and commercially valuable, observers of pro-
gress in DL have questioned whether these systems will 
eventually lead to a superintelligence beyond human 
control. It is important to note that DL systems, while 
surpassing humans in the narrow domain for which 
they are trained, such as face recognition, are very far 
from human capabilities in general intelligence across 
the breadth and depth of human enterprise. Estimates 
of when DL systems might enable artificial general 
intelligence range from a decade to a century, and 
many people argue that the notion of artificial general 
intelligence is not even well-defined. Questions sur-
rounding how to manage the development of artificial 
general intelligence are of high current interest. DARPA  
is addressing many aspects of AI safety with the pro-
grams for Assured Autonomy, Guaranteeing AI Robust-
ness against Deception, Competence-Aware Machine 
Learning, and Science of Artificial Intelligence and 
Learning for Open-world Novelty.

ML and DL systems have revolutionized the way 
in which we interact with technology and, increas-
ingly, the world. New applications are emerging. 
For example, recent progress in prosthetic control 
and cognitive science have benefited from ML tech-
nology (Savage 2019). As ML technologies improve, 
along with advances in hardware, the number and 
diversity of tasks to which they are applicable will 
grow. DARPA has played a key role in developing the 
technologies we have today, with the prime exam-
ple being Siri, and will likely continue to advance AI 
technologies in the future.
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Note
1. Taken from Andrew Ng’s talk, unsupervised Feature 
Learning and Deep Learning www.csee.umbc.edu/courses/
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