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Abstract Argument for Hybridization 

This article describes our initial experience with building applications 
programs in a hybrid AI tool environment. Traditional AI systems 
developments have emphasized a single methodology, such as frames, 
rules, or logic programming, as a methodology that is natural, efficient, 
and uniform The applications we have developed suggest that natural- 
ness, efficiency and flexibility are all increased by trading uniformity 
for the power that is provided by a small set of appropriate program- 
ming and representation tools The tools we use are based on five 
major AI methodologies: frame-based knowledge representation with 
inheritance, rule-based reasoning, LISP, interactive graphics, and ac- 
tive values Object-oriented computing provides a principle for unifying 
these different methodologies within a single system. 

As a result of our applications development experiences, 
we are beginning to use a development methodology that 
emphasizes early prototype development, incremental refine- 
ment of the problem description, use of multiple integrated 
solution methods, and emphasis on visibility of both the 
problem-solution process and the explicit description of the 
problem domain. The benefits of using this hybrid develop- 
ment methodology include natural and explicit knowledge 
representations, flexible user-system interaction, and power- 
ful explanation facilities through use of interactive graphics. 
We present an example to motivate our discussion. 

Workers in AI often express a strong preference for one 
programming methodology over all others, such as rules (e.g., 
within an EMYCIN framework), or logic (e.g., PROLOG) 

or functional (e.g., LISP of one one dialect or another), or 
object-oriented (e.g., SMALLTALK). These methodologies 
may or may not be appropriate for solving particular repre- 
sentation and reasoning problems. 

The argument to support one programming methodol- 
ogy over another usually falls into one or more of three basic 
categories: 

Naturalness of expression. It usually argued that the 
methodology proposed is a more natural way of express- 
ing some important class of problems. The class seems to 
vary from one methodology to another, though each class 
is argued to be of central importance. Often conciseness is 
the preferred metric for describing naturalness, although it is 
sometimes argued to have deeper psychological significance 
or acceptance over a broader class of users (e.g., production 
rules). These arguments come down to a user interface issue. 
The user may find it more “natural)) or succinct to express 
or view the content of a system when knowledge is presented 
in one form or another. 

l Elqiciency One programming methodology is some- 
times argued to be more efficient computationally 
than one of its rivals. Efficiency seems to depend 
upon the class of problem chosen. 
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Parts of an expert system development environment (on the left) and of an expert system (on the right). 

Figure 1. 

l Uniformity Since the programming methodology 
is capable of solving all programs (z.e., is Turing 
machine equivalent), one methodology should be con- 
sidered above all others so that users must cope with 
the complexity of only a single representation and 
reasoning scheme. This argument is sometimes posed 
in the form of good scientific practice, parsimony of 
the underlying representational scheme, and small 
size of the development environment. 

Programming methodologies provide potential solutions 
to a design problem. Consider the generic problem faced by 
a domain expert who wants to build a knowledge system: 
What functions must the designer include in an application 
system? Figure 1 illustrates our generic view of the parts of 
a knowledge system application and of the AI development 
system on which it is based. On the right is the applica- 
tion system itself, including a knowledge base, data about 
the particular problem, and the set of specialized support 
routines that every expert system requires. The knowledge 
base might include some description of the structure and 
function of a domain and a number of heuristics that describe 
the way that problems are analyzed within the domain. Spe- 
cialized support routines might include particular program- 

ming functions to define operational meaning of terms such 
as increased or to provide access to some specialized data 
structures of an underlying LISP system. The domain expert 
must supervise the construction of the expert system. 

The left side of figure 1 shows the generic parts of an ex- 
pert system building environment. The inference engine is a 
widely recognized part of any such environment. In addition, 
AI application development environments always have a rep- 
resentation component, either explicitly as in a frame-based 
system, or implicitly as in rule or logic-based systems when 
the environment commits the user to using rules or logical 
assertions as a language for representing domain knowledge. 
The user-interface is a crucial, if sometimes underdeveloped, 
part of the environment, providing the facilities through 
which the user enters domain knowledge, asks and answers 
questions, and views results. The explanation facility shows 
the user the results of its decision-making process, and ideally 
it can explain both the structure of the knowledge in the sys- 
tem and the behavior of the system while it operates. Finally, 
an AI applications development environment provides a num- 
ber of relatively generic utilities for managing data, inter- 
acting with the underlying computer system and the dis- 
play, and possibly debugging support. Ideally, the domain 
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Figure 2. 

expert need not create a development environment before 
implementing an AI application system. 

The focus on the AI application system suggests that 
naturalness and efficiency can be maximized by selecting the 
most appropriate representation and reasoning technique for 
the function to be performed. 

Sacrificed uniformity is the price to pay for using ap- 
propriate methodologies to obtain improved naturalness and 
representation. While diverse specialized support utilities, 
such as editors and explanation systems, can be built to 
support a uniform methodology, the flexibility of a uniform 
methodology is limited whenever a single representational 
form becomes opaque, complex or convoluted in performing a 
particular task. Generally, there are tricks for getting around 
the limitations of each of the representation and program- 
ming methodologies. In contrast, a modest number of com- 
plementary methodologies can be supportive of each other 
and thereby more natural, efficient and flexible than any 
single methodology. Thus, the designer must trade the effort 
to support and teach users to use the tricks with the effort 
to support and teach users to use several methodologies. 

The premise of hybrid tool environments is that unifor- 
mity of representation and programming methodology can 
be sacrificed safely to improve naturalness of expression, 
efficiency and flexibility. Consider the integration of a frame- 
based representation with a rule system. Imagine a modest 
system capturing some user’s expertise with fault diagnosis 

of a mechanical system, say a subsystem of an automobile 
engine or a nuclear power plant. In a hybrid system, an ap- 
plication might include a knowledge base with three levels of 
hierarchy, as in Figure 2. Assume a branching factor of 3, 
resulting in a total of 40 concepts (1 + 3 + 9 + 27). Each of 
the 40 objects might have 3 attributes per concept. In addi- 
tion, the rule-based part of such a system might include 75 
heuristic decision rules, independent of the concept hierar- 
chy. These rules could be distributed throughout the hierar- 
chy, attached to the objects that they describe. 

In a pure rule-based system, the concept hierarchy as 
well as the object attribute values could have been expressed 
as a set of rules of the form (if (?x = Clyde) then (?x isa 
elephant)), and (if (?y = elephant) then (?y has COLOR 
gray)). We can calculate the number of rules necessary to 
describe this structure: 39 to describe the concept hierar- 
chy, 120 to describe the values of attributes (assuming a 
meta-rule or a rule interpreter that takes special account 
of inheritance), 60 rules to account for attribute value pair 
modification (assuming a 50% modification rate), and 204 
additional rules if the interpreter does not take special ac- 
count of inheritance). The sum is 200 to 400 rules, depending 
on how inheritance is handled, to describe a typical small 
taxonomy. Finally, as in the hybrid case above, the rule- 
based knowledge might include 75 heuristic decision rules, 
independent of the concept hierarchy. 

Several elements are notable in this example. First, 
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Figure 3. - 

some of the rules defining the domain hierarchy might not 
be strictly necessary to carry out the decision-making prob- 
lem, and they might be left out of the knowledge base. The 
knowledge base then becomes much more opaque to users, 
however, since the description of the domain has largely 
been removed. Next, note that 70% to 85% of the total 
rules in the rules-only version of this structure (200-400 
out of 275-475) are used to describe the taxonomy. The 
heuristic decision rules become overwhelmed by the rules 
whose principal purpose is definition. In addition, consider 
the implications on performance of the system dealing with 
400+ rules versus 75. In an important sense, inheritance 
within a frame-based system is a specialized kind of rule, 
and the implementation of that kind of rule is built into the 
representation system. Chandrasekaran has argued that a 
number of such rule/interpreter pairings exist in a society 
of specialists ranging over both heuristic and descriptive 
knowledge (Chandrasekaran, 1983). 

Similar arguments can be made comparing most of 

the major programming methodologies and representational 
techniques available in AI. Each technique has circumstances 
that make it the most natural form of representation, and for 
which efficient interpreters can be built. 

Given a hybrid tool environment, the problem still 
remains to understand how to recognize when a particular 
tool is appropriate and how to apply it. 

An Example 

Starting with ill-defined problem specifications, AI tech- 
nology provides a means of developing increasingly precise 
specifications and implementations of behavioral models for 
a broad set of decision-making and problem-solving situa- 
tions. This section discusses an example system to illustrate 
the way that hybrid AI methods can be used to represent 
and manipulate a complicated problem in ways that are ex- 
plicit and powerful. Subsequent sections discuss the specific 
features and benefits of the knowledge-based system devel- 

44 THE AI MAGAZINE Fall 1984 



STEAM-GENERATOR 

4 

SECONDARY-COOLING-SYSTEM-PART 
TURBINE-GENERATOR 
CONDENSER 
FEEDWATER-PUMP 

REACTOR-PART CONTAINMENT-VESSEL 

/ 

CONTROL-RODS 

\ 

CORE 
REACTOR 

\ 

EMERGENCY-CORE-COOLING-SYSTEM-PART -BORATED-WATER-STORAGE-TANK 

PRRSSURE-CONTROL-SYSTEM-PART-===PRESSURIZER 
PRIMARY -COOLANT-PUMP 

6 

SECONDARY -COOLING-SYSTEM 

REACTOR -SUBSYSTEM 
EMERGENCY-CORE-COOLING-SYSTEM 
HIGH-PRESSURE-INJECTION-SYSTEM 
PRIMARY -COOLING-SYSTEM 

ACCIDENT 
INITIALIZE 

Symbolic description of the parts of a reactor, as described in the REACTORS KB. 

Figure 4. 

opment tools that were used in this implementation. 
Consider the problem of using a knowledge-based sys- 

tem to analyze and describe the behavior of a complicated 
system, such as a nuclear reactor. A simple demonstration 
knowledge base (KB), named REACTORS, analyzes the plant 
behavior, characterizes its operating mode, and reports when 
unusual events have occurred.’ 

This article focuses on processing of alarms within a com- 
plicated application problem area, such as the REACTORS 
application, but it does not discuss analysis of plant opera- 
tion in general. 

Extending the Technology Base 

The rules shown in Figure 3 represent a small subset 
of the simplified knowledge of an expert in reactor opera- 
tion and thereby illustrate some of the characteristics of 
simple rule-based systems. The rules can explicitly represent 
the context in which they are applicable, and this explicit 
sensitivity to context is one of the major sources of their 
power. Their style is very natural for representing heuristic 
knowledge about the behavior of a system. The active rule 
graph, shown in Figure 3, explains the invocation of rules to 
the user. This example of backward chaining has top-level 
goals to be tested on the left side, such as “Accident type 
is loss-of-feedwater.” Rules that make particular conclusions 
are shown to the right of the individual goal states, and ter- 
minal nodes are on the right side of the rule graph. The 
darkened box indicates the current focus of attention of the 
backward-chaining rule system. Check marks note premises 
that have been found to be true, and Xs denote premises 
that have been found to be false. New boxes are darkened 
and checks and Xs are added dynamically as the backward- 
chainer moves through the rule tree. 

‘The examples of this paper were implemented in KEE, the Knowledge 
Engineering Environment. KEE is a product of IntelliGenetics. 

Limitations of Propositional Rules. The rules of Figure 
3 reason with a superficial representation of decision-making 
behavior of an expert, not with an explicit description of the 
structure and function of the domain. While similar rules 
might be written to reason with such structural knowledge, 
the consideration of such rules suggests one of the major 
limitations of pure rule-based reasoning: It does not describe 
structure in a very natural way. More abstractly, the rules 
describe relations between individual propositions. While 
propositional representations are powerful, they focus on 
relations among attributes of objects, rather than on objects 
themselves, and they do not represent temporal or spatial 
relations in a natural way. The propositional representation 
limits the clarity of explanation of the structure and be- 
havior of the model. For example, since the rule-based rep- 
resentation does not suggest easy ways for the user to iden- 
tify all of the attributes of some object such as a STEAM- 
GENERATOR, a program designer does not have an obvious 
approach to deciding how to change a reactor model to ac- 
commodate a changed device. 

Frame-based representations have been used to describe 
hierarchical relations such as those found in descriptions of 
the structure of domains. Frames, or schemas, are very useful 
for focusing on representation of objects, and they are useful 
for representing associations of features of objects (Anderson, 
1979). The reactor has a number of parts and subsystems, 
each of which has individual structure and behavior. Figure 4 
shows a symbolic description of the parts of the REACTOR’S 
knowledge base (KB). Lines in Figure 4 connect names of 
objects that describe classes, such as REACTOR-PARTS, to 
names of objects that describe a subclass, such as STEAM- 
GENERATOR. Objects have attributes, and attributes are 
passed by “inheritance” from class to subclass. Part of the 
information about any concept lies in its relations to other 
concepts. Rules provide one way of showing such relations, 
but the relations between frames shown in Figure 4 provide 
additional useful information about relations among objects, 
such as names of the classes from which a particular object 
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inherits its attributes and the names of any subclasses that 
inherit its attributes. In the case of updating a reactor model 
to include a new steam generator, the user would simply 
describe the STEAM-GENERATOR object and modify the 
appropriate attributes or rules associated with the object. 

One of the traditional limits of early expert systems was 
the inability of the user to operate in a “mixed initiative” 
mode. Once backward chaining was started, it was difficult 
to interrupt the decision-making process to volunteer infor- 
mation or to change the course of an interaction. One source 

of this inflexibility is that early expert systems use a small 
number of representation and control strategies, such as rules 
and backward chaining. As suggested in earlier section, 
a hybrid AI development system can support both tradition- 
al frame based representation and rule-based reasoning with 
interactive browsing and flexible modification of knowledge 
base content. 

Natural Interaction through Graphics and Active Ob- 
jects. In addition to using frames to describe objects them- 
selves, Figure 3 suggests that graphical descriptions may 

46 THE AI MAGAZINE Fall 1984 



lverview of the design of an alarms processing system within the KEE knowledge-based system development environment. 

Figure 6. 

help to explain the contents of propositional representations. a single group of indicators for describing plant status. 
Figure 5 shows another use of graphics to represent a con- 
trol panel for REACTORS. This panel shows an iconic rep- 
resentation of some of the objects of the domain, illustrating 
their spatial relations. 

Engineers characterize alarm conditions from several 
perspectives, including alarms associated with individual 
component reactor parts, with abstractly described reactor 
subsystems, and with the plant itself. For uniformity of 
presentation to the KB user, the REACTOR’S control panel 
includes a set of normal, caution and alarm state indicators 
that describe the operating status of plant component parts; 
another set for describing status of reactor subsystems; and 

Deepening the Representation. In comparison with early 
AI systems, problem-solving can be made more flexible and 
robust by building systems that represent and reason using 
knowledge of the structure and function of the domain. One 
of the sources of the power of expert systems is that they 
can perform problem-solving in a context-dependent way be- 
cause rules explicitly describe the context in which they are 
applicable. However, they depend upon the designer to ar- 
ticulate each important problem-solving context. In addi- 
tion, the contexts are described as associations by their de- 
signers, and those associations normally lack any underlying 
principle to guide their creation by designers, use by the sys- 
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tern, or understanding by users. Experiential knowledge has 
compiled away the facts of structure and the principles of 
function, replacing them with a large number of particular 
applications in different contexts. With an appropriately 
broad and powerful set of representation tools and knowledge 
bases, designers will be able to represent the structure and 
the function of domains. Representations will be more con- 
cise when a small number of important principles are used 
for problem-solving in many contexts. Description of the 
knowledge of the structure and function of domains supports 
systematic organization and acquisition of the knowledge of 

a domain, since knowledge acquisition is guided by the prin- 
ciples of the domain rather than being ad hoc. The user can 
use such a system as an “intelligent encyclopedia” for brows- 
ing and experimenting with the components of a modeled 
system (e.g., by being able to identify what happens if a 
low-impedance voltmeter is connected to a thermistor, or if 
two particular DNA structures are joined). If the system 
does not know about a particular object, such as a low- 
impedance voltmeter, the user can create a description of 
one by appropriately specializing the description of a generic 
voltmeter. 
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Example Scenario 

Now consider the way that a user can interact with 
REACTORS. This example scenario shows the flexibility of 
control of the operation of the knowledge-based system. In 
this example, the application system designer has made the 
attributes of the reactor parts and subsystems “active,” so 
that a set of LISP methods is invoked when those attribute 
values are changed. Numbered items refer to the sequence 
of events shown in Figure 6. 

1. To analyze a particular problem, such as loss of 
coolant water, the user identifies the water level of 
the steam generator in the control panel (See the ob- 
ject labeled “STEAM-GENERATOR” in Figure 5) 
and uses the mouse to reduce its water level. Active 
graphics provide visibility as well as control over the 
knowledge base. 

2. When the level of the STEAM-GENERATOR device 
is changed, active value methods are invoked automati- 
cally. Active values, or demons, provide data-driven 
control of the system operation. 

3. Active value methods have been written to update 
the graphics icon to show the new parameter value 
and to store that new value in the underlying sym- 
bolic representation. In addition, when an alarmed 
parameter value is changed, the alarm active value 
method checks whether an event has occurred, or 
whether the parameter has changed state (e.g., from 
its normal to its low level). Significant events are re- 
corded in the local rule system working memory, and 
the rule system is invoked to find the implications 
of events. Active values, graphics, frame-based rep- 
resentation, rule-based reasoning, and LISP methods 
are hybridized to support each other. 

4. Some rules in the application KB simulate the effects 
of significant events. These simulation rules are in- 
voked (in a forward direction), if appropriate, to 
propagate the effects of a significant event. When 
an event occurs, such as the coolant level becoming 
low, a rule can check preconditions and, if they are 
met, store the name of the new state in an attribute 
of the appropriate object. Reporting a state-change 
event in turn invokes the active value mechanism, 
which reports the new state value to the user in the 
graphics display. In addition, analysis rules are in- 
voked (in a backward direction) to analyze the new 
plant state. Ready interaction between forward and 
backward chaining allows a mixed bottom-up and 
top-down analysis of data. 

5. While rules are being invoked, the user becomes 
curious about the state of the STEAM-GENERATOR 
Browsing, she selects this object with the mouse in 
the control panel and brings up a command menu. 
She uses the mouse to request a display of the sym- 
bolic structure of the object and reviews it. (See 
Figure 7.) While browsing, she can change the value 
of any of the attributes of this object or ask the object 
to perform any of the actions of which it is capable, 

such as displaying itself, identifying itself, or analyz- 
ing its behavior. When finished browsing, she can 
continue the rule interaction. User understanding of 
the domain and the domain model’s facilitated by 
flexible control, which allows user examination and 
change of the KB at any time while running the sys- 
tem. 

The alarm system design allows physical parameters of 
component parts to describe the values that designate their 
normal operating ranges. As shown in Figure 7, for ex- 
ample, the STEAM-GENERATOR frame has an attribute 
called level, which in turn has an alarm limits property that 
specifies the low, normal, and high ranges for the quantita- 
tive values of this physical parameter. 

Hybrid AI Development Systems 

LOOPS (Stefik, 1983) introduced a model of a hybrid 
AI system. KEE is a hybrid AI development system that 
integrates frames for representation of static knowledge, rule- 
based reasoning, graphics, and active values (Kehler, 1984). 
Hybrid systems have been developed in response both to 
the availability of powerful LISP-based workstations and, as 
discussed in the Introduction, to the goal of providing rich 
environments for development of knowledge-based systems. 

Frame-Based Representation and Rule-Based Reasoning 

Frame-based representation allows users to describe ob- 
jects in their domains. Frames can describe attributes that 
are either declarative or procedural in form, and attributes 
can be inherited from one object to its descendants accord- 
ing to semantically precise rules of inheritance. Inheritance 
provides one way to specify semantic proximity between ob- 
jects. Another way to specify semantic proximity between 
the attributes of objects is to specify the relations among 
rule preconditions that refer to attributes of objects. 

MYCIN and the large number of systems that it inspired 
have demonstrated the power of rule-based reasoning for 
analysis of problems in complicated domains. Rules are easy 
to use, and they both allow and force a focus on decision 
making and simulation. One of their greatest values is that 
they are an effective interlingua that can be used by the 
designer, the user, and the computer. Thus, production rules 
suggest easy and appropriate explanation facilities, such as 
the rule graph shown in Figure 3. 

Frame-based representations allow users to describe the 
abstract and concrete objects of their domains, and rules 
allow users to describe heuristics and procedural knowledge 
of a domain. Anderson discusses production rule and frame- 
based representations extensively, and he argues that they 
are complementary from a cognitive science point of view 
because production systems are models of skills, and frames 
are patterns for describing and recognizing recurring sets of 
features (Anderson, 1980). 
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LISP generator because it moves up and down as the correspond- 
ing attribute value is changed. In addition, as established, 

LISP is the underlying system that has been used almost 
universally by AI systems developers, although PROLOG has 
become popular, and some systems are and will be devel- 
oped using other languages. Some AI development systems 
encourage users to access the underlying system language 
whether it is LISP, PASCAL, ADA, or something else and 
provide facilities so that access is direct and relatively easy. 

the user can change the fluid level using the’mouse, and the 
underlying control mechanism can then both propagate the 
effects of change through the system and display the results 
of those changes graphically. 

Active Values 

Other systems attempt to insulate users from the underlying 
system by providing large numbers of specialized functions 
to support users of rules or frames. In this case, users must 
develop or buy the consulting services of trained program- 
mers when the built-in features fail to meet some need. 

Unskilled users will often be intimidated by any pro- 
gramming language, and procedural languages are inherently 
opaque in their operation. However, only a full program- 
ming language provides access to the full power of a com- 
puter. Thus, the issue is how to trade off that complexity 
and power. The current methodologies of representation, 
rule-based reasoning, and graphics-based explanation are 
sufficiently powerful that many users will not need constant 
access to the underlying programming language. In a hybrid 
development system, the system kernel that supports repre- 
sentation and reasoning can be relatively small and general 
when users are given the responsibility for deveIoping spe- 
cialized computational functions in an underlying program- 
ming language. In addition, the users’ process of develop- 
ing appropriate specialized features can be aided by iden- 
tifying interesting generic features from some library and 
modifying them for particular purposes. Finally, the process 
of analyzing different representation and manipulation tech- 
niques contributes to the user’s understanding of the prob- 
lem. In contrast, it is difficult to design a simple and efficient 
system that will provide almost all of the features that most 
users will ever need, and users are constrained both intellec- 
tually and technically when they have limited ability to ex- 
plore alternative problem representation and manipulation 
approaches. 

Graphics 

Graphics in LISP-based workstations are implemented 
as mouse-sensitive icons in windows. Graphics can facilitate 
the explanation of problem structure and behavior directly, 
as shown in Figures 3, 4, and 7. Such graphical descriptions 
can convey far more information than is readily presented in 
a simple teletype-style computer terminal. Connotative in- 
formation can be conveyed in graphical representations, such 
as the information conveyed to human users in the shape of 
objects shown in Figure 5. Schematic descriptions of physi- 
cal objects provide users with information about the model 
that underlies the schematic. In addition, the elements of the 
schematic can be active. For example, as shown in Figure 
5, the user can actually view the fluid level in the steam 

Active values are attributes of objects that have attached 
demons that are invoked when their values are accessed 
or stored. Active values integrate the behavior of repre- 
sentation and graphics by defining methods that update the 
iconic description of an attribute value whenever its value 
is changed. Active values allow simple operations to be per- 
formed automatically, in a data-directed way. For example, 
the alarm filtering process discussed earlier was implemented 
using active values. They can be used to integrate repre- 
sentation, reasoning and graphics so that the appropriate 
graphical and symbolic representations are updated when- 
ever an active attribute value is changed, whether by a suc- 
cessful rule invocation, by effect of a method, by the user 
changing a value of an attribute manually, or by the user 
changing an attribute value in an icon using the mouse. 

Object-Oriented Programming 

Object-oriented programming is the design principle, 
pioneered in SMALLTALK, that descriptive and procedural 
attributes of an object should be associated directly with 
that object. Object-oriented programming can thus be 
highly modular. Since each object has its own procedural 
characteristics, it can perform local actions such as display 
or modify itself, and it can both receive information from 
and return information to other objects. Object-oriented 
programming is the principle that is used to unify the 
major KEE methodologies. Design and use of each of these 
methodologies-representation, rule-based reasoning, LISP, 
graphics, and active values-is object-oriented. 

Object-oriented programming provides a simple prin- 
ciple for unifying the major methodologies. Frames can be 
fully object-oriented if they contain both descriptive and 
procedural attributes. The MYCIN-style of rule premise, 
an (OBJECT - ATTRIBUTE - VALUE ) reference, is ex- 
plicitly object-oriented, and rules with this object-oriented 
syntax can refer explicitly to the attributes of frames. LISP 
methods are object-oriented if they are associated with ob- 
jects and avoid side effects. Graphical icons are inherently 
object-oriented because they represent objects. 

When rules and frames are integrated, attribute values 
assigned by inheritance can be tested within rules. Rule 
premises inherently define semantic proximity between at- 
tributes of different objects. Thus, when integrated with 
frames, rules give a very general way for defining arbitrary 
semantic relations in a frame-based representation system. 
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Frame-based attribute inheritance normally supports rela- 
tions between objects, such as Instance-of and Member-of, 
while pure rule-based systems must specify these common 
relations with rules or rule premises. Thus, in comparison 
with pure rule systems, it is possible to reduce both the 
number of rules and the average number of premises per 
rule by attaching rules to objects within an object-oriented 
inheritance hierarchy. Finally, in a pure rule-based system, 
the interpreter must test screening premises in large numbers 
of rules to find the smaller number of rules that may be ap- 
plicable. In contrast, when rules are associated with the ob- 
jects to which they refer, rule-based reasoning systems need 
consider only those rules that are known to be potentially 
applicable to the specific object. 

Applications Development Process 

Our understanding of an integrated methodology for us- 
ing multiple programming methodologies in a hybrid tool 
environment has been evolving over the past year. This sec- 
tion discusses our present understanding of the problem and 
identifies some techniques we use to control the development 
process. 

The primary problem in developing an AI application 
system is to identify the work to be done, or the total prob- 
lem that is to be solved from the point of view of the or- 
ganization that has the problem. Typically, several con- 
tributors will participate in the problem solution, possibly 
including several people with different skills, procedures for 
organizing people, equipment, instrumentation, traditional 
computer systems and knowledge-based systems. The work 
to be done can often be characterized as the making of a 
series of decisions. 

When viewed from a broad perspective, one nearly 
universal characteristic of interesting problems is that in the 
beginning, they are poorly specified. If they were clearly 
specified, most of them probably could and would have al- 
ready been solved. Thus, two overriding objectives of the 
knowledge-based system development process are to develop 
a problem definition that is precise enough that it can guide 
system development and to select tools that are flexible 
enough that the system can be changed in response to an 
evolving understanding of the problem. This position is 
analogous to one taken by (She& 1983). Ideally, the tools are 
communicative, so that operation of the prototype systems 
will help the user to understand the problem better. 

One overriding theme of our approach to developing 
knowledge-based system applicationsis to focus separately 
on the work to be done and on the tools to do the work. 
Initially, a tension exist between these two foci. Solution- 
oriented people will quickly seize on some approach, such as 
simultaneous equations in FORTRAN, or MYCIN-style rules, 
or some heuristic search algorithm in LISP. Problem-oriented 
people quickly ask what the problem is, and then point out 
that the problem is not yet well understood. The most suc- 
cessful projects exploit this tension to find problems that 

have both value and solutions. Our principal method of 
finding the match between problems and solutions is to de- 
velop a series of prototypes that can be used incrementally 
to develop both the problem specification and the solution 
concurrently. 

Flexibility is the hallmark of AI-based system develop- 
ment tools. Flexibility supports rapid prototyping, refor- 
mulation of system designs, experimentation with the ap- 
plication of realistic data to the prototype systems, potential 
integration of multiple problem-solving techniques, and con- 
sciously opportunistic development strategies. It is not that 
any particular system could not be built in any given pro- 
gramming language or using more traditional programming 
techniques. Rather, traditional systems force the user to fit 
the problem to the tool. Hybrid systems support a number 
of different approaches and integration of the different pro- 
gramming approaches to encourage discovery of both alter- 
native system specifications and solutions. 

Thus, goals of the knowledge-based system development 
process include: 

l Rapid prototyping, to explore both the problem and 
the solutions: 

Find a “quick win” that carries an important piece 
of the intended functionality of the system. This 
quick win should use conservative techniques and 
should make the power of the technology as visible 
as possible. 

Beyond the quick win phase, there should be a 
major technological vector that can incrementally 
add to the value of the system. This second phase 
can involve a high risk technology. 

Use mock-ups of peripheral features so that the 
real purpose of the demonstration can be achieved 
quickly. 

l Declarative representations, to make the problem 
and its solutions visible both to the designer during 
exploratory programming and later to the user 

l Early focus on the user of the knowledge-based sys- 
tem: 

l Identify and support ways that the system will be 
integrated into the using organization. 

l Identify and support explanation that will help 
system users. 

. Specialization of existing representations and methods: 

l Identify ideas and computer code to modify and 
exploit. 

. Design generic objects that can be specialized and 
refined. 

. Specialize and refine generic objects 

. Don’t redesign unless necessary 

l Exploratory programming: 

. Try multiple solutions to explore alternative ways 
to do the work. 

. Pick and choose different methods for different 
purposes. 

THE AI MAGAZINE Fall 1984 53 



We recognize that this approach is at fundamental odds 
with traditional software engineering methodology, and this 
difference gives us pause rather than pride. Software en- 
gineering techniques are well enough understood that they 
have been scaled up to organizational mechanisms to produce 
software products. There is not yet similar experience with 
AI systems. A few AI-based applications “products” are now 
in limited use. Issues of maintenance, documentation, cus- 
tomer support, and validation are just starting to be ad- 
dressed a serious manner in different applications areas. An 
open question is when it is better to deliver AI systems in the 
form in which they were developed and when to use the ini- 
tial systems as detailed and ‘active’ specifications of systems 
to be converted into deliverable products using traditional 
software engineering methodology. 

Conclusions 

Starting from the premise that AI applications problems 
are initially both ill-structured and complicated, this article 
discusses techniques that can be used to help the designer to 
specify problem solutions by developing a series of prototypes 
that show increasing precision in their specification and 
that explain both the problem description and the solution 
method to developers and users. Ultimately, the problem 
becomes better defined, but it must continue to be sensitive 
to the context of each individual case, and it often remains 
complex. Traditional AI development systems emphasize a 
single representation and programming methodology, such as 
frames, rules, or logic programming, as a methodology that 
is natural, efficient and uniform. The applications we have 
developed suggest that naturalness, efficiency, and flexibility 
are increased by trading uniformity for the power that is 
provided by a small set of appropriate programming and rep- 
resentation tools. 

Our application development methodology uses a strategy 
based on separate and explicit focus on the work to be 
done and the methods for doing the work. The goal of the 
methodology is to achieve both an effective specification of 
and a solution to a problem. The development methodol- 
ogy emphasizes working toward problem specification and 
solution simultaneously by specializing generic objects and 
behaviors and by exploiting a hybridized collection of AI de- 
velopment tools. 

Viewed abstractly, this methodology emphasizes devel- 
oping a series of “expert support systems.” The develop- 
ment of such systems may ultimately lead to traditional ex- 
pert systems, or the support systems may continue as tools 
for exploration of complicated problems by experts. The de- 
velopment prototypes, or expert support systems, are com- 
putational models of the structure, function, and behavior 
of modeled systems. Their use helps the expert to articulate 
and to understand the domain and the criteria for decision- 
making within the domain. By using a variety of repre- 
sentation and reasoning techniques, the developer can ex- 
plicitly attempt to identify sources of power for perform- 

ing the work to be done, and often that power lies in com- 
plementary use of appropriate representations of the domain, 
reasoning knowledge and strategies, user interfaces, and spe- 
cialized computational models. 

Expert support systems seem to derive power from three 
fundamental sources. First, they need and exploit several 
related AI methods. These methods must be integrated so 
that they support each other. Useful methods include frame- 
based knowledge representation with inheritance, rule-based 
reasoning, LISP, graphics, and active values. Second, ex- 
pert support systems depend upon powerful explanation to 
make the system structure and behavior available to the de- 
veloper and later users. Useful explanation features include 
complementary symbolic and schematic description of the 
structure of the domain and the behavior of systems in the 
domain and description of the way that rules are used dur- 
ing the process of decision-making. Finally, expert support 
systems derive power from allowing the developing expert 
to use the system in many ways, including creation of new 
concepts, rules, and graphics; description of the contents of 
the system; running of the computational model; interactive 
running of the model; and browsing about and changing its 
content. 
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