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n Dramatic success in machine learning
has led toanewwaveofAIapplications (for
example, transportation, security,medicine,
finance, defense) that offer tremendous
benefits but cannot explain their decisions
and actions to human users. DARPA’s
explainable artificial intelligence (XAI)
program endeavors to create AI systems
whose learned models and decisions
can be understood and appropriately
trusted by end users. Realizing this goal
requires methods for learning more
explainable models, designing effective
explanation interfaces, and understanding
the psychologic requirements for effective
explanations. TheXAI developer teams are
addressing the first two challenges by
creating ML techniques and developing
principles, strategies, and human-computer
interaction techniques for generating effec-
tive explanations. Another XAI team is
addressing the third challenge by summa-
rizing, extending, and applying psychologic
theories of explanation to help the XAI
evaluator define a suitable evaluation
framework, which the developer teams
will use to test their systems. The XAI
teams completed the first of this 4-year
program in May 2018. In a series of
ongoing evaluations, the developer
teams are assessing how well their XAM
systems’ explanations improve user un-
derstanding, user trust, and user task
performance.

Advances inmachine learning (ML) techniques promise
to produce AI systems that perceive, learn, decide, and
act on their own. However, they will be unable to

explain their decisions and actions to human users. This lack
is especially important for the Department of Defense, whose
challenges require developingmore intelligent, autonomous,
and symbiotic systems. Explainable AI will be essential if
users are to understand, appropriately trust, and effectively
manage these artificially intelligent partners. To address this,
DARPA launched its explainable artificial intelligence (XAI)
program in May 2017. DARPA defines explainable AI as AI
systems that can explain their rationale to a human user,
characterize their strengths and weaknesses, and convey an
understanding of how theywill behave in the future. Naming
this program explainable AI (rather than interpretable,
comprehensible, or transparent AI, for example) reflects
DARPA’s objective to create more human-understandable AI
systems through the use of effective explanations. It also
reflects the XAI team’s interest in the human psychology of
explanation, which draws on the vast body of research and
expertise in the social sciences.
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Early AI systems were predominantly logical and
symbolic; they performed some form of logical in-
ference and could provide a trace of their inference
steps, which became the basis for explanation. There
was substantial work on making these systems more
explainable, but they fell short of user needs for
comprehension (for example, simply summarizing
the inner workings of a system does not yield a suf-
ficient explanation) and proved too brittle against
real-world complexities.

Recent AI success is due largely to new ML tech-
niques that construct models in their internal repre-
sentations. These include support vector machines,
random forests, probabilistic graphical models, re-
inforcement learning (RL), and deep learning (DL)
neural networks. Although these models exhibit high
performance, they are opaque. As their use has in-
creased, so has research on explainability from the
perspectives of ML (Chakraborty et al. 2017; Ras et al.
2018) and cognitive psychology (Miller 2017). Simi-
larly, many XAI-related workshops have been held re-
cently onML (for example, the International Conference
on Machine Learning, the Conference on Neural In-
formation Processing Systems), AI (for example, the In-
ternational Joint Conference on Artificial Intelligence),
and HCI (for example, the Conference on Human-
Computer Interaction, Intelligent User Interfaces) con-
ferences, as have special topic meetings related to XAI.

There seems to be an inherent tension between ML
performance (for example, predictive accuracy) and
explainability; often the highest-performing methods
(for example, DL) are the least explainable, and the
most explainable (for example, decision trees) are the
least accurate. Figure 1 illustrates this with a notional
graph of the performance-explainability trade-off for
various ML techniques.

When DARPA formulated the XAI program, it envi-
sioned three broad strategies to improve explainability,
while maintaining a high level of learning performance,
based on promising research at the time (figure 2): deep
explanation, interpretablemodels, andmodel induction.

Deep explanation refers to modified or hybrid DL
techniques that learn more explainable features or
representations or that include explanation genera-
tion facilities. Several design choices might produce
more explainable representations (for example, training
data selection, architectural layers, loss functions,
regularization, optimization techniques, training
sequences). Researchers have used deconvolutional
networks to visualize convolutional network layers, and
techniques existed for associating semantic concepts
with deep network nodes. Approaches for generating
image captions could be extended to train a seconddeep
network that generates explanations without explicitly
identifying the original network’s semantic features.

Interpretable models are ML techniques that learn
more structured, interpretable, or causal models. Early
examples included Bayesian rule lists (Letham et al.
2015), Bayesian program learning, learning models of
causal relationships, and use of stochastic grammars
to learn more interpretable structure.

Model induction refers to techniques that experi-
ment with any given ML model— such as a black
box— to infer an approximate explainable model. For
example, the model-agnostic explanation system of
Ribeiro et al. (2016) inferred explanations by ob-
serving and analyzing the input-output behavior of a
black box model.

DARPA used these strategies to categorize a portfolio
of new ML techniques and provide future practitioners
with a wider range of design options covering the
performance-explainability trade space.

XAI Concept and Approach
The XAI program’s goal is to create a suite of new or
modified ML techniques that produce explainable
models that, when combinedwith effective explanation
techniques, enable end users to understand, appropri-
ately trust, and effectively manage the emerging gen-
eration of AI systems. The target of XAI is an end user
who depends on decisions or recommendations pro-
duced by an AI system, or actions taken by it, and
therefore needs to understand the system’s rationale.
For example, an intelligence analyst who receives rec-
ommendations from a big data analytics system needs
to understand why it recommended certain activity for
further investigation. Similarly, an operator who tasks
an autonomous vehicle to drive a route needs to un-
derstand the system’s decision-making model to ap-
propriately use it in future missions. Figure 3 illustrates
the XAI concept: provide users with explanations that
enable them to understand the system’s overall
strengths and weaknesses, convey an understanding of
how it will behave in future or different situations, and
perhaps permit users to correct the system’s mistakes.

This user-centered concept poses interrelated re-
search challenges: (1) how to produce more explain-
able models, (2) how to design explanation interfaces,
and (3) how to understand the psychologic require-
ments for effective explanations. The first two chal-
lenges are being addressed by the 11 XAI research
teams, which are developing new ML techniques to
produce explainable models, and new principles,
strategies, and HCI techniques (for example, visuali-
zation, language understanding, language generation)
to generate effective explanations. The third challenge
is the focus of another XAI research team that is
summarizing, extending, and applying psychologic
theories of explanation.

The XAI program addresses two operationally rel-
evant challenge problem areas (figure 4): data analytics
(classification of events of interest in heterogeneous
multimedia data) and autonomy (decision policies
for autonomous systems). These areas represent
two important ML problem categories (supervised
learning and RL) and Department of Defense in-
terests (intelligence analysis and autonomous systems).

The data analytics challenge was motivated by a
common problem: intelligence analysts are presented
with decisions and recommendations from big data
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analytics algorithms andmust decide which to report as
supporting evidence in their analyses and which to
pursue further. These algorithms often produce false
alarms that must be pruned and are subject to concept
drift. Furthermore, these algorithms often make recom-
mendations that the analyst must assess to determine
whether the evidence supports or contradicts their hy-
potheses. Effective explanations will help confront these
issues.

The autonomy challenge was motivated by the
need to effectively manage AI partners. For example,
the Department of Defense seeks semiautonomous
systems to augment warfighter capabilities. Operators
will need to understand how these behave so they can
determine how and when to best use them in future
missions. Effective explanations will better enable such
determinations.

For both challenge problem areas, it is critical to
measure explanation effectiveness. While it would be
convenient if a learned model’s explainability could be
measured automatically, an XAI system’s explanation
effectiveness must be assessed according to how its
explanations aid human users. This requires human-
in-the-loop psychologic experiments to measure the
user’s satisfaction, mental model, task performance,
and appropriate trust. DARPA formulated an initial
explanation evaluation framework that includes po-
tential measures of explanation effectiveness (figure 5).
Exploring and refining this framework is an important
part of the XAI program’s research agenda.

The XAI program’s goal, concept, strategies, chal-
lenges, and evaluation framework are described in
the program’s 2016 broad agency announcement.
Figure 6 displays the XAI program’s schedule, which

consists of two phases. Phase 1 (18 months) com-
menced in May 2017 and includes initial technology
demonstrations of XAI systems. Phase 2 (30 months)
includes a sequence of evaluations against challenge
problems selected by the system developers and the
XAI evaluator. The first formal evaluations of XAI
systems took place during the fall of 2018. This article
describes the developer teams’ progress leading up to
these evaluations, whose resultswere presented at anXAI
program meeting during the winter of 2019.

XAI Program
Development and Progress

Figure 7 summarizes the 11 XAI Technical Area 1 (TA1)
developer teams and the TA2 team [from the Florida
Institute for Human and Machine Cognition (IHMC)]
that is developing the psychologic model of explanation.
Three TA1 teams are pursuing both challenge problem
areas (autonomyanddata analytics), three areworkingon
only the former, and five are working on only the latter.
Per the strategies described in figure 2, the TA1 teams are
investigating a diverse range of techniques for developing
explainable models and explanation interfaces.

Naturalistic
Decision-Making Foundations of XAI
The objective of the IHMC team (which includes
researchers from MacroCognition and Michigan
Technological University) is to develop and evaluate
psychologically plausible models of explanation and
develop actionable concepts, methods, measures, and
metrics for explanatory reasoning. The IHMC team is
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investigating the nature of explanation itself. What
must happen for a person to be satisfiedwith an attempt
to explain (1) the workings of a complex system and (2)
why it acted the way it did in a given situation? To
address such questions, the team has formulated a
naturalistic model of human explanatory reasoning and
is providing guidance to the performer teams on
methods for evaluating the effectiveness of their XAI
systems’ explanations. The team reviewed the relevant
literatures in philosophy of science and specializations
within psychology, from which criteria were synthe-
sized for assessing the “goodness” of explanations. The
team is also collecting and analyzing a corpus of cases in
which individuals create or receive explanations of the
workings of complex systems.

This team developed measures for explanation
goodness, a user’s mental model (for example, cor-
rectness, completeness), and user task performance.
From this, the user can make reasonably accurate
judgments about when to trust (or doubt) the system.
To gain this insight, the user must explore the decision-
making processes and performance of an XAI system,
especially for boundary cases, including ways in which
deep neural networks (DNNs) can be spoofed. This

methodology was described in a series of essays
(Hoffman and Klein 2017; Hoffman et al. 2017; Klein
2018; Hoffman et al. 2018).

Figure 8 illustrates IHMC’s model of the XAI ex-
planation process, highlighting measurement categories
for assessing explanation effectiveness. The user re-
ceives a recommendation or decision from an XAI
system, along with an explanation that could be tested
for goodness (versus preestablished criteria) and user
satisfaction. The explanation contributes to the user’s
mental model of the AI system, which could be tested
for accuracy and comprehension. The AI system’s
recommendations and the user’s mental model may
enable, or decrease, user task performance, which
could also be measured. These processes contribute to
the user’s appropriate, or inappropriate, trust of the AI
system. The XAI evaluator is using this model to test
the developer teams’ XAI systems.

Evaluation
The XAI program’s independent government evalua-
tor is the Naval Research Laboratory. For Phase 1, the
laboratory (with IHMC’s help) prepared an evaluation
framework for the TA1 teams to use as a template for
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Figure 2. Strategies for Developing Explainable Models.
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designing and implementing their Phase 1 evaluation
experiments, where they will select a test problem or
problems in the challenge problem areas of data an-
alytics or autonomy; apply their new ML techniques
to learn an explainable model for their problems;
evaluate the performance of their learned ML model
(table 1); combine their learned model with their
explanation interface to create their explainable
learning system; conduct experiments in which users
perform specified tasks using the explainable learning
system; and measure explanation effectiveness by
employing IHMC’s model of the explanation process
(figure 8) and explanation effectiveness measurement
categories (table 1).

The evaluations will include the following experi-
mental conditions: (1) without explanation: the XAI
system is used to perform a task without providing
explanations to the user; (2) with explanation: the
XAI system is used to perform a task and generates
explanations for every recommendation or decision it
makes and every action it takes; (3) partial explana-
tion: the XAI system is used to perform a task and
generates only partial or ablated explanations (to as-
sess various explanation features); and (4) control: a
baseline state-of-the-art nonexplainable system is used
to perform a task.

Explainable Learning Systems
Table 2 summarizes the TA1 teams’ technical ap-
proaches and Phase 1 test problems.

Deeply Explainable AI
The University of California, Berkeley (UCB) team
(including researchers from Boston University, the
University of Amsterdam, and Kitware) is developing
an AI system that is human understandable by virtue
of explicit structural interpretation (Hu et al. 2017),
provides post hoc (Park et al. 2018) and introspective
(Ramanishka et al. 2017) explanations, has predictive
behavior, and allows for appropriate trust (Huang
et al. 2018). The key challenges of deeply explain-
able AI (DEXAI) are to generate accurate explanations
of model behavior and select those that aremost useful
to a user. UCB is addressing the former by creating
implicit or explicit explanation models: they can im-
plicitly present complex latent representations in un-
derstandable ways or build explicit structures that are
inherently understandable. These DEXAI models create
a repertoire of possible explanatory actions. Because
these actions are generated without any user model,
they are called reflexive. For the second challenge, UCB
proposes rational explanations that use a model of the
user’s beliefs when deciding which explanatory actions
to select. UCB is also developing an explanation interface
based on these innovations informed by iterative design
principles.

UCB is addressing both challenge problem areas.
For autonomy, DEXAI will be demonstrated in ve-
hicle control (using the Berkeley Deep Drive data set
and the CARLA simulator) (Kim and Canny 2017)
and strategy game scenarios (StarCraft II). For data
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Figure 3. The XAI Concept.
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analytics, DEXAI will be demonstrated using visual
question answering (VQA) and filtering tasks (for
example, using large-scale data sets such as VQA-X
and ACT-X for VQA tasks and activity recognition
tasks, respectively), xView, and Distinct Describable
Moments (Hendricks et al. 2018).

Causal Models to Explain Learning
The goal of the Charles River Analytics (CRA) team
(including researchers from the University of Massa-
chusetts and Brown University) is to generate and
present causal explanations of ML operation, through
its causal models to explain learning (CAMEL) ap-
proach. CAMEL explanations are presented to a user
as narratives in an interactive, intuitive interface.
CAMEL includes a causal probabilistic programming
framework that combines representations and learning
methods from causal modeling (Marazopoulou et al.
2015) with probabilistic programming languages
(Pfeffer 2016) to describe complex and rich phenomena.
CAMEL can be used to describe what anML system did,
how specific data characteristics influenced its outcome,

and how changing these factors would affect this out-
come. Generative probabilistic models, represented in
a probabilistic programming language, naturally ex-
press causal relationships; they are well suited for this
task of explaining ML systems.

CAMEL probes the internal representation of anML
system to discover how it represents user-defined,
natural domain concepts. It then builds a causal
model of their effect on the ML system’s operation by
conducting experiments in which the domain con-
cepts are systematically included or removed. CRA has
applied this approach to DNNs for classification and
RL.

Once learned, it uses causal probabilistic models to
infer explanations of the system’s predictions or ac-
tions. Because inferences can be large and complex and
can contain many interacting components, CAMEL
composes them into explanatory narratives that walk
the user through the interactions of themajor concepts
and their influence on the ML system’s output. The
CAMEL explanation interface, based on cognitive
systems engineering design principles and established
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HCI techniques, allows users to understand and in-
teract with the explanatory narratives, engendering
trust in automation and enabling effective user-system
teamwork.

CRA is addressing both challenge problem areas.
For data analytics, CAMEL has been demonstrated
using pedestrian detection (using the INRIA pedestrian
data set) (Harradon et al. 2018), and CRA is working
toward activity recognition tasks (using ActivityNet). For
autonomy, CAMEL has been demonstrated on the Atari
game Amidar, and CRA is working toward demon-
strating it on StarCraft II.

Learning and
Communicating
Explainable Representations
for Analytics and Autonomy
The University of California, Los Angeles (UCLA) team
(including researchers fromOregon State University and
Michigan State University) is developing interpretable
models that combine representational paradigms,

including interpretable DNNs, compositional graphical
models such as and-or graphs, andmodels that produce
explanations at three levels (that is, compositionality,
causality, and utility).

UCLA’s system includes a performer that executes
tasks on multimodal input data and an explainer that
explains its perception, cognitive reasoning, and de-
cisions to a user. The performer outputs interpretable
representations in a spatial, temporal, and causal
parse graph (STC-PG) for three-dimensional scene
perception (for analytics) and task planning (for au-
tonomy). STC-PGs are compositional, probabilistic,
attributed, interpretable, and grounded on DNN
features from images and videos. The explainer out-
puts an explanatory parse graph in a dialogue process
(She and Chai 2017), localizes the relevant subgraph
in the STC-PG, and infers the user’s intent.

The system represents explanations at three levels:
(1) concept compositions, represented by parse graph
fragments that depict how information is aggregated
from its constituents and contexts, how decisions are
made at nodes under uncertainty, and the decision’s
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confidence levels; (2) causal and counterfactual rea-
soning, realized by extracting causal diagrams fromSTC-
PGs to predict what will happen if certain alternative
actions had been taken; and (3) utility explanations,
which explain why the system made certain decisions.

UCLA is addressing both XAI challenge problem
areas using a common framework of representation
and inference. For data analytics, UCLA demonstrated
their systemusing a network of video cameras for scene
understanding and event analysis. For autonomy,
UCLA demonstrated it in scenarios using robots exe-
cuting tasks in physics-realistic virtual reality
platforms and autonomous vehicle driving game
engines.

Explanation-Informed Acceptance
Testing of Deep Adaptive Programs
Oregon State University (OSU) is developing tools for
explaining learned agents that perform sequential
decision making and is identifying best principles for
designing explanation user interfaces. OSU’s explain-
able agent model employs explainable deep adaptive
programs (xDAPs), which combine adaptive programs,
deep RL, and explainability. With xDAPs, program-
mers can create agents by writing programs that in-
clude choice points, which represent decisions that
are automatically optimized via deep RL through
simulator interaction. For each choice point, deep RL
attaches a trained deep decision neural network
(dNN), which can yield high performance but is in-
herently unexplainable.

After initial xDAP training, xACT trains an explana-
tion neural network (Qi and Li 2017) for each dNN.
These provide a sparse set of explanation features (x-
features) that encode properties of a dNN’s decision
logic. Such x-features, which are neural networks, are
not initially human interpretable. To address this,

xACT enables domain experts to attach interpretable
descriptions to x-features, and xDAP programmers to
annotate environment reward types and other con-
cepts, which are automatically embedded into the
dNNs as “annotation concepts” during learning.

The dNN decisions can be explained via the de-
scriptions of relevant x-features and annotation con-
cepts, which can be further understood via neural
network saliency visualization tools. OSU is investi-
gating the utility of saliency computations for
explaining sequential decision making.

OSU’s explanation user interface allows users to
navigate thousands of learned agent decisions and
obtain visual andnatural language (NL) explanations. Its
design is based on information foraging theory (IFT),
which allows a user to efficiently drill down to the most
useful explanatory information at any moment. The
assessment of rationales for learned decisions may more
efficiently identify flaws in the agent’s decision
making and improve user trust.

OSU is addressing the autonomy challenge prob-
lem area and has demonstrated xACT in scenarios
using a custom-built real-time strategy game engine.
Pilot studies have informed the explanation user in-
terface design by characterizing how users navigate
AI-agent game play and tend to explain game de-
cisions (Dodge et al. 2018).

Common Ground
Learning and Explanation
The Palo Alto Research Center (PARC) team (including
researchers from Carnegie Mellon University, the Army
Cyber Institute, the University of Edinburgh, and the
University of Michigan) is developing an interactive
sensemaking system that can explain the learned ca-
pabilities of an XAI system that controls a simulated
unmanned aerial system.
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An XAI system’s explanations should communicate
what information it uses to make decisions, whether it
understands how things work, and its goals. To
address this, PARC’s common ground learning and
explanation (COGLE) and its users establish com-
mon ground about what terms to use in explana-
tions and their meaning. This is enabled by PARC’s
introspective discourse model, which interleaves
learning and explaining processes.

Performing tasks in the natural world is challeng-
ing for autonomous systems, requiring experience to
create enough knowledge for reliable high perfor-
mance. COGLE employs K-models that encode an AI
agent’s domain-specific task knowledge. K-models orga-
nize this knowledge into levels of elements, where higher
(lower) levels model actions with longer range (local)
effects. They support a competency-based framework
that informs and guides the learning and testing of XAI
systems.

COGLE’s multilayer architecture partitions its in-
formation processing into sensemaking, cognitive
modeling, and learning. The learning layer employs
capacity constrained recurrent and hierarchical DNNs
to produce abstractions and compositions over the
states and actions of unmanned aerial systems to sup-
port an understanding of generalized patterns. It
combines learned abstractions to create hierarchical,
transparent policies that match those learned by the

system. The cognitive layer bridges human-usable
symbolic representations to the abstractions, composi-
tions, and generalized patterns.

COGLE’s explanation interfaces support performance
review, risk assessment, and training. The first provides a
map that traces an unmanned aerial systems’ mission
actions and divides the action or decision (flight) path
into explainable segments. The second interface’s
tools enable users to examine and assess the sys-
tem’s competencies and make predictions about
mission performance.

COGLE will be demonstrated in ArduPilot’s Soft-
ware-in-the-Loop Simulator and a discretized abstract
simulation test bed. It will be evaluated by drone op-
erators and analysts. Competency-based evaluation will
help PARC to determine how best to develop appro-
priate domain understandable models.

Explainable Reinforcement Learning
Carnegie Mellon University is creating a new disci-
pline of explainable RL to enable dynamic human-
machine interaction and adaptation for maximum
team performance. This effort has two goals: to de-
velop new methods for learning inherently explain-
able RL policies and to develop strategies that can
explain existing black-box policies. For the former,
Carnegie Mellon is developing methods to improve
model learning for RL agents to capture the benefits
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PARC Cognitive Modeling Interactive Training
CMU Explainable RL XRL Interaction
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SRI Deep Learning Show-and-Tell Explanations
Raytheon BBN Deep Learning Argumentation and Pedagogy

UTD Probabilistic Logic Decision Diagrams
TAMU Mimic Learning Interactive Visualization

Rutgers Model Induction Bayesian Teaching

New
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Figure 7. XAI Research Teams.
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of model-based approaches (ability to visualize plans
in the internal model space), while integrating
the benefits of model-free approaches (simplicity
and higher ultimate performance). These include
methods that incrementally add states and actions to
world models after discovering relevant latent in-
formation, learn models via end-to-end training
of complex model-based optimal control policies,
learn general DL models that directly integrate
and exploit rigid body physics (Belbute-Peres and
Kolter 2017), and learn understandable predictive
state representations using recurrent architectures
(Hefny et al. 2018).

Carnegie Mellon is also developing methods that
can explain the actions and plans of black-box RL
agents, observed either online or from system logs.
This involves answering questions such as, why did
an agent choose a particular action? or, what train-
ing data were most responsible for this choice? To
achieve this, Carnegie Mellon developed techniques
that generate NL descriptions of agents from behavior
logs and detect outliers or anomalies. Carnegie Mellon
also developed improvements over traditional in-
fluence function methods in DL, allowing its XRL
system to precisely identify the portions of a train-
ing set that most influence a policy’s outcome.

Carnegie Mellon is addressing the autonomy chal-
lenge problem area and has demonstrated XRL in
several scenarios, including OpenAI Gym, Atari
games, autonomous vehicle simulation,mobile service
robots, and self-improving educational software and
games.

Deep Attention-Based
Representations for Explanation/
ExplainableGenerative AdversarialNetworks
SRI International’s team (including researchers from
the University of Toronto, the University of Guelph,
and the University of California, San Diego) is de-
veloping an explainable ML framework for multi-
modal data analytics that generates show-and-tell
explanations with justifications of decisions accom-
panied by visualizations of input data used to generate
inferences.

The deep attention-based representations for
explanationxplainable generative adversarial networks
(DARE/X-GANS) system employs DNN architectures
inspired by attentional models in visual neuroscience.
It identifies, retrieves, and presents evidence to a user as
part of an explanation. The attentional mechanisms
provide a user with a means for system probing and
collaboration.
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DARE/X-GANS uses generative adversarial net-
works (GANs), which learn to understand data by
creating it, while learning representations with explan-
atory power. GANs are made explainable by using
interpretable decoders that map unsupervised clus-
ters onto parts-based representations. This involves
generating visual evidence, given text queries, using
text-to-parts generation (Vicol et al. 2018), the parts
being interpretable features such as human poses or
bounding boxes. This evidence is then used to
search the queried visual data.

The system presents explanations of its answers
based on visual concepts extracted from the mul-
timodal data inputs and knowledge base queries.
Given explanatory questions, it provides justifica-
tions, visual evidence used for decisions, and vi-
sualizations of the system’s inner workings. This
show-and-tell explanation interface ensures highly
intuitive explanations, made possible by atten-
tional modules that localize evidence used for
each visual task. Initial studies demonstrate that
such explanations substantially improve user task
performance.

SRI is addressing the data analytics challenge
problem area and has demonstrated DARE/X-GANs
using VQA and multimodal QA tasks with image and
video data sets.

Explainable Question Answering System
The Raytheon BBN Technologies team (including
researchers from the Georgia Institute of Technology,
MIT, and the University of Texas, Austin) is devel-
oping a system that answers unrestrictedNL questions
posed by users about multimedia data and provides

interactive, explorable explanations of why it derived
an answer.

The explainable question answering system
(EQUAS) learns explainable DNN models in which
internal structures (for example, individual neurons)
have been aligned to semantic concepts (for example,
wheels and handlebars) (Zhou et al. 2015). This allows
neural activations within the network, during a de-
cision process, to be translated to NL explanations (for
example, “this object is a bicycle because it has two
wheels and handlebars”). EQUAS also uses neural
visualization techniques to highlight input regions
associated with neurons that most influenced its de-
cisions. To express case-based explanations, EQUAS
retains indexes and retrieves cases from its training
data that support its choices. Rejected alternatives are
recognized and ruled out using contrastive language,
visualization, and examples. Four explanation mo-
dalities map to key elements of argument construc-
tion and interactive pedagogy: didactic statements,
visualizations, cases, and rejections of alternative
choices.

The EQUAS explanation interface allows users to
explore the explanation space populated by these
explanation modes. It enables iterative and guided
collaborative interaction, allowing users to drill down
into the supporting evidence from each explanation
category.

Raytheon BBN is addressing the analytics chal-
lenge problem area and has demonstrated initial
EQUAS capabilities on VQA tasks for images, ex-
ploring how different explanation modalities en-
able users to understand and predict the behavior of
the underlying VQA system.

Measure Description

ML Model performance

Various measures (on a per-challenge problem area
basis)

Accuracy/performance of the ML model in its given domain (to
understand whether performance improved or degraded relative to
state-of-the-art nonexplainable baselines)

Explanation Effectiveness

Explanation goodness Features of explanations assessed against criteria for explanation
goodness

Explanation satisfaction User’s subjective rating of explanation completeness, usefulness,
accuracy, and satisfaction

Mental model understanding User’s understanding of the system and the ability to predict the system’s
decisions/behavior in new situations

User task performance Success of the user performing the tasks for which the system is designed
to support

Appropriate Trust and Reliance User’s ability to know when to, and when not to, trust the system’s
recommendations and decisions

Table 1. Measurement Categories.

54 AI MAGAZINE

Deep Learning and Security



Team Explainable Model Explanation Interface Challenge Problem

UC Berkeley • Post hoc explanations by
training additional DL models

• Reflexive explanations (arise
from the model)

• Autonomy: vehicle control (BDD-
X, CARLA), strategy games
(StarCraft II)

• Explicit introspective
explanations (NMNs)

• Rational explanations (come
from reasoning about user’s
beliefs)

• Analytics: visual QA and filtering
tasks (VQA-X, ACT-X, xView,
DiDeMo, etc.)

• Reinforcement learning
(informative rollouts, explicit
modular agent)

Charles River
Analytics

Experiment with the learned
model to team an explainable,
causal, probabilistic
programming model

Interactive visualization based on
the generation of temporal,
spatial narratives from the
causal, probabilistic models

• Autonomy: Atari, StarCraft II

• Analytics: pedestrian detection
(INRIA), activity recognition
(ActivityNet)

UCLA • Interpretable representations:
STC-AOG (spatial, temporal,
causal models), STC-PG (scene
and event interpretations in
analytics), STC-PG+ (task plans
in autonomy)

• Three-level explanation concept
compositions, causal and
counterfactual reasoning, utility
explanation

• Autonomy: robot executing daily
tasks in physics-realistic VR
platform autonomous vehicle
driving (GTA5 game engine)

• Theory of mind representations
(user’s beliefs, user’s mental
model of agent)

• Explanation representations:
X-AOG (explanation model),
X-PG (explanatory parse graph
as dialogue), X-Utility (priority
and loss for explanations)

• Analytics: network of video
cameras for scene understanding
and event analysis

Oregon State xDAPs, combination of adaptive
programs, deep learning, and
explainabilty

Provides a visual and NL
explanation interlace for
acceptance testing by test pilots
based on IFT

Autonomy: real-time strategy sames
based on custom-designed game
engine designed to support
explanation; StarCraft II

PARC Three-layer architecture: learning
layer (DNNs), cognitive layer
(ACT-R cognitive model),
explanation layer (HCI)

• Interactive visualization of
states, actions, policies, values

Autonomy: MAVSim wrapper over
ArduPilot simulation environment

• Module for test pilots to refine
and train the system

Carnegie Mellon
University

A new scientific discipline for XRL
XRL with work on new
algorithms and representations

• Interactive explanations of
dynamic systems

Autonomy:OpenAI Gym, autonomy
in the electrical grid, mobile service
robots, self-improving educational
software

• Human-machine interaction
to improve performance

SRI Multiple DL techniques: attention-
based mechanisms,
compositional NMNs, GANs

• DNN visualization Analytics: VQA (Visual Gnome,
Flickr30), MovieQA• Query evidence that explains

DNN decisions

• Generate NL justifications

Raytheon BBN • Semantic labeling of DNN
neurons

• Comprehensive strategy based
on argumentation theory

Analytics: VQA for images and video

• DNN audit trail construction • NL generation

• Gradient-weighted class
activation mapping

• DNN visualization

UTD TPLMs Enables users to explore and
correct the underlying model
as well as add background
knowledge

Analytics: infer activities in
multimodal data (video and text),
wet lab (biology), and Textually
Annotated Cooking Scenes data
sets

(continued on following page)
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Tractable Probabilistic Logic Models:
A New, Deep Explainable Representation
The University of Texas at Dallas (UTD) team (in-
cluding researchers from UCLA, Texas A&M, and the
Indian Institute of Technology, Delhi) is developing a
unified approach to XAI using tractable probabilistic
logic models (TPLMs).

TPLMs are a family of representations that in-
clude (for example) decision trees, binary decision
diagrams, cutset networks, sentential decision dia-
grams, first-order arithmetic circuits, and tractable
Markov logic (Gogate and Domingos 2016). The
UTD system extends TPLMs to generate explana-
tions of query results; handle continuous variables,
complex constraints, and unseen entities; compactly
represent complex objects such as parse trees, lists, and
shapes; and enable efficient representation and rea-
soning about time.

For scalable inference, the system uses novel al-
gorithms to answer complex explanation queries
using techniques including lifted inference, varia-
tional inference, and their combination. For fast and
increased learning accuracy, it uses discriminative
techniques, deriving algorithms that compose NNs
and support vector machines with TPLMs, using in-
terpretability as a bias to learn more interpretable
models. These approaches are then extended to handle
real-world situations.

The UTD explanation interface displays in-
terpretable representations with multiple related
explanations. Its interactive component allows
users to debug a model and suggest alternative
explanations.

UTD is addressing the analytics challenge prob-
lem area and has demonstrated its system for rec-
ognizing human activities in multimodal data
(video and text), such as the Textually Annotated
Cooking Scenes data set.

Transforming Deep Learning to
Harness the Interpretability of Shallow
Models: An Interactive End-to-End System
The Texas A&M University (TAMU) team (including
researchers from Washington State University) is
developing an interpretable DL framework that uses
mimic learning to leverage explainable shallow
models and facilitates domain interpretation with
visualization and interaction. Mimic learning
bridges the gap between deep and shallow models
and enables interpretability. The system also mines
informative patterns from raw data to enhance in-
terpretability and learning performance.

The system’s interpretable learning algorithms ex-
tract knowledge fromDNNs for relevant explanations. Its
DL module connects to a pattern-generation module
by leveraging the interpretability of the shallow
models. The learning system’s output is displayed to
users with visualization including coordinated and
integrated views.

The TAMU system handles image (Du et al. 2018) and
text (Gao et al. 2017) data and is being applied to theXAI
analytics challenge problem area. It provides effective
interpretations of detected inaccuracies from diverse
sources while maintaining a competitive detection per-
formance. TheTAMUsystemcombinesmodel-level (that
is, model transparency) and instance-level (that is, in-
stance explanation) interpretability to generate expla-
nations that aremore easily comprehendedbyusers. This
system has been deployed on multiple tasks using data
from Twitter, Facebook, ImageNet, CIFAR-10, online
health care forums, and news websites.

Model Explanation by
Optimal Selection of Teaching Examples
Rutgers University is extending Bayesian teaching to
enable automatic explanation by selecting the data

Team Explainable Model Explanation Interface Challenge Problem

Texas A&M • Mimic learning framework
combines DL models for
prediction and shallow models
for explanations.

Interactive visualization over
multiple news, using heat maps
and topic modeling clusters to
show predictive features

Analytics: multiple tasks using data
from Twitter, Facebook, ImageNet,
and news websites

• Interpretable learning
algorithms extract knowledge
from DNNs for relevant
explanations

Rutgers Select the optimal trading
examples to explain model
decisions based on Bayesian
Teaching

Example-based explanation of the
full model, user-selected
substructure, user submitted
examples

Analytics: image processing, text
corpora, VQA, movie events

Table 2. Summary of Explainable Learning System Developer Approaches and Selected Phase 1 Test Problems.
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subset that is most representative of a model’s in-
ference. Rutgers’ approach allows for explanationof the
inferences of any probabilistic generative and discrimina-
tive model, as well as influential DL models (Yang
and Shafto 2017).

Rutgers is also developing a formal theory of human-
machine cooperation and supporting interactive
guided explanation of complex compositional models.
Common among these is a core approach of building
frommodels of human learning to foster explainability
and carefully controlled behavioral experiments to
quantify explainability.

Explanation by Bayesian teaching inputs a data set,
a probabilistic model, and an inference method and
returns a small subset of examples that best explains
the model’s inference. Experiments with unfamiliar
images show that explanations of inferences about
categories of (and specific) images increase the accu-
racy of people’s reasoning about a model (Vong et al.
2018). Experiments with familiar image categories
show that explanations allow users to accurately
calibrate trust in model predictions.

Explanation of complex models is facilitated by
interactive guided explanations. By exploiting com-
positionality and cooperative modifications of ML
models, Rutgers provides a generic approach to
fostering understanding via guided exploration. In-
teraction occurs through an interface that exposes
model structure and explains each component with
aspects of the data. The Rutgers approach has been
demonstrated to facilitate understanding of large text
corpora, as assessed by a human’s ability to accurately
summarize the corpus after short, guided explanations.

Rutgers is addressing the data analytics challenge
problem area and has demonstrated its approach on
images, text, combinations of these (for example,
VQA), and structured simulations involving temporal
causal structure.

Conclusions and Future Work
DARPA’s XAI program is developing and evaluating a
wide variety of new ML techniques: modified DL
techniques that learn explainable features; methods
that learn more structured, interpretable, causal
models; and model induction techniques that infer an
explainable model from any black-boxmodel. One year
into the XAI program, initial technology demonstra-
tions and results indicate that these three broad strate-
gies merit further investigation and will provide future
developers with design options covering the perfor-
mance versus explainability trade space. The developer
teams’ XAI systems are being evaluated to assess the
value of explanations that they provide, localizing the
contributions of specific techniques within this
trade space.
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