
Consider the following challenge:
A computer program is to play two piano pieces that it has never
seen before in an “expressive” way (that is, by shaping tempo, tim-
ing, dynamics, and articulation in such a way that the perform-
ances sound “musical” or “human”). The two pieces were com-
posed specifically for the occasion by Professor N.N. One is in the
style of nocturnes by Frederic Chopin, the other is in a style resem-
bling Mozart piano pieces. The scores of the compositions will
contain notes and some expression marks (f, p, crescendo, andante,
slurs, and so on) but no indications of phrase structure, chords,
and so on. The expressive interpretations generated by the pro-
gram must be saved in the form of MIDI files, which will then be
played back on a computer-controlled grand piano. Participants
are given 60 minutes to set up their computer, read in the scores
of the new compositions (in MusicXML format), and run their per-
formance computation algorithms. They are not permitted to
hand-edit performances during the performance-rendering process
nor even to listen to the resulting MIDI files before they are pub-
licly performed on the computer grand piano. The computer per-
formances will be graded by a human audience and by the com-
poser of the test pieces, taking into account the degree of
“naturalness” and expressiveness. An award will be presented to
the system that rendered the best performance.

Now watch (and listen to) the two videos provided at
www.cp.jku.at/projects/yqx. The videos were recorded on the
occasion of the Seventh Performance Rendering Contest (Ren-
con 2008),1 which was held as a special event at the 10th Inter-
national Conference on Music Perception and Cognition (ICM-
PC 2008) in Sapporo, Japan, in August 2008. Rencon2 is a series
of international scientific competitions where computer sys-
tems capable of generating “expressive” renditions of music
pieces are compared and rated by human listeners. The previous
task description is in fact a paraphrase of the task description
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n This article is about AI research in the con-
text of a complex artistic behavior: expressive
music performance. A computer program is pre-
sented that learns to play piano with “expres-
sion” and that even won an international com-
puter piano performance contest. A superficial
analysis of an expressive performance generat-
ed by the system seems to suggest creative musi-
cal abilities. After a critical discussion of the
processes underlying this behavior, we abandon
the question of whether the system is really cre-
ative and turn to the true motivation that drives
this research: to use AI methods to investigate
and better understand music performance as a
human creative behavior. A number of recent
and current results from our research are briefly
presented that indicate that machines can give
us interesting insights into such a complex cre-
ative behavior, even if they may not be creative
themselves.



that was given to the participants at the Rencon
2008 contest. A graphical summary of the instruc-
tions (provided by the contest organizers) can be
seen in figure 1. What the videos at the website
show is our computer program YQX—which was
developed by Sebastian Flossmann and Maarten
Grachten—performing the two previously men-
tioned test pieces before the contest audience.
Three prizes were to be awarded:

“The Rencon Award will be given to the winner
by the votes of ICMPC participants. The Rencon
Technical Award will be given to the entrant whose
system is judged most interesting from a technical
point of view. The Rencon Murao Award will be giv-
en to the entrant that affects Prof. Murao (set piece
composer) most.”3

YQX won all three of them.

This article is about how one approaches such a
task—and why one approaches it in the first place,
why winning Rencon Awards is not the main goal
of this research, and how AI methods can help us
learn more about a creative human behavior.

The Art of Expressive 
Music Performance

Expressive music performance is the art of shaping
a musical piece by continuously varying important
parameters like tempo, dynamics, and so on.
Human musicians, especially in classical music, do
not play a piece of music mechanically, with con-
stant tempo or loudness, exactly as written in the
printed music score. Rather, they speed up at some

Articles

36 AI MAGAZINE

Performance
Rendering 

postprocessing

Score

Participants are permitted to add some additional information 
to the given music score 

Pre-processing Annotation
(including structural information)

to the given music score 

Participants are not allowed to edit MIDI-level note data 

Participants are not allowed to elaborate performance 
rendering based on their repeated listening to the music  

Participants are not allowed output sound from 
their own PC. 
(allowed to see the key-movement (without sound) 
of the automatic-piano for system-check)

Standard MIDI File

OK!OK!

OK!
NO!

NO!

NO!

Figure 1. Graphical Summary of Instructions Given to Rencon 2008 Participants.

Based on a figure from www.renconmusic.org. Reproduced with permission.



places, slow down at others, stress certain notes or
passages by various means, and so on. The most
important parameter dimensions available to a
performer (a pianist, in particular) are timing and
continuous tempo changes, dynamics (loudness vari-
ations), and articulation (the way successive notes
are connected). Most of this is not specified in the
written score, but at the same time it is absolutely
essential for the music to be effective and engag-
ing. The expressive nuances added by an artist are
what makes a piece of music come alive, what dis-
tinguishes different performers, and what makes
some performers famous.

Expressive variation is more than just a “devia-
tion” from or a “distortion” of the original (notat-
ed) piece of music. In fact, the opposite is the case:
the notated music score is but a small part of the
actual music. Not every intended nuance can be
captured in a limited formalism such as common
music notation, and the composers were and are
well aware of this. The performing artist is an indis-
pensable part of the system, and expressive music
performance plays a central role in our musical cul-
ture. That is what makes it a central object of study
in contemporary musicology (see Gabrielsson
[2003], and Widmer and Goebl [2004] for compre-
hensive overviews of pertinent research, from dif-
ferent angles).

Clearly, expressive music performance is a high-
ly creative activity. Through their playing, artists
can make a piece of music appear in a totally dif-
ferent light, and as the history of recorded per-
formance and the lineup of famous pianists of the
20th century show, there are literally endless pos-
sibilities of variation and new ways of looking at a
masterpiece.

On the other hand, this artistic freedom is not
unlimited. It is constrained by specific perform-
ance traditions and expectations of audiences
(both of which may and do change over time) and
also by limitations or biases of our perceptual sys-
tem. Moreover, it is generally agreed that a central
function of expressive playing is to clarify, empha-
size, or disambiguate the structure of a piece of
music, to make the audience hear a particular read-
ing of the piece. One cannot easily play “against
the grain” of the music (even though some per-
formers sometimes seem to try to do that—consid-
er, for example, Glenn Gould’s recordings of
Mozart’s piano sonatas).

There is thus an interesting tension between cre-
ative freedom and various cultural and musical
norms and psychological constraints. Exploring
this space at the boundaries of creative freedom is
an exciting scientific endeavor that we would like
to contribute to with our research.

How YQX Works
To satisfy the reader’s curiosity as to how the Ren-
con 2008 contest was won, let us first give a brief
explanation of how the performance rendering
system YQX works. The central performance deci-
sion component in YQX (read: Why QX?4) is based
on machine learning. At the heart of YQX is a sim-
ple Bayesian model that is trained on a corpus of
human piano performances. Its task is to learn to
predict three expressive (numerical) dimensions:
timing—the ratio of the played as compared to the
notated time between two successive notes in the
score, which indicates either acceleration or slow-
ing down; dynamics—the relative loudness to be
applied to the current note; and articulation—the
ratio of how long a note is held as compared to the
note duration as prescribed by the score.

The Bayesian network models the dependency
of the expressive dimensions on the local score
context. The context of a particular melody note is
described in terms of features like pitch interval,
rhythmic context, and features based on an impli-
cation-realization (IR) analysis (based on musicol-
ogist Eugene Narmour’s [1990] theory) of the
melody. A brief description of the basic YQX mod-
el and the features used is given in The Core of
YQX: A Simple Bayesian Model elsewhere in this
article.

The complete expressive rendering strategy of
YQX then combines this machine-learning model
with several other parts. First, a reference tempo
and a loudness curve are constructed, taking into
account hints in the score that concern changes in
tempo and loudness (for example,, loudness indi-
cations like p (piano) versus f (forte), tempo change
indications like ritardando, and so on). Second,
YQX applies the Bayesian network to predict the
precise local timing, loudness, and articulation of
notes from their score contexts. To this end, a sim-
ple soprano voice extraction method—we simply
pick the highest notes in the upper staff of the
score5—and an implication-realization parser
(Grachten, Arcos, and Lopez de Mantaras 2004) are
used. The final rendering of a piece is obtained by
combining the reference tempo and loudness
curves and the note-wise predictions of the net-
work. Finally, instantaneous effects such as accents
and fermatas are applied where marked in the
score.

In the case of Rencon 2008, YQX was trained on
two separate corpora, to be able to deal with pseu-
do-Chopin and pseudo-Mozart: 13 complete
Mozart Piano Sonatas performed by R. Batik (about
51,000 melody notes) and a selection of 39 pieces
by Chopin (including various genres such as
waltzes, nocturnes, and ballades) performed by N.
Magaloff (about 24,000 melody notes).
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The statistical learning algorithm at
the heart of YQX is based on a simple
Bayesian model that describes the
relationship between the score context
(described through a set of simple fea-
tures) and the three target variables
(the expressive parameters timing,
dynamics, articulation) to be predict-
ed. Learning is performed on the
individual notes of the melody (usual-
ly the top voice) of a piece. Likewise,
predictions are applied to the melody
notes of new pieces; the other voices
are then synchronized to the expres-
sively deformed melody.

For each melody note, several
properties are calculated from the
score (features) and the performance
(targets). The features include the
rhythmic context, an abstract descrip-
tion of the duration of a note in rela-
tion to successor and predecessor (for
example, short-short-long); the dura-
tion ratio, the numerical ratio of dura-
tions of two successive notes; and the
pitch interval to the following note in
semitones. The implication-realiza-
tion analysis (Narmour 1990) catego-
rizes the melodic context into typical

categories of melodic contours (IR-
label). Based on this a measure of
musical closure (IR-closure), an
abstract concept from musicology, is
estimated. The corresponding targets
IOI-ratio (tempo), loudness, and articu-
lation are directly computed from the
way the note was played in the exam-
ple performance.

In figure 2 we show an example of
the features and target values that are
computed for a given note (figure 2a),
and the structure of the Bayesian
model (figure 2b). The melody seg-
ment shown is from Chopin’s Noc-
turne Op. 9, No. 1, performed by N.
Magaloff. Below the printed melody
notes is a piano roll display that indi-
cates the performance (the vertical
position of the bars indicates pitch,
the horizontal dimension time).
Shown are the features and targets
calculated for the sixth note (G𝅗𝅥) and
the corresponding performance note.
The IR features are calculated from
the note itself and its two neighbors:
a linearly proceeding interval
sequence (“Process”) and a low IR-
closure value, which indicates a mid-

phrase note; the note is played legato
(articulation ≥ 1) and slightly slower
than indicated (IOI-Ratio ≥ 1).

The Bayes net is a simple condi-
tional Gaussian model (Murphy
2002) as shown previously. The fea-
tures are divided into sets of continu-
ous (X) and discrete (Q) features. The
continuous features are modeled as
Gaussian distributions p(xi), the dis-
crete features through simple proba-
bility tables P(qi). The dependency of
the target variables Y on the score fea-
tures X and Q is given by conditional
probability distributions p(yi | Q, X).

The model is trained by estimat-
ing, separately for each target vari-
able, multinomial distributions repre-
senting the joint probabilities p(yi,X);
the dependency on the discrete vari-
ables Q is modeled by computing a
separate model for each possible
combination of values of the discrete
values. (This is feasible because we
have a very large amount of training
data.) The actual predictions y′i are
approximated through linear regres-
sion, as is commonly done (Murphy
2002).

The Core of YQX: A Simple Bayesian Model

score

discrete
features Q

continuous
features X

continuous
target Yperformance

a b

Features
IR-Label: Process
IR-Closure: -0.4332
Pitch-Interval: -1
Rhythmic context: s-s-1
Duration Ratio: 0.301

Targets
Timing: 0.036
Articulation: 1.22
Loudness: 0.2

Figure 2. An Example of the Features and Target Values 
that Are Computed for a Given Note and the Structure of the Bayesian Model.
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Figure 3. Bars 1–18 from “My Nocturne,” by Tadahiro Murao (Aichi University of Education, Japan). 
Reproduced with permission.

Phrase A1

Phrase A2

Phrase B1 Phrase B2
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A Brief Look at YQX 
Playing a “Chopin” Piece

In order to get an appreciation of what YQX does
to a piece of music, let us have a brief look at some
details of YQX’s interpretation of the quasi-Chopin
piece “My Nocturne,” composed by Tadahiro
Murao specifically for the Rencon 2008 contest.1

Figure 3 shows the first 18 bars of the piece. In fig-
ure 4, we show the tempo and dynamics fluctua-
tions (relating to the melody in the right hand) of
YQX’s performance over the course of the entire
piece. At first sight, the tempo curve (figure 4a)

betrays the three-part structure of the piece: the
middle section (bars 13–21) is played more slowly
than the two outer sections, and the endings of all
three sections are clearly articulated with a strong
ritardando (an extreme slowing down). This is
musically very sensible (as can also be heard in the
video), but also not very surprising, as the tempo
change for the middle section is given in the score,
and also the ritardandi are prescribed (rit.).

More interesting is the internal structure that
YQX chose to give to the individual bars and
phrases. Note, for instance, the clear up-down
(faster-slower) tempo contour associated with the
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Figure 4. “My Nocturne” as Performed by YQX.

A. Tempo. B. Dynamics. The horizontal axes represent the “logical” score time, that is, the position in the piece, counted in terms of bars
from the beginning. In the tempo plot, the vertical axis gives the local tempo YQX played at that point in time (in terms of beats [eighth
notes] per minute). In the dynamics plot, the vertical axis gives the loudness of the current melody note (in terms of MIDI velocity). Only
notes of the melody of the piece (the highest part in the right hand) are indicated. See the text for an explanation of the specially marked
passages. 
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In the phase-plane representation,
tempo information measured from a
musical performance is displayed in a
two-dimensional plane, where the
horizontal axis corresponds to tempo,
and the vertical axis to the derivative
of tempo. The essential difference
from the common tempo-versus-time
plots is that the time dimension is
implicit rather than explicit in the
phase plane. Instead, the change of
tempo from one time point to the oth-
er (the derivative of tempo) is repre-
sented explicitly as a dimension. The
abundance of names for different
types of tempo changes in music
(accelerando and ritardando being the
most common denotations of speed-
ing up and slowing down, respective-
ly), proves the importance of the
notion of tempo change in music. This
makes the phase-plane representation

particularly suitable for visualizing
expressive timing.

Figure 5 illustrates the relation
between the time series representation
and the phase-plane representation
schematically. Figure 5a shows one
oscillation of a sine function plotted
against time. As can be seen in figure
5b, the corresponding phase-plane tra-
jectory is a full circle, starting and end-
ing on the far left side (numbers
express the correspondence between
points in the time series and phase-
plane representations).

This observation gives us the basic
understanding to interpret phase-
plane representations of expressive
timing. Expressive gestures, that is,
patterns of timing variations used by
the musician to demarcate musical
units, typically manifest in the phase
plane as (approximately) elliptic

curves. A performance then becomes a
concatenation and nesting of such
forms, the nesting being a conse-
quence of the hierarchical nature of
the musical structure. In figure 6 we
show a fragment of an actual tempo
curve and the corresponding phase-
plane trajectory. The trajectory is
obtained by approximating the meas-
ured tempo values (dots in figure 6a)
by a spline function (solid curve). This
function and its derivative can be eval-
uated at arbitrary time points, yielding
the horizontal and vertical coordinates
of the phase-plane trajectory. Depend-
ing on the degree of smoothing
applied in the spline approximation,
the phase-plane trajectory reveals
either finer details or more global
trends of the tempo curve.

Visualizing Expressive Timing 
in the Phase Plane
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Figure 5. Schematic Relation between the Time Series Representation and the Phase-Plane Representation.

Figure 6. A Fragment of an Actual Tempo Curve and the Corresponding Phase-Plane Trajectory.
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First-order phase plane, bars 5 - 7
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Figure 7. YQX’s Expressive Timing (Tempo Changes) in the Phase Plane.

Left: Bars 3–4 of “My Nocturne.” Right: Bars 5–6. Horizontal axis: (smoothed)
tempo in beats per minute (bpm). Vertical axis: First derivative of tempo (that
is, amount of accelerando or ritardando). Empty circles indicate the beginnings
of new bars; black dots mark beat times (each of the 6 eighth note beats with-
in a bar); the end of a curve is marked by a diamond (to indicate the direc-
tion). The tempo and acceleration values have been normalized to give a μ =
0.0 and a σ = 1.0 over the entire piece; the absolute values thus do not have a
direct musical interpretation.

sixteenth-note figure in bar 3, which YQX accom-
panies with a crescendo-decrescendo in the dynamics
domain (see indications [a] in figure 4). Note also
the extreme softening of the last note of this
phrase (the last note of bar 4), which gives a very
natural ending to the phrase [b]. Both of these
choices are musically very sensible. Note also how
the following passage (bar 5—see [a’]) is played
with an analogous crescendo-decrescendo, though it
is not identical in note content to the parallel pas-

sage [a]. Unfortunately, there is no corresponding
softening at the end [b’]: YQX chose to play the
closing B♭ in bar 6 louder and, worse, with a stac-
cato, as can be clearly heard in the video—a rather
clear musical mistake.

The tempo strategy YQX chose for the entire
first section (from bar 1 to the beginning of the
middle section in bar 13) deserves to be analyzed
in a bit more detail. To facilitate an intuitive visu-
al understanding of the high-level trends, we will
present this analysis in the phase plane (see figures
7 through 9). Phase-plane plots, known from
dynamical systems theory, display the behavior of
a system by plotting variables describing the state
of the system against each other, as opposed to
plotting each variable against time. It is common
in phase-plane plots that one axis represents the
derivative of the other axis. For example, dynamical
systems that describe physical motion of objects
are typically visualized by plotting velocity against
displacement. In the context of expressive per-
formance, phase-plane representations have been
proposed for the analysis of expressive timing
(Grachten et al. 2008), because they explicitly visu-
alize the dynamic aspects of performance. Expres-
sive “gestures,” manifested as patterns of variation
in timing, tend to be more clearly revealed in this
way. The sidebar Visualizing Expressive Timing in
the Phase Plane gives some basic information
about the computation and meaning of smoothed
timing trajectories in the phase plane. A more
detailed description of the computation process
and the underlying assumptions can be found in
Grachten et al. (2009). We will also encounter
phase-plane plots later in this article, when we
compare the timing behavior of famous pianists.

Figure 7 shows how YQX chose to play two very
similar passages at the beginning of the piece: the
first appearance of the main theme in bars 3–4, and
the immediately following variation of the theme
(bars 5–6); the two phrases are marked as A1 and
A2 in the score in figure 3. Overall, we see the same
general tempo pattern in both cases: a big arc—a
speedup followed by a slow-down (accelerando-
ritardando)—that characterizes the first part (bar),
followed by a further ritardando with an interme-
diate little local speedup (the loop in the phase
plot; note that the final segment of the curve (lead-
ing to the final diamond) already pertains to the
first beat of the next bar). Viewing the two corre-
sponding passages side by side, we clearly see that
they were played with analogous shapes, but in a
less pronounced or dramatic way the second time
around: the second shape is a kind of smaller repli-
ca of the first.

A similar picture emerges when we analyze the
next pair of corresponding (though again not iden-
tical) musical phrases: phrase B1 starting in the
middle of bar 9, and its immediate variation B2
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starting with bar 11 (see figure 8 for YQX’s render-
ings). Here, we see a speedup over the first part of
the phrase (the agitated “gesture” consisting of six
sixteenth notes in phrase B1, and the correspon-
ding septuplet in B2), followed by a slowing down
over the course of the trill (tr), followed by a
speedup towards the beginning of the next phrase.
The essential difference here is that, in repeat 2,
YQX introduces a strong (and very natural-sound-
ing) ritardando towards the end, because of the
approaching end of the first section of the piece.
To make this slowing down towards the end appear
even more dramatic,6 the preceding speedup is
proportionately stronger than in the previous
phrase. Overall, we again see YQX treating similar
phrases in analogous ways, with the second rendi-
tion being less pronounced than the first, and with
some variation to account for a different musical
context. This can be seen even more clearly in fig-
ure 9, which shows the entire passage (bars 9.5–
12.5) in one plot. One might be tempted to say
that YQX is seeking to produce a sense of “unity in
variation.”

Of course, YQX’s performance of the complete
piece is far from musically satisfying. Listening to
the entire performance, we hear passages that
make good musical sense and may even sound nat-
ural or “humanlike,” but we also observe quite a
number of blatant mistakes or unmusical behav-
iors, things that no human pianist would ever
think of doing.7 But overall, the quality is quite
surprising, given that all of this was learned by the
machine.

Is YQX Creative?
Surely, expressive performance is a creative act.
Beyond mere technical virtuosity, it is the ingenu-
ity with which great artists portray a piece in a new
way and illuminate aspects we have never noticed
before that commands our admiration. While
YQX’s performances may not exactly command
our admiration, they are certainly not unmusical
(for the most part), they seem to betray some musi-
cal understanding, and they are sometimes sur-
prising. Can YQX be said to be creative, then?

In our view (and certainly in the view of the gen-
eral public), creativity has something to do with
intentionality, with a conscious awareness of form,
structure, aesthetics, with imagination, with skill,
and with the ability of self-evaluation (see also
Boden 1998, Colton 2008, Wiggins 2006). The pre-
vious analysis of the Chopin performance seems to
suggest that YQX has a sense of unity and coher-
ence, variation, and so on. The fact is, however,
that YQX has no notion whatsoever of abstract
musical concepts like structure, form, or repetition
and parallelism; it is not even aware of the phrase
structure of the piece. What seems to be purpose-

ful, planned behavior that even results in an ele-
gant artifact, is “solely” an epiphenomenon emerg-
ing from low-level, local decisions—decisions on
what tempo and loudness to apply at a given point
in the piece, without much regard to the larger
musical context.

With YQX, we have no idea why the system
chose to do what it did. Of course, it would be pos-
sible in principle to trace back the reasons for these
decisions, but they would not be very revealing—
they would essentially point to the existence of
musical situations in the training corpus that are
somehow similar to the musical passage currently
rendered and that led to the Bayesian model
parameters being fit in a particular way.

Other aspects often related to creativity are nov-
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Figure 8. YQX’s Expressive Timing (Tempo Changes) over Bars 9.5–11
(Left) and 11–12.5 (Right), Respectively. 
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Figure 9. Overall View of YQX’s Expressive Timing 
(Tempo Changes) over Bars 9.5–12.5.

elty, surprisingness, and complexity (for example,
Boden 1998, Bundy 1994). YQX does a number of
things that are not prescribed in the score, that
could not be predicted by the authors, but are nev-
ertheless musically sensible and may even be
ascribed a certain aesthetic quality. YQX embodies
a combination of hard-coded performance strate-
gies and inductive machine learning based on a
large corpus of measured performance data. Its
decisions are indeed unpredictable (which also
produced quite some nervous tension at the Ren-
con contest, because we were not permitted to lis-
ten to YQX’s result before it was publicly per-
formed before the audience). Clearly, a machine
can exhibit unexpected (though “rational”) behav-
ior and do surprising new things, things that were
not foreseen by the programmer, but still follow
logically from the way the machine was pro-
grammed. Seemingly creative behavior may
emerge as a consequence of high complexity of the
machine’s environment, inputs, and input-output
mapping.8 That is certainly the case with YQX.

The previous considerations lead us to settle, for
the purposes of this article, on the pragmatic view
that creativity is in the eye of the beholder. We do not
claim to be experts on formal models of creativity,
and the goal of our research is not to directly mod-
el the processes underlying creativity. Rather, we
are interested in studying creative (human) behav-
iors, and the artifacts they produce, with the help
of intelligent computer methods. YQX was devel-
oped not as a dedicated tool, with the purpose of

winning Rencon contests, but as part of a much
larger and broader basic research effort that aims at
elucidating the elusive art of expressive music per-
formance. An early account of that research was
given in Widmer et al. (2003). In the following, we
sketch some of our more recent results and some
current research directions that should take us a
step or two closer to understanding this complex
behavior.

Studying a Creative 
Behavior with AI Methods

As explained previously, the art of expressive music
performance takes place in a field of tension
demarcated by creative freedom on the one end
and various musical and cultural norms and per-
ceptual contraints on the other end. As a conse-
quence, we may expect to find both significant
commonalities between performances of different
artists—in contexts where they all have to suc-
cumb to common constraints—and substantial dif-
ferences in other places, where the artists explore
various ways of displaying music, and where they
can define their own personal artistic style.

Our research agenda is to shed some new light
into this field of tension by performing focused
computational investigations. The approach is
data intensive in nature. We compile large
amounts of empirical data (measurements of
expressive timing, dynamics, and so on in real
piano performances) and analyze these with data
analysis and machine-learning methods.

Previous work has shown that both commonal-
ities (that is, fundamental performance principles)
and differences (personal style) seem to be suffi-
ciently systematic and pronounced to be captured
in computational models. For instance, in Widmer
(2002) we presented a small set of low-level per-
formance rules that were discovered by a special-
ized learning algorithm (Widmer 2003). Quantita-
tive evaluations showed that the rules are
surprisingly predictive and also general, carrying
over from one pianist to another and even to
music of a different style. In Widmer and Tobudic
(2003), it was shown that modeling expression
curves at multiple levels of the musical phrase hier-
archy leads to significantly better predictions,
which provides indirect evidence for the hypothe-
sis that expressive timing and dynamics are multi-
level behaviors. The results could be further
improved by employing a relational learning algo-
rithm (Tobudic and Widmer 2006) that modeled
also some simple temporal context. Unfortunately,
being entirely case based, these latter models pro-
duced little interpretable insight into the underly-
ing principles.

Regarding the quest for individual style, we
could show, in various experiments, that personal
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style seems sufficiently stable, both within and
across pieces, that it can be picked up by machine.
Machine-learning algorithms learned to identify
artists solely from their way of playing, both at the
level of advanced piano students (Stamatatos and
Widmer 2005) and famous pianists (Widmer and
Zanon 2004). Regarding the identification of
famous pianists, the best results were achieved
with support vector machines based on a string
kernel representation (Saunders et al. 2008), with
mean recognition rates of up to 81.9 percent in
pairwise discrimination tasks. In Madsen and Wid-
mer (2006) we presented a method to quantify the
stylistic intrapiece consistency of famous artists.

And finally, in Tobudic and Widmer (2005), we
investigated to what extent learning algorithms
could actually learn to replicate the style of famous
pianists. The experiments showed that expression
curves produced (on new pieces) by the computer
after learning from a particular pianist are consis-
tently more strongly correlated to that pianist’s
curves than to those of other artists. This is another
indication that certain aspects of personal style are
identifiable and even learnable. Of course, the result-
ing computer performances are a far cry from sound-
ing anything like, for example, a real Barenboim or
Rubinstein performance. Expressive performance is
an extremely delicate and complex art that takes a
whole lifetime of experience, training, and intellec-
tual engagement to be perfected. We do not expect—
to answer a popular question that is often posed—
that computers will be able to play music like
human masters in the near (or even far) future.

But we may expect to gain more insight into the
workings of this complex behavior. To that end, we
are currently extending both our probabilistic
modeling approach and the work on expressive
timing analysis in the phase plane.

Towards a Structured Probabilistic Model
Generally, the strategy is to extend YQX step by
step, so that we can quantify exactly the relevance
of the various components and layers of the mod-
el, by measuring the improvement in the model’s
prediction power relative to real performance data.
While the exact model parameters learned from
some training corpus may not be directly inter-
pretable, the structure of the model, the chosen
input features, and the way each additional com-
ponent changes the model’s behavior will provide
musicologically valuable insights.

Apart from experimenting with various addi-
tional score features, two specific directions are
currently pursued. The first is to extend YQX with
a notion of local temporal contexts. To that end, we
are converting the simple static model into a
dynamic network where the predictions are influ-
enced by the predictions made for the previous
notes. In this way, YQX should be able to produce

much more consistent and stable results that lead
to musically more fluent performances.

The second major direction for extending YQX
is towards multiple structural levels. Western music
is a highly structured artifact, with levels of groups
and phrases hierarchically embedded within each
other. It is plausible to assume that this complex
structure is somehow reflected in the performanc-
es by skilled performers, especially since musicolo-
gy tells us that one function of expressive playing
(and timing, in particular) is to disambiguate the
structure of a piece to the audience (for example,
Clarke [1991], Palmer [1997]). Indirect evidence for
this was provided by our multilevel learning exper-
iments. In Grachten and Widmer (2007) we
demonstrated in a more direct way that aspects of
the phrase structure are reflected in the tempo and
dynamics curves we measure in performances. Our
previous multilevel model was a case-based one.
We now plan to do multilevel modeling in the
probabilistic framework of YQX, which we consid-
er more appropriate for music performance (see
also Grindlay and Helmbold 2006).

Towards a Computational 
Model of an Accomplished Artist
We are in the midst of preparing what will be the
largest and most precise corpus of performance
measurements ever collected in empirical musicol-
ogy. Shortly before his death, the Russian pianist
Nikita Magaloff (1912–1992) recorded essentially
the entire solo piano works by Frédéric Chopin on
the Bösendorfer SE290 computer-controlled grand
piano in Vienna, and we obtained exclusive per-
mission to use this data set for scientific studies.
This is an enormous data set—many hours of
music, hundreds of thousands of played notes,
each of which is precisely documented (the
Bösendorfer computer-controlled piano measures
each individual key and pedal movement with
utmost precision). It will present us with unprece-
dented research opportunities, and also formidable
data processing challenges. The ultimate challenge
would be to build a structured, probabilistic mod-
el of the interpretation style of a great pianist. It
remains to be seen how far machine learning can
take us toward that goal.

Toward Characterizing 
Interpretation Styles
Representing expressive timing in the phase plane
is a new idea that needs further investigation. In a
strict sense, the representation is redundant,
because the derivatives (the second dimension of
the plane) are fully determined by the tempo curve
(the first dimension). Still, as one can demonstrate
with qualitative examples (Grachten et al. 2008),
the representation has certain advantages when
used for visual analysis. It permits the human ana-
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Chopin Op.28,No.17; Arrau ’73 (solid), Kissin ’99 (dashed)
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Figure 10. Three Distinct Strategies for Shaping the Tempo in Chopin’s
Prélude Op. 28, No. 17, Bars 73–74, Discovered from Phase-Plane Data.

Claudio Arrau, 1973 and Evgeny Kissin, 1999 (top left); Martha Argerich, 1975
and Adam Harasiewicz, 1963 (top right); Ivo Pogorelich, 1989 and Maurizio
Pollini, 1975 (bottom). 

lyst to perceive expressive “gestures” and
“gestalts,” and variations of these, much more eas-
ily and directly than in plain tempo curves. More-
over, even if the second dimension is redundant, it
makes information explicit that would otherwise
be concealed. This is of particular importance
when we use data analysis and machine learning
methods for pattern discovery. In Grachten et al.
(2009), a set of extensive experiments is presented
that evaluate a number of alternative phase plane
representations (obtained with different degrees of
smoothing, different variants of data normaliza-
tion, first- or second-order derivatives) against a set
of well-defined pattern-classification tasks. The
results show that adding derivative information
almost always improves the performance of
machine-learning methods. Moreover, the results
suggest that different kinds of phase-plane para-
meterizations are appropriate for different identifi-
cation tasks (for example, performer recognition
versus phrase context recognition). Such experi-
ments give us a basis for choosing the appropriate
representation for a given analysis task in a princi-
pled way.

As a little example, figure 10 shows how a par-
ticular level of smoothing can reveal distinct per-
formance strategies that indicate divergent read-
ings of a musical passage. The figure shows three
ways of playing the same musical material—bars
73–74 in Chopin’s Prélude Op. 28, No. 17. They
were discovered through automatic phase-plane
clustering of recordings by famous concert
pianists. For each cluster, we show two prototypi-
cal pianists. The interested reader can easily see
that the pianists in the first cluster play the passage
with two accelerando-ritardando “loops,” whereas in
the second cluster, the dominant pattern is one
large-scale accelerando-ritardando with an interme-
diate speedup-slowdown pattern interspersed, of
which, in the third cluster, only a short lingering is
left. In essence, pianists in the first cluster clearly
divide the passage into two units, shaping each
individual bar as a rhythmic chunk in its own
right, while pianists in the third read and play it as
one musical gesture. This tiny example is just
meant to exemplify how an intuitive representa-
tion coupled with pattern-detection algorithms
can reveal interesting commonalities and differ-
ences in expressive strategies. Systematic, large-
scale pattern-discovery experiments based on dif-
ferent phase-plane representations will, we hope,
bring us closer to being able to characterize indi-
vidual or collective performance styles.

Conclusion
To summarize, AI may help us study creative behav-
iors like expressive music performance—or more
precisely: artifacts that result from such creative
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behaviors—in new ways. That concerns both the
“rational,” “rulelike,” or “norm-based” aspects, and
the spaces of artistic freedom where artists can
develop their very personal style. State-of-the-art
systems like YQX can even produce expressive per-
formances themselves that, while neither truly
high-class nor arguably very creative, could pass as
the products of a mediocre music student. We take
this result primarily as evidence that our models
capture musically relevant principles. Whether
machines themselves can be credited with creativi-
ty, and whether musical creativity in particular can
be captured in formal models, is a question that is
beyond the scope of the present article. We will
continue to test our models in scientific contests
such as Rencon, and leave it to the audience to
decide whether they consider the results creative.
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Notes
1. See www.renconmusic.org/icmpc2008.

2. See www.renconmusic.org.

3. From www.renconmusic.org/icmpc2008/autonomous.
htm.

4. Actually, the name derives from the three basic sets of
variables used in the system’s Bayesian model: the target
(expression) variables Y to be predicted, the discrete score
features Q, and the continuous score features X. See The
Core of YQX: A Simple Bayesian Model in this article for
an explanation of these.

5. Automatic melody identification is a hard problem for
which various complex methods have been proposed (for
example, Madsen and Widmer [2007]), which still do not
reach human levels of performance. Given the specific
style of music we faced at the Rencon contest, simply
picking the highest notes seemed robust enough. The
improvement achievable by better melody line identifi-
cation is yet to be investigated.

6. We are insinuating purposeful behavior by YQX here,
which we will be quick to dismiss in the following section.
The point we want to make is that it is all too easy to read
too much into the “intentions” behind the decisions of a
computer program—particularly so when one is using very
suggestive visualizations, as we are doing here.

7. Viewing the videos, the reader will have noticed that
both in the Chopin and the Mozart, YQX makes a couple
of annoying octave transposition errors (in the octava
(8va) passages). This is not an indication of creative lib-
erties taken by the system, but rather a consequence of a
last-minute programming mistake made by one of the
authors during the Rencon contest.

8. One might argue that the same holds for the creativi-
ty we attribute to human beings.
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ICWSM-10 to be 
Held in the 

Washington, DC Area!

The Fourth International AAAI Conference on
Weblogs and Social Media will be held in the Wash-
ington, DC area in May 2010. This interdisciplinary
conference brings together researchers and indus-
try leaders interested in creating and analyzing
social media. Past conferences have included tech-
nical papers from areas such as computer science,
linguistics, psychology, statistics, sociology, multi-
media and semantic web technologies. A full Call
for Papers will be available this fall at
www.icwsm.org, and papers will be due in mid-Jan-
uary 2010. As in previous conferences, collections
of social-media data will be provided by ICWSM-10
organizers to potential participants to encourage
experimentation on common problems and
datasets. For more information, please write to
icwsm10@aaai.org. 
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