
Individual decision making is mostly guided by the agent’s preferences
over his or her possible decisions. Similarly, group decision making is
guided by the preferences of the agents in the group. For instance, when
a group of autonomous agents need to agree on an allocation of resources
among themselves, then each individual will judge the outcome accord-
ing to his or her own preferences and will have to transmit parts of these
preferences (possibly indirectly and possibly reluctantly so) to his or her
peers in the process of negotiation. Also, to be able to assess whether the
negotiation outcome should be considered a “good” allocation (say,
whether it reflects a fair agreement) requires knowledge of the individual
preferences. Similarly, when voting on a proposition or for a candidate,
the ballot submitted by each individual reflects some aspect of his or her
own preferences, and the voting protocol in place is charged with aggre-
gating these preferences into a decision that (we hope) constitutes a good
reflection of the collective will of the population.

The classical discipline concerned with the study of mechanisms for
collective decision making is social choice theory (Arrow, Sen, and Suzu-
mura 2002). Much work in the field has concentrated on normative ques-
tions and on establishing abstract results regarding the possibility of
designing mechanisms meeting certain requirements. For instance, a
seminal result in the field, Arrow’s Impossibility Theorem, shows that
there can exist no preference-aggregation mechanism that would simul-
taneously satisfy a small number of natural requirements (for example,
the aggregation function shouldn’t be dictatorial). Computational con-

Articles

WINTER 2008   37Copyright © 2008, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Preference Handling 
in Combinatorial Domains: 

From AI to Social Choice

Yann Chevaleyre, Ulle Endriss, 
Jérôme Lang, and Nicolas Maudet

n In both individual and collective
decision making, the space of alterna-
tives from which the agent (or the group
of agents) has to choose often has a
combinatorial (or multiattribute) struc-
ture. We give an introduction to prefer-
ence handling in combinatorial do -
mains in the context of collective
decision making and show that the
considerable body of work on preference
representation and elicitation that AI
researchers have been working on for
several years is particularly relevant.
After giving an overview of languages
for compact representation of prefer-
ences, we discuss problems in voting in
combinatorial domains and then focus
on multiagent resource allocation and
fair division. These issues belong to a
larger field, which is known as compu-
tational social choice and which brings
together ideas from AI and social choice
theory, to investigate mechanisms for
collective decision making from a com-
putational point of view. We conclude
by briefly describing some of the other
research topics studied in computation-
al social choice.



cerns, however, have mostly been neglected: What
is the computational complexity of the mecha-
nisms proposed by social choice theorists? What
are the appropriate algorithmic techniques for
these problems? What happens if the number of
alternatives to choose from becomes very large?

Such considerations have given rise to an inter-
disciplinary research effort at the interface of AI
and computer science with social choice theory,
sometimes dubbed computational social choice. On
the one hand, computational social choice is con-
cerned with the application of techniques devel-
oped in computer science, such as complexity
analysis or algorithm design, to the study of social
choice mechanisms, such as voting procedures or
fair division algorithms. On the other hand, com-
putational social choice seeks to import concepts
from social choice theory into AI and computing.
For instance, social welfare orderings originally
developed to analyze the quality of resource allo-
cations in human society are equally well applica-
ble to problems in multiagent systems or network
design.

Known methods for collective decision making
and classical results from social choice theory may
not always be applicable when the number of alter-
natives from which to choose is large. This is par-
ticularly true when the set of alternatives has a
combinatorial structure. Examples include negoti-
ation over indivisible goods (where the number of
bundles an agent may obtain is exponential in the
number of goods) or the election of a committee
(where the number of possible committees is expo-
nential in the number of seats to be filled). For
such combinatorial problems, the mere represen-
tation of the preferences of individuals over differ-
ent alternatives becomes a nontrivial problem.
Here methods for preference representation and
elicitation developed in AI can make an important
contribution.

In this article we are going to review some of the
languages for compact representation of prefer-
ences that are good candidates for modeling prob-
lems of collective decision making in combinator-
ial domains. We are then going to focus on two
classes of collective decision-making problems
where the space of alternatives has a combinatori-
al structure. The first one is the problem of voting
in combinatorial domains. Electing a committee
rather than a single candidate is a typical example
for this problem. The second one is multiagent
resource allocation, the problem of finding a suit-
able division of goods among several agents. This
is of course a problem that has been studied in
multiagent systems and AI for some time. Here we
are going to specifically highlight concepts form
the social choice and welfare economics literature,
which provides useful definitions for what should
be considered a fair allocation of goods. We con-

clude by mentioning some of the other topics that
have recently been addressed in the computation-
al social choice literature.

Preferences in 
Combinatorial Domains

Collective decision making in combinatorial
domains first and foremost requires modeling the
preferences of individual decision makers over
alternatives with a combinatorial structure. In our
discussion of preference-representation languages,
we start by listing some natural requirements for
such languages. Following this general discussion,
we are going to describe informally, for the sake of
illustration, a couple of concrete preference-repre-
sentation languages that have been proposed in
the literature—CP-nets and bidding languages for
combinatorial auctions.

Desirable Properties
When choosing (or designing) a language for rep-
resenting preferences, there are at least the follow-
ing five objectives to be considered: (high) expres-
sive power, relative succinctness, (low) complexity,
elicitation-friendliness, and cognitive appropriate-
ness. We shall briefly elaborate on each one of
these here.

Concerning expressive power, a first question to
ask is whether the chosen representation language
can in fact represent all the preference structures
we are interested in. As expressive power will have
to be balanced with other considerations, such as
complexity and succinctness of representation, the
most expressive languages are not always the most
attractive ones. If possible, we may want to design
our languages so as to be able to exactly express the
preference structures of interest, and no others.
Also, some languages have more than one way of
expressing some particular structures, while others
have a unique representation for any preference
structure they can express.

If we have two or more languages at our dispos-
al that can all express the preference structures of
interest, we may ask which language has more suc-
cinct representations. We would like to be able to
encode a preference structure in as little space as
possible. This point is particularly important for
preferences over combinatorial domains. Formally,
we say that language L is at least as succinct as lan-
guage L′, with respect to a given class of preference
structures if and only if any preference structure
from that class that can be expressed in L′ can also
be expressed in L without a significant (that is,
superpolynomial) increase in size. Coste-Marquis et
al. (2004), for example, study the expressive power
and relative succinctness of some logic-based lan-
guages for representing ordinal preferences.

Third, for any given language, we can analyze
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the computational complexity of various related
tasks. Such tasks include, for instance, finding a
nondominated alternative, checking whether an
alternative is preferred to another one, whether an
alternative is nondominated, or whether all non-
dominated alternatives satisfy a given property.
(An alternative is said to be dominated if there is
another alternative that is preferred to the former.)
Such complexity results can provide hints as to the
practical usability of certain languages.

Another criterion to consider is elicitation-
friendliness: How difficult is it to elicit the prefer-
ences of an agent so as to represent them in a giv-
en language? This covers both elicitation of
preferences from a human user and the design of
algorithms for eliciting those parts of a preference
structure from a software agent that are actually
relevant to the task at hand. The topic of prefer-
ence elicitation is discussed in detail in two other
contributions to this special issue (Braziunas and
Boutilier 2008, and Pu and Chen 2008).

As a final point we mention the issue of cogni-
tive relevance. Arguably, preference-representation
languages that resemble the way humans think
about preferences have some advantages, for
instance in terms of elicitation from a human sub-
ject. By its very nature, this parameter is somewhat
more difficult to assess formally than the other cri-
teria mentioned before.

Types of Languages
We do not have the space for giving an exhaustive
list of languages for modeling preferences in com-
binatorial domains here, so we attempt only a
rough taxonomy and then describe two languages
in more detail.

A first dichotomy deals with the nature of the
preferences represented: some languages are tai-
lored to compactly represent cardinal preferences
(utility functions) while others are meant to repre-
sent ordinal preferences (preference relations). A
second dichotomy is concerned with the nature of
the language itself. Some of these languages are
graphical, for instance CP-nets (discussed later) or
GAI-nets (Braziunas and Boutilier 2008): they con-
sist of a structural part that expresses the links
between variables, and a “table” part containing
the local preferences. Some other languages are
based on propositional logic (or possibly a frag-
ment of it): prioritized goals, distance-based goals,
weighted goals, bidding languages for combinato-
rial auctions (see below), and conditional logics of
preference. Lang (2004) gives a survey of logical
languages for compact preference representation.
Finally, some languages are domain-specific (for
instance, they may be tailored for expressing bids
in auctions), while others are not.

We now describe in more detail two typical lan-
guages that are commonly used and that are, to

some extent, representative of the whole variety of
languages. The first is a language for ordinal pref-
erences; the second is a language for cardinal pref-
erences.

CP-Nets
Conditional preference networks, or CP-nets, are a
language for specifying preferences based on the
notion of conditional preferential independence
(Boutilier et al. 2004). Formally, a CP-net is a pair
consisting of a directed graph G whose vertices are
the variables and a collection of conditional pref-
erence tables, one for each variable. The table for
variable X contains, for each instantiation of its
parent variables in G, a preference relation on the
value domain of X. Consider the CP-net, shown in
the top part of figure 1, over the two binary vari-
ables X and Y, with possible values x, x′ for X and
y, y′ for Y.

The directed graph G means that the agent’s
preference over the values of X is unconditional,
and that her preference over the values of Y (and
Z) is fully determined given the value of X (and the
values of X and Y, respectively). The local prefer-
ence tables express preferences between the values
of a variable, everything else being equal (ceteris
paribus). For instance, in the table for Y, the item
x : y  y′ means that when x is true, then y is pre-
ferred to y′ for any fixed value of Z. Therefore, in
the preference relation expressed by the CP-net, we
have xyz  xy′z and xyz′  xy′z′. The preference
relation induced by the CP-net is then the transi-
tive closure of all these preference items directly
induced from the conditional preference tables. It
is shown in the bottom part of figure 1.

In much of the literature, the graph G is
assumed to be acyclic. Under this assumption, the
induced preference relation is a strict partial order
possessing a dominating element.

CP-nets are not fully expressive, because some
preference relations are not expressible by CP-nets.
On the positive side, preferences expressed as CP-
nets are easy to elicit, provided that the graph G is
known and possesses a small enough number of
edges. To see informally how succinct they are,
notice that the space needed to specify a CP-net is
exactly the cumulated size of its tables, whereas the
explicit representation of the preference relation is
always exponentially large. Finally, optimization
queries are computationally easy, provided that G
is acyclic.

Combinatorial Auction
Bidding Languages
Combinatorial auctions are auctions in which the
auctioneer is offering not just one but a whole set
of goods for sale. Potential buyers can make bids
for subsets of this set of goods and the auctioneer
has to choose which of the bids to accept. So-called
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bidding languages are used to allow agents to com-
municate bids (in other words, their preferences)
to the auctioneer. While strategic considerations
may cause agents not to report their true prefer-
ences, this issue is not relevant from the viewpoint
of preference representation. Preference structures
here are valuation functions mapping bundles of
goods to prices. They are usually assumed to be
monotonic.

We briefly review the core ideas from the
OR/XOR family of bidding languages; for a
detailed survey, see Nisan (2006). Bids are
expressed as combinations of atomic bids of the
form �S, p�, where p is the amount the bidder is pre-
pared to pay for the bundle of goods S. In the OR
language, the valuation of a bundle is taken to be
the maximal value that can be obtained when
computing the sum over disjoint bids for subsets
of the bundle. For instance, consider the following
bid:

�{a},2� OR �{b}, 2� OR �{c}, 3� OR �{a, b},5�

This expresses that the bidder is willing to pay $2
for a or b alone, $3 for c alone, $5 for both a and b,
and $8 for the full set. The OR language is not ful-
ly expressive as it cannot represent submodular
valuations. For example, there is no way to specify

that you would only want to pay $7 for the full set.
In the XOR language, atomic bids are taken to be

mutually exclusive. In this case, the valuation of a
bundle is simply the highest value offered for any
of its subsets. The XOR language can express any
monotonic valuation function (provided it maps
the empty bundle to 0). On the downside, it is typ-
ically not very succinct for interesting classes of
valuations, as it essentially amounts to enumerat-
ing all bundles with nonzero valuation. For
instance, the simple valuation function that maps
each bundle to its cardinality can be expressed
using a linear number of OR bids, but requires
exponential space in the XOR language. It is also
possible to combine the OR and the XOR operator
to obtain bidding languages with better expres-
siveness and succinctness properties than the pure
OR and XOR languages.

An interesting alternative is to simulate XOR
bids by means of OR bids. The idea is to introduce
so-called dummy items, which have no function
other than making bundles mutually exclusive. For
instance, to express that the set {a, b, c} in our ear-
lier example should be valued at $7, we could add
the dummy item d to obtain �{c, d},3� and �{a, b, d},
5�, and to bid in addition on �{a, b, c},7�. This bid-
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Graph G Conditional Preference Tables

xyz
xy′z

xyz′
xy′z′ → x′y′z′ → x′y′z → x′yz → x′yz′

Induced Preference Relation

xy : z � z′
xy′ : z � z′
x′y : z � z′
x′y′ : z′ � z

x : y � y′
x′ : y′ � y

Figure 1. Example of a CP-Net and the Induced Preference Relation.



ding language, known as the OR* language, is as
expressive as the XOR language.

Another approach to designing bidding lan-
guages has been to use propositional formulas
describing desirable combinations of goods as bids
and to allow arbitrary subformulas of these formu-
las to be annotated with prices (Boutilier and Hoos
2001). Such languages belong to a more general
family of languages that make use of formulas of
propositional logic to characterize desirable aspects
of the alternatives to be decided upon and to pair
these formulas with numerical weights indicating
their importance (see for instance Chevaleyre,
Endriss, and Lang [2006]) for expressivity and suc-
cinctness results regarding such languages).

Voting in Combinatorial Domains
In many contexts, a group of voters has to make a
common decision on several possibly related
issues. For instance, imagine a set of friends have to
agree on a common menu to be composed of a first
course, a main course, a dessert, and a wine. Some
of them may have preferential dependencies; for
instance, they may prefer white wine if the main
course is fish and red wine otherwise. Another
example would be that the inhabitants of some
local community have to make a joint decision
over several related issues of local interest, for
instance, to decide whether some new public facil-
ity such as a swimming pool or a tennis court
should be built. Such elections are called multiple
referenda. A third example is committee elections.
Suppose the members of an association have to
elect a steering committee, composed of a presi-
dent, a vice-president, and a treasurer. In such sit-
uations, voters typically have preferential depend-
encies; for instance, they would not like the
president and the treasurer to be close friends (nor
enemies).

Multiple Election Paradoxes
As soon as voters have preferential dependencies
between issues, it is generally a bad idea to decom-
pose a voting problem on p issues into a set of p
smaller problems, each one bearing on a single
issue, because this can give rise to “multiple elec-
tion paradoxes.” Such paradoxes have been stud-
ied by a number of authors (Brams, Kilgour, and
Zwicker 1998; Benoit and Kornhauser 1999; Lacy
and Niou 2000).

Consider the following example. A joint deci-
sion has to be made about whether or not to build
a new swimming pool (S or S′) and a new tennis
court (T or T′). Assume that the preferences of vot-
ers 1 and 2 are ST′  S′T  S′T′  ST, those of vot-
ers 3 and 4 are S′T  ST′  S′T′  ST, and those of
voter 5 are ST  ST′  S′T  S′T′. 

The first complication in this example is that

voters 1 to 4 will feel ill at ease when asked to
report their projected preference on {S, S′} and {T,
T′}. Only voter 5 knows that whatever the other
voters’ preferences about {S, S′} (respectively {T,
T′}), she or he can vote for T (respectively S) with-
out any risk of experiencing regret. Experimental
studies suggest that most voters tend to report
their preferences optimistically in such situations;
for instance, voters 1 and 2 would likely report a
preference for S over S′. 

The second problem (the paradox itself) is that
under this assumption that voters report optimistic
preferences, the outcome will be ST, which is the
worst outcome for all but one voter. How can such
paradoxes be avoided? Reformulating the question
in a more constructive way: how should a vote on
related issues be conducted? 

Possible Solutions
We can list five ways of proceeding, each of which
has its own pitfalls. The first four work at the glob-
al level, where voters vote for combinations of val-
ues, while the last one works at the local level
(through a decomposition of the problem). 

Solution 1 is to ask voters to report their entire
preference relation explicitly on the set of alterna-
tives and then apply a fixed voting rule.

Solution 2 consists in asking voters to report
only a small part of their preference relation (for
instance, their k most preferred outcomes, where k
is a small number) and apply a voting rule that
needs this information only. The plurality rule, for
instance, which chooses the candidate ranked first
by the highest number of voters, is such a rule.

Solution 3 consists in limiting the number of
possible combinations that voters may vote for.

Solution 4 requires each voter to express his or
her preferences as an input in some fixed compact
representation language and then applies a fixed
voting rule to the profile consisting of the prefer-
ence relations induced by the voters’ inputs.

Finally, solution 5 imposes a partitioning of the
domain and requires the voters to vote separately
on each issue, either simultaneously or sequential-
ly (in the latter case, the outcome of the vote on
one issue is revealed to the voters before they vote
on subsequent issues).

Let us now analyze these five proposals. Solution
1 works only if the number of issues is very small.
Suppose we have 10 binary issues. Then voters
surely would not want to bother spending a few
hours (and lots of energy) enumerating 210 alter-
natives! Solution 2 requires little communication,
but this is its only merit, as it is likely to give cata-
strophic results as soon as the number of issues is
not very small. For instance, using the plurality
rule when the number of issues is significant and
the number of voters is small could well result in a
situation where no outcome gets more than one
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vote, in which case plurality would give an
extremely poor (namely, entirely random) result.
Solution 3, advocated by Brams, Kilgour, and
Zwicker (1998), presents the chairperson with a
very problematic choice and introduces a strong
level of arbitrariness. Solution 4, also known as
“combinatorial vote” (Lang 2004), presents two
difficulties: first, the language has to be elicitation-
friendly; and second, the complexity of computing
the outcome is very high in most cases.

Solution 5 has been first supported by Lacy and
Niou (2000), who show that if the voters’ prefer-
ences are separable (which means that each voter’s
preference on the values of an issue is independent
from the outcome on other issues), then the
approach is safe. However, separability is a very
demanding assumption that is unlikely to be met
in practice. Several recent papers (Lang 2007; Xia,
Lang, and Ying 2007) impose a much weaker
domain restriction than separability under which
sequential voting can be applied “safely”: infor-
mally, the condition should be that each time a
voter is asked to report his or her preferences on a
single issues or a small set of issues, these prefer-
ences do not depend on the values of the issues
that have not been decided yet. Formally, this can
be expressed as the following condition: there is a
linear order O = X1 > … > Xp on the set of issues
such that for every voter v and every j, the prefer-
ences of v on Xj are preferentially independent
from Xj+1, …, Xp given X1, …, Xj–1. If this property
is satisfied, then sequential voting rules can be
defined in the following way. Let r1, …, rn be vot-
ing rules on the domains of X1, …, Xn, respective-
ly. Then the sequential composition of r1, …, rn is
defined as follows: first, since all voters have
unconditional preferences over the values of X1, r1
can be applied to these preferences about X1 so as
to make a decision on the value of X1; then, given
this value d1 chosen for X1, voters have well-
defined preferences over the values of X2 that are
independent of X3, …, Xn; therefore r2 is applied to
these local preferences over X2, and so on. In order
to compute the outcome of these sequential vot-
ing rules, we do not need to know the voters’ full
preference relations: it suffices for each voter to
express a CP-net, with the condition that the
dependency graph of the CP-nets is acyclic and
common to all voters.

As an example, consider two binary variables X
and Y, with the ordering X > Y. Each local rule is
the plurality rule (which, since domains are bina-
ry, coincides with the majority rule). Consider sev-
en voters, three of whom express the preference
relation x′y  x′y′  xy′  xy, two xy  xy′  x′y′ 
x′y, and two xy′  xy  x′y  x′y′. The voters’ pref-
erences over the values of X are first elicited (which
is easy, since, by assumption, these preferences are
unconditional). Since four voters out of seven pre-

fer x to x′, the decision X = x is taken. Now, voters
are asked about their preferences on the values of
Y given X = x. Given X = x, five voters out of seven
prefer y′ to y, therefore the decision Y = y′ is taken
and the final decision is xy′.

Preference Aggregation
So far we have focused on voting. While a voting
rule outputs a single candidate, an aggregation
function outputs a collective preference relation or
utility function. Ideally, if the voters’ preferences
are represented in some language, we would like
the output to be represented in the same language:
for instance, we would want to aggregate a collec-
tion of GAI-nets into a GAI-net (Gonzales, Perny,
and Queiroz 2006), or similarly for CP-nets (Rossi,
Venable, and Walsh 2004).

Multiagent Resource Allocation
and Fair Division

Another important application domain that has
attracted a great deal of attention in computer sci-
ence and AI in recent years is multiagent resource
allocation (Chevaleyre et al. 2006). Different vari-
ants have been studied, but a typical setting
involves a set of indivisible goods that need to be
distributed among a set of agents. Typically, goods
exhibit different kinds of synergies between them
and cannot be considered independently without
risking undesirable outcomes. This means that
agents have to express preferences over a combi-
natorial domain. Specifically, the number of bun-
dles of goods an agent might receive is exponential
in the number of goods. The allocation mecha-
nism that has being studied most is that of combi-
natorial auctions, where the efficiency criterion
used to evaluate the quality of an allocation is typ-
ically the revenue of the auctioneer.

Multiagent resource allocation shares some
obvious similarities with voting in combinatorial
domains: agents report preferences on several
alternatives (here, possible allocations of goods to
agents), and a collective decision has to be taken
on the allocation that should be selected as the
outcome of the procedure. Conitzer (2008) dis-
cusses some of these similarities between voting
and resource allocation (focusing on combinatori-
al auctions, as one class of allocation procedures)
in detail. It is useful though, to also emphasize
some of the distinctive features of resource-alloca-
tion problems, as opposed to voting. Among these
are the lack of so-called externalities, the fact that
payments may enter the process, and the consid-
eration of fairness requirements.

Regarding the first of these, in the context of
resource-allocation problems, agents are mostly
assumed to worry only about their own bundle of
resources and to be indifferent to what the others
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receive. This is known as the “no externalities”
assumption. In other words, in the context of an
election, all voters are asked to express a preference
over the same set of alternatives, while in multia-
gent resource allocation they only express prefer-
ences regarding their own lot. Solving a resource-
allocation problem by having agents vote on
possible allocations and then applying a voting
rule would be conceivable in theory, but it would
also be unnecessarily complex.

A second distinctive feature is that allocation
problems often include a monetary component that
is not found in voting. Including the possibility for
monetary payments between agents enlarges the
range of possible deals that can be made, and using
techniques from mechanism design, such payments
can also be used to give agents incentives to truth-
fully reveal their preferences.

As mentioned previously, a third distinctive fea-
ture of resource allocation is the consideration of
fairness issues. More generally speaking, there is a
whole range of different (economic) efficiency and
fairness criteria that we may wish to apply to assess
the quality of an allocation of resources to agents.
The distinction between fairness and efficiency cri-
teria is best illustrated with an example.

Fairness and Efficiency
The allocation of Earth observation satellite images
provides a real-world illustrative example where
indivisible goods have to be allocated to a group of
agents (Chevaleyre et al. 2006). The cost of space
projects is so high that they usually need to be
cofunded by several agents (countries or large com-
panies). When the satellite is eventually in space
circling the Earth, we are faced with the problem of
how to allocate images to the parties who funded
the project. Each agent can request any number of
images to be taken, but for technical reasons not
all of these requests can be satisfied. How should
we decide which photos to take?

On the one hand, efficiency considerations sug-
gest that we should aim at maximizing the overall
number of pictures taken. On the other hand, fair-
ness requirements may dictate that we cannot
always disappoint the same agent, even if this
reduces the total number of requests that can be
satisfied. For instance, we may wish to ensure that,
over time, each agent receives a return on invest-
ments that is at least roughly proportional to the
agent’s financial contribution. Social choice theo-
ry and welfare economics (Arrow, Sen, and Suzu-
mura 2002) have produced a host of mathemati-
cally precise criteria to formally assess efficiency
and fairness. Some of these have been exploited in
AI for some time, while others are less well known
in this community.

Possibly the best known efficiency criterion is
Pareto optimality: it stipulates that the chosen

agreement should be such that no alternative
agreement would be better for some agents with-
out being worse for any of the others. A stronger
requirement would be to ask for an allocation with
maximal utilitarian social welfare, the sum of util-
ities of the individual agents. The classical coun-
terpart to utilitarianism is egalitarianism: maxi-
mizing egalitarian social welfare requires choosing
an allocation that would maximize the utility of
the agent worst off. A refinement of this concept is
the so-called leximin-ordering: here we first try to
maximize the well-being of the poorest agent; once
this option has been exhausted, we turn to maxi-
mizing the well-being of the second poorest agent,
and so forth. Another interesting fairness criterion
is envy-freeness: if possible, we would like to find
an allocation such that no agent would rather have
a bundle that has been allocated to any of its peers.
Allocations that are both envy-free and Pareto-
optimal do not always exist, in which case we may,
for instance, choose to aim at minimizing the
number of envious agents or the degree of envy
experienced by any one agent.

One type of problem that has been investigated
in recent work is the computational hardness of
finding an allocation of resources that is optimal
according to one of these social criteria. Typically,
these problems are difficult. Sometimes, but not
always, putting severe restrictions on the range of
preference structures can offer an escape route
though. For instance, finding an allocation that
maximizes utilitarian social welfare is known to be
NP-hard in general (it corresponds to the SET-PACK-
ING problem), but it becomes easy if all agents have
additively separable preferences. On the other
hand, maximizing egalitarian social welfare
remains NP-hard even in this seemingly simple
case. Questions related to envy-freeness give rise to
particularly interesting computational questions
(Lipton et al. 2004; Bouveret and Lang 2008).

Centralized Versus Distributed Allocation
We can distinguish different types of allocation
procedures, depending on whether they are cen-
tralized or distributed. An example for the former
is combinatorial auctions. Here, a single auction-
eer is in charge of the “winner determination prob-
lem”: determining the allocation of goods and fix-
ing the prices at which the bundles should be sold.
Solving this problem is equivalent to finding an
allocation with maximal utilitarian social welfare,
which we have seen before to be NP-hard in the
general case. Still, in recent years several algo-
rithms have been developed that perform well in
practice. Also, for many real-world applications,
preferences structures often exhibit some regulari-
ties that make the problem tractable even in theo-
ry (Lehmann, Müller, and Sandholm 2006).

A different perspective on the same application
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problem can be taken if we assume that no central
agent is dedicated to the elicitation of the others’
preferences and to the computation of an optimal
outcome. Under that view, agents negotiate local-
ly, by accepting or rejecting deals proposed by
some other agents (with or without side payments)
until a stable situation is reached (when no more
deals are possible). A possible criterion to apply
what deals should be considered acceptable is for
each agent to insist on an immediate benefit to
themselves (such agents are said to be myopic).
Additionally, we may also put structural restric-
tions on deals (how many agents, or goods, can be
involved in a given exchange). Such restrictions
put severe limitations on what can be achieved in
a negotiation system.

For instance, under the assumption of myopic
rationality, an agent holding two resources and
valuing this bundle as “useful” would never give
one of them to another agent valuing the same
bundle as “extremely useful” if single resources are
completely useless to both of them. If the system
only allows deals involving a single resource at a
time, it could remain stuck in such a local opti-
mum. On the other hand, if no structural restric-
tions are present, the negotiation among such
rational agents is known to always converge to an
allocation with maximal utilitarian social welfare,
if side payments are allowed (Sandholm 1998).

An important question is then to characterize,
for a given restriction on possible deals, what
restrictions on preference structures still allow us
to guarantee convergence of the system to a glob-
al optimum. This question may be asked for a
range of different social optimality criteria, such as
maximal utilitarian/egalitarian social welfare, Pare-
to optimality, or envy-freeness. In general, when
nothing is assumed regarding the agents’ prefer-
ence structures, the highest structural complexity
of deals is required (if convergence is possible at
all), which is of little practical interest of course.
Unfortunately, some basic natural restrictions,
such as monotonicity, tend not to help: it may still
be possible that some specific negotiation scenario
would require a very complex deal to reach an
optimal allocation. A challenging question is then
to identify the class of preference structures that
fits a given protocol restriction, in the sense that it
still allows a guarantee of this convergence proper-
ty. In other words: given a class of deals allowed
under some negotiation protocol and a suitable
efficiency or fairness criterion for assessing the
quality of allocations, can we identify conditions
on the preferences of the negotiating agents that
would guarantee that any sequence of acceptable
deals would be bound to converge to an allocation
that is optimal under the chosen criterion? Endriss
et al. (2006) discuss the problem of convergence in
distributed resource allocation in detail.

Conclusion
Preference handling in combinatorial domains and
its application to voting and fair division problems
are examples for ongoing research efforts in the
field of computational social choice. To conclude,
we briefly mention some of the other research
directions that have recently been explored. As this
is a very active area with a fast growing body of lit-
erature, we make no attempt at being comprehen-
sive and we are going to cite only a handful of
exemplary contributions.

Much work in computational social choice
applies the tools of computational complexity the-
ory to social choice settings, particularly to the
analysis of voting rules. For example, while it is
computationally easy to compute the winner for
most of the voting rules in regular use, there are
also rules for which this problem turns out to be
computationally intractable. An example is the
rule proposed by C. L. Dodgson (of “Alice in Won-
derland” fame) in 1876: elect the candidate who is
closest to being able to beat each other candidate
in a pairwise competition, for a suitable definition
of “closest” (Bartholdi, Tovey, and Trick 1989b;
Hemaspaandra, Hemaspaandra, and Rothe 1997).

Computational complexity has also been sug-
gested as a barrier against manipulation in elec-
tions. Classical results from social choice theory
show that for any voting rule to choose between
three or more candidates that is not dictatorial
(meaning that one voter always determines the
outcome), there will be situations in which some
voters may have an incentive to manipulate, in the
sense of submitting a ballot that does not truthful-
ly reflect their real preferences. For instance, if you
have an inkling that your favorite candidate has no
chance of winning, you may be tempted to vote
for your second-best choice instead. In an ideal
world, this kind of reasoning should not be neces-
sary. So one direction of research that is currently
being pursued is to search for voting procedures
that make it computationally hard to manipulate
in this manner. While there are several results
establishing NP-hardness, beginning with the sem-
inal work of Bartholdi, Tovey, and Trick (1989a),
the most recent discussion has concentrated on
the question to what extent such worst-case com-
plexity results offer sufficient protection in prac-
tice, and whether or not meaningful average-case
complexity results are achievable (Conitzer and
Sandholm 2006; Procaccia and Rosenschein 2007).
Besides manipulation in the aforementioned
sense, the complexity of other forms of election
control, for example, by strategically entering
additional candidates into the race, has also been
studied (Faliszewski et al. 2006).

Besides computational complexity, also the the-
ory of communication complexity has been
applied to social choice settings (Conitzer and
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Sandholm 2005). How much information needs to
be exchanged to determine the winner of an elec-
tion or to support a particular negotiation proto-
col is of course especially relevant in combinatori-
al domains. But also in other settings it is in-
teresting to try to quantify the degree of privacy
that can be afforded to the individuals taking part
in a collective decision-making process.

There have also been computational studies of
so-called cake-cutting procedures (Sgall and Woeg-
inger 2007). Designing a protocol for agents to
divide a cake (a single divisible good) between them
is the canonical example for a fair division prob-
lem. For instance, if we interpret fairness as envy-
freeness, then the problem of fairly dividing a cake
between more than three agents such that each
player receives a connected piece (that is, not a col-
lection of several small pieces from different parts
of the cake) is still an open problem. Observe that,
contrary to what we have discussed in this paper,
cake-cutting is not a combinatorial problem.

Yet another line of work aims at developing log-
ics for modeling social choice procedures. Just as
computer scientists have long been using logic to
formally specify the behavior of computer sys-
tems, to allow automatic verification of certain
desirable properties of such systems, it appears
promising to develop suitable logics that would
allow the formal specification of social choice pro-
cedures. This line of research is also known as
social software (Parikh 2002).

For a somewhat more technical introduction to
computational social choice we refer the reader to
our recent survey paper on the topic (Chevaleyre et
al. 2007), which cannot claim to be complete
either, but which does reference a large number of
works for further reading. In a recent AI Magazine
article, Walsh (2007) also reviews several branches
of computational social choice (including manip-
ulation, elicitation, and uncertainty) that we did
not discuss in detail here. Finally, another rich
source of information is the proceedings of the first
and second International Workshops on Compu-
tational Social Choice (COMSOC-2006 and COM-
SOC-2008).
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Save the Date! — July 11–15, 2010

AAAI comes to Atlanta, Georgia in 2010! The Twenty-Fourth
AAAI Conference on Artificial Intelligence (AAAI-10) and the
Twenty-Second Conference on Innovative Applications of
Artificial Intelligence (IAAI-10) will be held in Atlanta at the
Westin Peachtree Plaza Hotel, July 11–15, 2010. Please mark
your calendars, and visit www. aaai.org/aaai10 for updates
later this year!
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