DOI: 10.1609/aaai.12025

SPECIAL TOPIC ARTICLE

Y/

Feedback-based self-learning in large-scale conversational

Al agents

Pragaash Ponnusamy | Alireza Roshan Ghias | YiYi | Benjamin Yao |

Chenlei Guo | Rubhi Sarikaya

Amazon Alexa

Correspondence
Chenlei Guo, Amazon Alexa.
Email: chenlei.guo@gmail.com

Abstract

Today, most of the large-scale conversational Al agents such as Alexa, Siri, or
Google Assistant are built using manually annotated data to train the different
components of the system including automatic speech recognition (ASR), nat-
ural language understanding (NLU), and entity resolution (ER). Typically, the
accuracy of the machine learning models in these components are improved
by manually transcribing and annotating data. As the scope of these systems
increase to cover more scenarios and domains, manual annotation to improve
the accuracy of these components becomes prohibitively costly and time con-
suming. In this paper, we propose a system that leverages customer/system inter-
action feedback signals to automate learning without any manual annotation.
Users of these systems tend to modify a previous query in hopes of fixing an
error in the previous turn to get the right results. These reformulations, which
are often preceded by defective experiences caused by either errors in ASR, NLU,
ER, or the application. In some cases, users may not properly formulate their
requests (e.g., providing partial title of a song), but gleaning across a wider pool
of users and sessions reveals the underlying recurrent patterns. Our proposed
self-learning system automatically detects the errors, generates reformulations,
and deploys fixes to the runtime system to correct different types of errors occur-
ring in different components of the system. In particular, we propose leveraging
an absorbing Markov Chain model as a collaborative filtering mechanism in a
novel attempt to mine these patterns, and coupling it with a guardrail rewrite
selection mechanism that reactively evaluates these fixes using feedback friction
data. We show that our approach is highly scalable, and able to learn reformula-
tions that reduce Alexa-user errors by pooling anonymized data across millions
of customers. The proposed self-learning system achieves a win-loss ratio of 11.8
and effectively reduces the defect rate by more than 30 percent on utterance level
reformulations in our production A/B tests. To the best of our knowledge, this is
the first self-learning large-scale conversational AI system in production.

Al Magazine. 2021;42:43-56.

© 2021, Association for the Advancement of Artificial Intelligence. All rights reserved. 43

S/

AI MAGAZINE

INTRODUCTION

Large-scale conversational AT agents (2017) such as Alexa,
Siri, and Google Assistant are getting more and more
prevalent, opening up in new domains and taking up new
tasks to help users across the globe. One key consideration
in designing such systems is how they can be improved
over time at that scale. Users interacting with these agents
experience frictions due to various reasons: (1) automatic
speech recognition (ASR) errors, such as “play maj and
dragons” (should be “play imagine dragons”), (2) natural
language understanding (NLU) errors, such as “don’t play
this song again skip” (Alexa would understand if it is for-
mulated as “thumbs down this song”), and even user errors,
such as “play bazzi angel” (it should have been “play beau-
tiful by bazzi”). It goes without saying that fixing these fric-
tions help users to have a more seamless experience and
engage more with the Al agents.

One common method to address frictions is to gather
these use cases and fix them manually using rules and
finite state transducers (FST) as they are often the case in
speech recognition systems (2002). This of course is a labo-
rious technique which is: (1) not scalable at Alexa scale,
(2) prone to error, and (3) getting stale and even defective
over time. Another approach could be to identify these fric-
tions, ask annotators to come up with the correct form of
query, and then update ASR and NLU models to solve these
problems. This is also: (1) not a scalable solution, since it
needs a lot of annotations, and (2) it is expensive and time
consuming to update those models. Instead, we have taken
a “query rewriting” approach to solve customer frictions,
meaning that when necessary, we reformulate a customer’s
query such that it conveys the same meaning/intent, and
is actionable (i.e., interpretable) by Alexa’s existing NLU
systems.

In motivating our approach, consider the example utter-
ance, “play maj and dragons.” Now, without reformula-
tion, Alexa would inevitably come up with the response,
“Sorry, I couldn’t find maj and dragons.” Some customers
give up at this point, while others may try enunciating bet-
ter for Alexa to understand them: “play imagine dragons.”
Also note that there might be other customers who give
up and change the next query to another intent, for exam-
ple: “play pop music.” Here, frictions evidently cause dis-
satisfaction with different customers reacting differently to
them. However, quite clearly there are good rephrases by
some customers among all these interactions, which beck-
ons the question - how can we identify and extract them
to solve customer frictions?

We propose using a Markov-based collaborative filter-
ing approach to identify rewrites that lead to success-
ful customer interactions. We go on to discuss the the-
ory and implementation of the idea, as well as show that

this method is highly scalable and effective in signifi-
cantly reducing customer frictions. We also discuss how
this approach was deployed into customer-facing produc-
tion and what are some of the challenges and benefits of
such approach.

RELATED WORK

Collaborative filtering has been used extensively in recom-
mender systems. In a more general sense, collaborative fil-
tering can be viewed as a method of mining patterns from
various agents (most commonly, people), in order to help
each other out (2001). Markov chains have been used previ-
ously in collaborative filtering applications to recommend
course enrollment (2016), personalized recommender sys-
tems (2012), and web recommendation (2012).

Studies have shown that Markov processes can be used
to explain the user web query behavior (2005), and Markov
chains have since been used successfully for web query
reformulation via absorbing random walk (2015), and mod-
eling query utility (2012). We here present a new method
for query reformulation using Markov chain that is both
highly scalable and interpretable due to intuitive defini-
tions of transition probabilities. Also, to the best of the
authors’ knowledge, this is the first work where Markov
chain is used for query reformulation in voice-based vir-
tual assistants.

One important difference between the web query refor-
mulation and Alexa’s use case is that we need to seam-
lessly replace the user’s utterance in order to remove fric-
tion. Asking users for confirmation every time we plan to
reformulate is on itself an added friction, which we try to
avoid as much as possible. Another difference is how suc-
cess and failure are defined for an interaction between user
and a voice-based virtual assistant system. We use implicit
and explicit user feedback when interacting with Alexa to
establish the absorbing states of success and failure.

SYSTEM OVERVIEW

The Alexa conversational Al system follows a rather well-
established architectural design pattern of cloud-based dig-
ital voice assistants (2018), that is, comprising, in order,
of an ASR system, an NLU system with a built-in dialog
manager, and a text-to-speech (TTS) system, as visualized
in Figure 1 Conventionally, as a user interacts with their
Alexa-enabled device, their voice is first recognized by the
ASR engine and decoded into a plain text surface form,
which we refer to as an utterance. The utterance is then
interpreted by the NLU component to surface the afore-
mentioned user’s intent by also accounting for the state of

Al MAGAZINE //: | 45
. ———————— %
® e | utterance :
o ' ; 1
) (eco% ASR 5 Reformulation
voice Yy ! Engine '
A : . S |
: Yo~ :
! C70N
! .)
3 "ce lrewnte
[A
3 NLU
fésponse k R« [P anonymized
Scp ! intent logging
----» Pre-deployment ~ —> Post-deployment | T TTTTTTTITTTITmImTImmmmmmTmmIIT
(8)
utterance _query e
Reformulatlon | Markov Model ingestion
Englne Dalabase update N B
rewnte response +| Rewrite Filter
ONLINE OFFLINE (DAILY)
FIGURE 1 A high-level overview of the deployed architecture with our reformulation engine in context of the overall system in (A) and

the offline sub-system that updates its online counterpart on a daily cadence

Randomized Log
Data

Partitioning & Sorting

FIGURE 2 Data pipeline for constructing sessions

user’s active dialog session. Thereafter, the intent and the
corresponding action to execute is passed on to the TTS
to generate the appropriate response as speech back to the
user via their Alexa-enabled device, thus closing the inter-
action loop. Also note that the metadata and logs associ-
ated with each of the above systems are deidentified and
stored asynchronously in an external data storage system,
which thereafter is accessible offline.

In deploying our self-learning system online, we aug-
ment the original interaction loop by first intercepting the
utterance being passed onto the NLU system and rewriting
it with our reformulation engine. We then subsequently
pass the rewrite in lieu of the original utterance back to
NLU for interpretation, and thus restoring the original
data flow. This is shown as the post-deployment data flow
path in Figure 1. Our reformulation engine here essentially
implements a rather lightweight service-oriented architec-
ture that encapsulates the access to a high-performance,

(C, d7 t)k

Temporal Splitting

low-latency database, which is queried with the original
utterance to yield its corresponding rewrite candidate. This
along with the fact that the system is fundamentally state-
less across users translates to a rather scalable customer-
facing system with marginal impact to the overall per-
ceived latency of their Alexa-enabled device.

Now, in order to discover new rewrite candidates and
particularly to maintain the recency of the rewrites, the
Markov-based model ingests the deidentified Alexa log
data on a daily cadence to learn from users’ reformula-
tions and subsequently updates the aforementioned online
database. This ingestion to update process takes place
offline in entirety with the rewrites in the database updated
via a low-maintenance feature-toggling (i.e., feature-flag)
mechanism. Additionally, in verifying the viability of these
rewrites, particularly in the context of improving cus-
tomer experience, the system is also supplemented by a
rewrite selection mechanism. Here, the deidentified log

AI MAGAZINE

/N

data is leveraged to evaluate the rewrites from the Markov-
based model by independently comparing their friction
rate against that of the original utterance both generi-
cally via a proportion Z-test and contextually via gener-
alized linear models (GLMs), and subsequently removing
them from being uploaded to the database should they per-
form worse than their no-rewrite counterpart. This rewrite
selection process, which allows us to maintain a rather
high precision overall system at runtime, also takes place
entirely offline and updates the database in similar fashion
to that of the Markov-based model, albeit in a much more
frequent cadence of every 4 h - defined by striking a bal-
ance between immediacy, data availability, and execution
time.

In subsequent sections of this paper, we discuss the
nature of our dataset, how the Markov-based model learns
from the reformulations, and the functional aspects of our
rewrite selection mechanism. It is also worth mentioning
that the aforementioned friction rate is computed by aggre-
gating across utterances, the result of a pre-trained neural
model that leverages a user’s utterance, the correspond-
ing Alexa’s response, and other contextual signals to detect
friction for every user-Alexa interaction exchange. While
the extended details of that model is beyond the scope of
the paper, in the simplest sense, the model is based on fine-
tuning a BERT (2018) model on a rather limited internally
annotated dataset.

DATASET

As our objective is to learn the patterns from user interac-
tions with Alexa, we pre-process 3 months of deidentified
Alexa log data across millions of customers, which consti-
tutes a highly randomized collection of time-series utter-
ance data, to construct our dataset, D comprising of a set
of sessions, S;, that is:

D = {S50,5,,..})

Here, in motivating the definition of a session, it is
worth walking through this pre-processing pipeline from a
high-level perspective. Given the collection of randomized
log, the data is first funneled through a partitioning and
sorting stage where each grouping represents a finite
ordered set of successive utterances, u for a unique
customer-device pair, (c, d). Thereafter, each of these sets
are split into smaller sub-sets at points where the time
delay between any two consecutive utterances is at most
d;. These sub-sets are uniquely denoted by (c, d, t) where
t represents the timestamp of the corresponding sub-set’s
first utterance. We also note that interjecting utterances,
J, that is, those leading to StopIntent, Cancellntent, etc.,

TABLE 1
example utterances

Top seven domains spanning the dataset with their

Domain Example Utterance

Global What time is it

Music Play watermelon sugar

HomeAutomation Turn on the patio light

Notifications Set a reminder for two p.m.

Knowledge Who won the n.f. I.

Weather Is it going to rain this week

Video Play the new season of shameless
S: = hg ——> hy ——>

FIGURE 3 Latent session of interpretations

that occur before the end of the aforementioned ordered
sets are removed. These processing steps as a collective
process is illustrated in Figure 2.

Then, intuitively speaking, any particular session, S; is
effectively a time-delimited snapshot of a user’s conversa-
tion history with their Alexa-enabled device. We illustrate
this in Figure 4A-C where each session is represented as
a linear directed chain of successive utterances, for exam-
ple, u, — u; — uy. In this paper, we choose the value of
8, = 45sas aresult from a separate internal analysis.

Additionally, as a matter of principle, we note here that
this dataset of sessions still remains true to the underly-
ing natural distributions of the original log data. This is
particularly so as the process of constructing the dataset
is entirely devoid of any stratification or sampling strate-
gies. To that end, given the anonymity of the sessions, we
ensure that every user interaction with their Alexa device
is entirely independent and weighted equally across the
dataset, where from a linguistic context, it both structurally
and semantically spans over a dozen different domains -
the top 7 of which along with their examples are summa-
rized in Table 1.

ABSORBING MARKOV CHAIN

In this section, we show how encoding user interaction
history as paths in an absorbing Markov Chain model can
be used to mine patterns for reformulating utterances. In
particular, we discuss in detail the concept of the inter-
pretation space, H, which functions as the vertex set of
the model’s transient states. We then elaborate on the con-
struction of the absorbing states, R, the canonical solution

AI MAGAZINE //c
0.25 SongName
) ho > ho 4’@ ® ho stickgble me
0.25
ho ﬁ* h3 0 @ hi SongName | MediaType
@ stickable me | songs
play can you play 0.25l 1'0l h AlbumName
stickable me stickable me 1.0 1.0 2 despicable me
h1 —>{ h —> +
- h3 AlbumName | MediaType
stickable me | songs
(B) ho > hip > hy —> +
(E)
play stickable me
puton play songs from play
stickable me stickable me despicable me can you play stickable me ho 2%
1.0

put on stickable me hy —— hy

» h2 —{ +

P

play play the album play
stickable me stickable me despicable me

play despicable me

play songs from stickable me h 10

play the album stickable me

TV

FIGURE 4 A visual representation of the Markov model constructed in the interpretation space, H, over three separate sessions, (a), (b),
and (c), of users attempting to play the album “Despicable Me”, and how solving for the path with the highest likelihood of success, (+), given
by the darkened edged in (d), can allow for the defective utterances to be reformulated into a more successful query, as summarized in (e).
Note that here, for demonstration purposes, we only show 3 interactions. However, in practice, we had a higher threshold for the minimum
number of customers and interactions to have better estimates for the probabilities

N
»

FIGURE 5 Sub-graph of the Markov model in Figure 4D

to the model, and the practical implementation of the
model. As the Markov Chain model is inherently a prob-
abilistic graphical model, we can represent it as graph,

= (V,E), where the vertex set, V comprises of both the
transient and absorbing states, that is, vertices in H and
R, respectively, while the edge set, E comprises of vertex-
pairs, (x,y) with x being any vertex in H and y being any
vertex in V. We note that from here on out, we use the
terms, Graph, and Markov model interchangeably.

Interpretation space

While our definition of a session above naturally extends
toward having each ordered linear sequence of utterances

as a path in our Markov model, this encoding in the utter-
ance space, U, that is, the space of all utterances u, imposes
a limitation on the model by creating heavily sparse con-
nections. This is primarily due to the high degree of seman-
tic and structural variance in U, which would ultimately
result in a lower capacity for generalization.

To resolve this, we leverage the domain and intent clas-
sifier as well as the named entity recognition (NER) results
from Alexa’s NLU systems to surface structured represen-
tations of utterances, and thus encapsulate a latent distri-
bution over U. Consequently, each utterance in a session
is projected into this interpretation space, H which com-
prises the set of all interpretations A, to define a latent ses-
sion, Sl.' :

where placed in context of Figure 4B is illustrated as
above in Figure 3. To exemplify this, consider the utter-
ance, “play despicable me” (i.e., uy in Figure 4), which
would be mapped into the H-space as:

Music | PlayMusicIntent | AlbumName:despicable
me

which is compactly represented as h, in Figure 4. As the H-
space condenses the semantics of U, this mapping between
U and H is inherently a many-to-one relationship. How-
ever, given the stochasticity of Alexa’s NLU, the original
projection itself is not entirely bijective and thus results in

/N

AI MAGAZINE

amany-to-one relationship in both the forward and inverse
mapping, that is, U - H and H — U, akin to a bipartite
mapping. This in turn, yields the conditional probability
distributions, P(H|U) and P(U|H), such that for a partic-
ular u € U and h € H, they are defined as follows:

(u—-"n

P (hlu) = # — #u-h

P (ulh)= ——

2
where #(u — h) represents the total number of times both
u and h are mapped onto each other while #u and #h are
the total occurrences of u and h in the entire dataset, D,
respectively.

Transient states

Given our transformed dataset, D’ of latent sessions S’,
we take each such session and the interpretations within
it to represent paths and transient states respectively in
our Markov model, such that each successive pair of inter-
pretations would represent an edge in the graph. Then,
the corresponding probability that a transition state h; € H
transitions to h; € H in the graph is given by:

P (hilh) = ——5

3)
where #(h; — h;) and #h; represent the total number of
times h; is adjacent, that is, directly linked to h; and the
total occurrence of h; respectively, aggregated across all
sessions (i.e., over 3 months and millions of customers) in
D.

Taking this in context of Figure 4, consider the transition
probability P(h; |hy). From the sessions (a), (b), and (c), we
can note that the transition state h is adjacent to the states,
{hg, hy, h3, (—)} with each of them having a co-occurrence
count of 1 with h,. Here, (—) refers to the failure absorb-
ing state (defined in the following sub-section). As such, the
probability P (h|hy) = i = 0.25 as shown in Figure 4D.

Absorbing states

In formulating the definition of the absorbing states of
the Markov model, we look toward encoding the notion
of interpreted defects as perceived by the user. As we have
briefly introduced earlier, this concept of defect surfaces in
two key forms, that is, via explicit and implicit feedback.

Here, explicit feedback refers to the type of corrective
or reinforcing feedback received from direct user engage-
ment. This primarily includes events where users opt to
interrupt Alexa by means of an interjecting utterance (as
defined above in Dataset). This is illustrated in the example
below:

User: “play a lever”
Alexa: “Here’s Lever by The Mavis’s, starting now.”
User: “stop”

In contrast, implicit feedback is typically observed when
users abandon a session following Alexa’s failure to han-
dle a request either due to an internal exception or simply
unable to find a match for the entities resolved. Case in
point:

User: “play maj and dragons”

Alexa: “Sorry, I can’t find the artist maj and dragons.”

Given this, we define two absorbing states: failure (r~),
and success (r*), where success is defined as the absence of
failure. These states are artificially injected to the end of
all sessions, based on the implicit and explicit feedback we
infer from Alexa’s response, and user’s last utterance.

To clarify this, let us walk through the examples above
assuming that they are the last utterances of their corre-
sponding sessions. In the first example, we would drop the
“stop” turn, and add a failure state. In the second example,
we simply add the failure state to the end of the session.
Finally, in the absence of an explicit or implicit feedback,
we add a success state to the end of the session. Given this,
we can then define the probability that a given transient
state, h; is absorbed in much the same way as in Equation
8, for example:

(hl s r+)
P (rt|h) = ———— 4
(r*1h) i @
Note that in Figure 4, we refer to the failure (r~), and
success (r*) states as (—) and (+), respectively.

Markov model

With the distributions over both the transition and absorb-
ing states defined above, recall that the interpretation
space, H is the set of all transient states in the graph. Then,
we can summarize the Markov model in its canonical form
via the transition matrix, A as follows:

_[e r
Sl 1 0

where the sub-matrix Q encompasses the transient prob-
abilities between all states in the interpretation space H,
while the sub-matrix R encapsulates the absorption proba-
bilities of every state in H going to the two absorbing states,
r* and r~. Additionally, the sub-matrices 0 and I, both

AI MAGAZINE

/K

represent the sub-matrix of zeros and the 2 X 2 identity
matrix, respectively.

Now, we generalize the previous notation of probabili-
ties as P, that is, the probability at depth-n of the graph,
with P implicitly referring to P, Note that in the con-
text of transition probabilities, this generalization readily
extends to the matrix form where the probability of tran-
sitioning from some transient state h; to some transient
state h; after exactly n steps, that is, PM(h ilh;) is thus
given by the (i, j)-th element of the sub-matrix Q" (i.e., Q
multiplied itselfn times) and similarly as before with Q; ;
implicitly referring to P(h;|h;). Additionally, let hy and h;
be any given source and target transient states in the graph,
respectively. Then, in motivating the optimization objec-
tive, consider foremost the Markov model in Figure 4D and
take both kg and h; to be hj and h,, respectively. The sub-
graph in question can be illustrated in Figure 5.

At this point, we can observe the following key facts
about the sub-graph above: (1) as there is at least 1 path
between hg and h;, the latter is considered to be reach-
able by the former; (2) both paths linking h; and h, are
separated by 1 other transient state with no direct linkage
resulting in 2 traversal steps being required, for example,
hy = h; = h,; and (3) the self-edge on h, further extends
the original depth-2 path into infinitely many possible path
depths by repeatedly circling around hy, for example, hy —
.. > hg = hy = h,.

Here, while the point (2) above indicates that Q}, > 0, it
is far from sufficient from summarizing the total probabil-
ity of transitioning from hy to h;. In fact, the point (3) above
cements that &, can also be reached by h with traversals
of depths 3, 4, and so on, which inevitably leads to the
total probability being the (s, t)-th element of the infinite
compound sum of Q? + Q3 + --- +. We can then generalize
this across all possible source and transient states by also
including Q° and Q to account for all possible depths. Now,
given that Q is a convergent square matrix of probabilities
such that || Q ||< 1, the aforementioned summation then
leads to a geometric series of matrices, which as given by
Definition 11.3 in (1997), corresponds to the fundamental
matrix of the Markov model, denoted by N:

N=Q +Q+Q*+: = (I|H|—Q)_1 (6)

where Iy refers to the identity matrix which is equi-
dimensional with Q. Given this, we can thus define the
probability of success after traversing from any given hy to
any given h; such that h; is reachable by hy as follows:

Ty (hs =) = P (r*|hy) - Ny, 7

As such, in the context of reducing defects, we con-
sider h; to be a possible reformulation candidate for hy if

it is reachable by hy, such that conditioned on hy, h, has a
higher chance of success than h; on its own, that is:

T (hs - ht) >P (r+|hs) (8)

We then frame our objective as identifying the h, which
maximizes the aforementioned probability for the given hy:

h; = arg MaX T (hg = hy) ©)]
t

Intuitively speaking, in the event that i} # h, the model
shows that there exists a reachable target interpretation
that when reformulated from hg, has a better chance at
a successful experience than not doing so. In reference to
Figure 4E, we can see that reformulating h, to h; = h,
increases the likelihood of success as:

ﬂoo(ho—)hz) zg > P (V+|h0) =0 (10)

Suppose that h} = h . In which case, the source inter-
pretation is already successful on its own and hence
requires no reformulation. As such, the model is effec-
tively able to automatically partition the vertex space, H
into sets of successful (H*) and unsuccessful (H™) interpre-
tations. In extending this reformulation back to the utter-
ance space, U, we leverage the distributions P(U|H) and
P(H|U) defined in Equation 5 and re-define our objective
as follows for a given source utterance u; € U:

u;k = arg I’I}fth hZ}:l P(utlht) "Moo (hs - ht) ' P(hslus)
s>t

(1)

The intuition described above can similarly be applied
here where u; is the more successful reformulation of u.
Note that the self-partitioning feature of the model directly
extends to the utterance space, U, allowing it to both sur-
gically and actively target only utterances that are likely to
be defective and surface their corresponding rewrite can-
didates. This is the cardinal aspect of the model that drives
the self-learning nature of the proposed system without
requiring any human in the loop.

Implementation

With |H| ~ 10%, constructing the matrix Q, let alone invert-
ing it, poses a key challenge towards scaling out the model,
particularly in its batched form. As such, we formulate an
approximation in computing the probability 7., (h; — h;)
for all source interpretations, hy by means of a distributed
approach.

2\

AI MAGAZINE

We note that from our dataset, D’, that in the event
that a given source utterance, u; is defective, users would
only attempt at reformulating their query a few times
before either arriving at a satisfactory experience or aban-
doning their session entirely. This translates to most (~
97.3 percent) source interpretations, hy in the Markov
model having short path lengths (i.e., typically < 5) prior to
them being absorbed by an absorbing state. Consequently,
this along with the fact that these reformulations are recur-
rent across users, most high-confidence reformulations
often only involve visiting a relatively much smaller set of
target interpretations, h, when compared to the cardinality
of the interpretation space, |H| as a whole.

This leads us to deduce that the matrix Q is highly sparse
and the corresponding graph contains many clustered (i.e.,
community) structures. We then leverage these facts to
first collect the paths for every source interpretation, hg
in a series of map-reduce tasks, by means of a distributed
breadth-first search traversal up to a fixed depth of 5 using
Apache Spark (2016). Thereafter, each task receives the
paths corresponding to a single kg and in turn uses them to
construct an approximate transition matrix. As the dimen-
sionality of this matrix is much lower than that of A, we
can easily compute approximates for both the fundamen-
tal matrix and the probabilities ,(hy — h;) for the reach-
able target states within the same task. As a result, we have
a distributed solution for parallelizing the computation of
the optimization problem in Eqn. [optim] for every h € H.

The breadth-first search traversal, which involves a
series of sort-merge joins, does indeed introduce an algo-
rithmic overhead of O(d - |E| + |E|log|E|), where d and E
refer to the depth of the traversal and the set of all edges in
the graph, respectively. We do also note that as this is a dis-
tributed join, the incurred network cost due to data shuf-
fles are omitted here for simplicity. That being said, these
overheads are offset by the advantage of being able to scale
out the model. For purposes of optimization, each succes-
sive join is only performed on the set of paths which are
non-cyclic and have yet to be absorbed while paths with
vanishing probabilities are pruned off.

EXPERIMENTS

Baseline: Pointer-generator
sequence-to-sequence model

Sequence-to-sequence (seq2seq) architectures have been
the foundation for many neural machine translation and
sequence learning tasks (2014). As such, by formulating the
task of query rewriting as an extension of sequence learn-
ing, we used a long short-term memory-based (LSTM)
model as an alternative method to produce rewrites. In

short, we first mined 3 months of rephrase data using
a rephrase detection ML model such that the first utter-
ance was defective, and the rephrase was successful. We
then used this data to train the pointer-generator model,
such that given the first utterance, it produces the second
utterance. The model is based on well-established encoder-
decoder architecture with attention and copy mechanisms
(2017). After the model is trained, we then used it to rewrite
the same utterances that the graph rewrites.

Offline analysis

In order to evaluate the quality of the rewrites we obtained,
we annotated 5679 unique utterance-rewrite pairs gener-
ated via the graph, and estimated the accuracy and win-
loss ratio to be 93.4 percent and 12.0, respectively. The
notion of win-loss ratio here is defined as the ratio of
rewrites that result in better customer experience and the
rewrites that deteriorate customer experience. We further
leveraged the pointer-generator model to generate rewrites
for these utterances as a baseline.

Applying the pointer-generator model on this dataset
resulted in accuracy of 55.2 percent, that is, significantly
lower than the accuracy of graph. This is expected, since
the graph (1) aggregates all 3 months of data (and not lim-
ited to merely rephrases), (2) takes into account the fre-
quency of transitions whereas the pointer-generator model
only has unique rephrase pairs for training, and (3) utilizes
the interpretation space to further compact and aggregate
the utterances.

In contrast, the pointer-generator model has instead the
benefit of a higher recall (since it can potentially rewrite any
utterance), and it learns the patterns, for example, Song-
Name — play SongName. Another important difference
between the graph and the pointer-generator method is
that the graph is capable of identifying when an utterance
is successful via its interpretation, that is, when h; = h;
and thus maximize its precision. This is a signal to not
rewrite the utterance, since statistically speaking, rewrit-
ing could only potentially worsen its likelihood of success.
However, the pointer-generator model lacks this capabil-
ity, and it may rewrite an otherwise successful utterance,
which thereafter would cause a friction.

Table 2 shows some examples of good and bad rewrites
from the graph. It is clear from the examples that the
rewrites are capable of fixing ASR (no. 1-3), NLU (no. 4-
7), and even user errors (no. 8). On the other hand, there
are cases where the rewrites tend to fail (no. 9-10). One
of the recurring cases of failure is when an utterance is
rewritten to a generic utterance, like “play,” or “shuffle my
songs.” This usually happens due to the original utterance
not being successful, and the users trying many different

Al MAGAZINE //A | s1

TABLE 2 Some example rewrites from the graph
No. Original utterance Rewrite Label
1 Play maj and dragons Play imagine dragons Good
2 Play shadow by lady gaga Play shallow by lady gaga Good
3 Play rumer Play rumor by lee brice Good
4 Play sirius x. m. chill Play channel fifty three on sirius x. m. Good
5 Play a. b. c. Play the alphabet song Good
6 Don’t ever play that song again Thumbs down this song Good
7 Turn the volume to half Volume five Good
8 Play island ninety point five Play island ninety eight point five Good
9 Play swaggy playlist Shuffle my songs Bad
10 Play carter five by lil wayne Play carter four by lil wayne Bad

paths that eventually lose information, and is consequently
aggregated in a generic utterance (due to Eq. [sumProbabil-
ities]). Another common case of failure is when the rewrite
changes the intention of the original utterance by chang-
ing the song name or artist name. This happens because
of various reasons. For example, the data that we use for
building the graph may contain a period of time where the
original utterance was not usually successful, so the users
changed their mind by asking to play another similar song
(like no. 10).

While the first type of error is easy to correct, by either
applying rules or building a learning-based ranker after
the graph generation, the second type, however, is rather
tricky to detect, since more often than not, changes in
the interpretation tend to help. Here, we critically rely on
the rewrite selection mechanism to remove these forms of
rewrites from the production system.

REWRITE SELECTION

Despite the graph’s ability to surgically target only utter-
ances which are potentially defective, it certainly is not
devoid of false positives and may very well over-trigger
by surfacing rewrites that worsen user experiences as
shown in Table 2. In fact, extending from the previous
section, while high path entropy leading to overly gener-
alized utterances is a cause of concern, the greater req-
uisite for a rewrite selection mechanism stems from the
latter issue of intent changes in the proposed rewrite,
which is largely prompted by the unavailability of more
recent content requested by the original utterance. Here,
the rewrite offers but only a temporary solution to address
user demand. However, when the newer content becomes
available, a system more reactive than the graph is impera-
tive in suppressing this. Additionally, the collaborative fil-
tering nature of the graph translates to surfacing rewrite
paths that while may improve the experience for most

users, may very well worsen for those who fall short of
being in the majority preference pool. These factors suffice
in giving rise to our rewrite selection system centered on
the premise of comparatively evaluating the friction rates
between the rewrites and their original counterparts, and
thus compensates for the graph’s limitations by (1) reac-
tively supplanting graph’s local Markov property in assess-
ing the viability of a rewrite for an utterance post-launch,
(2) leveraging more granular contextual and feedback sig-
nals as afforded by the pre-trained neural defect predictor
than the coarser definitions used in the absorbing states,
and (3) potentially feeding back the actions of rewrite not
being selected as implicit failure nodes allowing for a better
re-routing of paths in the graph.

Generalized selection

Given the original utterance, the selection system can
decide to rewrite it to one or more candidate utterances,
or not to rewrite at all if none of the candidates reduces
frictions.

In its rather simplest form, the generalized rewrite selec-
tion both posits and attempts to answer the question of
whether a rewrite for a given utterance would significantly
worsen user experience when compared to that of the orig-
inal utterance itself, solely by virtue of their respective
friction rates. This lends itself to the notion of evaluating
on the basis of hypothesis testing, and more specifically
a proportion Z-test between the friction distributions of
the rewrite and no-rewrite cases. To drive this home, con-
sider the case where we rewrite, “play walk hard by dewey
cox” — “play walk hard” by excising the artist name for the
requested song. Note that the rewrite is actively altering a
portion of original interpretation as follows:

ArtistName: dewey cox|SongName :walk hard

2
SongName :walk hard

2| M

AI MAGAZINE

Now, let uy and u; be the friction rates of the original
and rewrite, respectively. Then, we subsequently construct
the one-sided proportion Z-test to question if the rewrite is
indeed worsening the experience by defining both the null
and alternative hypotheses such that:

Hoy @ po =
. (12)
Hy @ o <mg

Leveraging actual post-launch data, we observed that
the original resulted in about six friction experiences out
of eight, that is, an effective friction rate of 75 percent
while the rewrite had about eight friction experiences out
of 24, that is, an effective friction rate of 33 percent. These
in combination yields a P-value of 0.98 and with a sig-
nificance level of 0.01 suggest that the inverse alternative
hypothesis, that is, where 1 > u; is statistically significant
and is thereafter sufficient to reject the null hypothesis -
thus indicating that the rewrite actually improves overall
user experience. Now, extending this back to the example
no. 10 in Table 2, where we rewrite “play carter five by lil
wayne” — “play carter four by lilwayne,” we note that while
initially the content unavailability of the original utterance
would push the Z-test in favor of the rewrite, this is only
temporary as the Z-test would eventually favor preserving
the original as soon as the more recent content becomes
available and thus driving down the friction rates of the
original. This reactive behavior is critical to ensure cus-
tomer satisfaction at optimal rates.

Contextualized selection

Despite the simplicity of the generalized selection mech-
anism, its reactivity is very much limited by the vol-
ume of observations for the given hypothesis tests and
this is especially so for rewrites with rather low accrual
rates where a far longer period would be requisite toward
achieving similar statistical significance for rewrite selec-
tion. This inevitably necessitates a supplementary system
to bridge this reactivity gap. Now, consider the two pro-
posed rewrites for a similar original utterance, that is, “play
a.b.c.” — “play the song a. b. c.” and “playa. b.c.” — “play
thea.b. c. song.” Here, while the original utterance and the
former rewrite has an effective friction rates of 79 percent
(given approximately 100 observations) and 32.3 percent
(given approximately 3000 observations), respectively, the
latter rewrite appeared to have only occurred once and
without friction. Evidently, a single friction-free observa-
tion of the latter rewrite would be insufficient to perform
any meaningful hypothesis testing as in the generalized
setting. However, given the fact that both the rewrites here

share a similar resolved interpretation as follows:
MediaType:song|SongName:the alphabet song

It does indeed beckon the question of whether the fric-
tion rate and by extension the overall rewrite viability of the
latter rewrite could possibly be inferred from those of the
former. In fact, our contextualized rewrite selection (CRS)
proposes to answer this question by means of featurizing
the rewrites so as to leverage and transfer their content
information across rewrites, thus scaling out the rewrite
selection impact regardless of the reactivity of the general-
ized setting.

Friction rate prediction

Motivated by the requisite for bridging the reactivity gap
and generalizing friction distributions across utterances in
traffic, the CRS aims to infer the friction rates for rewrites
in this contextualized setting by ultimately establish-
ing two conditional distributions, P(Y|u) and P(Y |uy, u;)
where Y corresponds to a binary response variable denot-
ing the friction indicator while u, u,, and u, each corre-
spond to any valid utterance, the source utterance, and the
target utterance, that is, the rewrite, respectively. Now, in
learning these conditional distributions, the CRS abstracts
the input space leveraging a feature extractor, ¢ : u — X,
to contextualize the inputs, that is, utterances and there-
after employs logistic regression classifiers in constructing
the following predictive models:

P(Y|u)
P(Y |ug, uy)

~ P(YIX,))
~ P(Y|X;, X;)

Here, the feature space for each utterance includes (but
is not limited to) the domain, intent, NER, and entity reso-
lution values. Extending this formulation back to the orig-
inal example, we observe that both the rewrites, “play the
songa.b.c.” and “play the a. b. c. song” for the original utter-
ance, “play a. b. ¢.” would fundamentally have the same
feature spaces, X and X, purely on the basis of having sim-
ilar resolved interpretations. As such, the predicted friction
rates would also inevitably be the same and thus allowing
the model to generalize its learning across utterances.

As a matter of performance, these two predictive models
achieve an ROC-AUC of 66 percent and 62 percent, respec-
tively within the confines of our testing dataset compris-
ing of millions of historical utterances built upon the afore-
mentioned Alexa log data. In addition to the predicted fric-
tion binaries, the standard errors based on the asymptotics
of generalized linear methods (GLMs) (1985) and the delta

AI MAGAZINE 53
-
TABLE 3 Z-test on predicted friction rates and thus evidently improving the overall user experience.
Frictionrate p- In contrast, it is far from arguable that the rewrite “play
(SE) value Decision happier by d. j. marshmello” — “play happier” has signif-
Original utterance: play a. 78.5% (1.26%) icantly worsened the friction rate, that is, from 30.9 per-
b.c. cent (9.43 percent) to 60.5 percent (8.14 percent). However,
Rewrite candidate: play ~ 32.8% (0.73%) 1.0 Better not all rewrites have such marked decision boundaries for
the a. b. c. song strict selection. In the rewrite, “play big shrimp” — “play
Rewrite candidate: play ~ 34.1% (6.27%) 0.999 Better big shrimp by flatbush zombies,” with 95 percent confi-
the alphabet song dence intervals of their predictions heavily overlapping
Original utterance: play 15.3% (1.49%) with each other, that is, 15.3 percent + 1.96+x1.49 percent
big shrimp and 17.1 percent + 1.96%6.87 percent, the decision was
Rewrite candidate: play ~ 17.1% (6.87%) 0.597 Tie restricted to a mere tie. Extending from this, we look
big shrimp by flatbush toward two separate decision making strategies, namely a
zombies conservative setting and a more explorative approach.
Original utterance: play 30.9% (9.43%) Conservative: The goal here is to be more risk-averse so
e 77 6L as to ensure safety of the system, whereby explorations
marshmello . . . s e
are disfavored and decisions are solely based on significant
Rewrite candidate: play 60.5% (8.14%) 0.009 Worse

happier

method (1935) are computed across the dataset to capture
relevant uncertainties.

In the interest of better evaluating the functional
performance of the models in selecting rewrites, we
annotated 152 random samples of rewrites that were
decidedly chosen to be removed by the models, and we
observed that 113 of them are veritable, leading toward
an effective precision of 74.3 percent. Additionally, we
estimated the overall percentage of bad distinct rewrites
in our traffic to be approximately 6.4 percent, based on a
separate annotation of 921 random rewrites. Now, given
that approximately 12.9 percent of them are reactively
removed, we conclude that this effectively translates to
the recall of our rewrite selection system. It is worth
mentioning however that these number would be further
inflated if they were otherwise re-weighted by traffic.

Decision modeling

With the predictive models being able to generalize friction
distributions across utterances, we turn to leveraging them
in modeling the decision boundaries for rewrite selection.
In particular, consider the examples in Table 3 where the
rewrites:

“play a. b. c.” — “play the a. b. c. song”
“play a. b. ¢.” — “play the alphabet song”

both significantly reduce the friction rate from 78.5 percent
(with a standard error, SE of 1.26 percent) to 32.8 percent
(0.73 percent) and 34.1 percent (6.27 percent), respectively,

insurmountable evidence. While still leveraging the notion
of Z-tests, we directly utilize the predicted friction rates
and their corresponding standard errors in lieu of infer-
ring the mean and standard error from empirical observed
friction rates. Applying a significance level of &« = 0.05, in
these four examples, we will only remove the rewrite “play
happier by d. j. marshmello" — “play happier” and preserve
the viability of the other rewrites in production traffic.

Explorative: The goal here instead would be to opti-
mize the long-term performance by aggressively exploring
rewrites until such a time significant confidence has been
accrued to reach a decision. Suppose that the initial pre-
dicted friction rate is not too high, but the SE is rather
sufficiently high as is the case with the rewrite, “play big
shrimp” — “play big shrimp by flatbush zombies” where the
friction rate is 17.1 percent, but with a rather high SE 6.87
percent. This means its true friction rate could fluctuate
between lower (down to ~10 percent if we use 1 SE as the
fluctuation) and higher values. Now, should an increase
in observation volume lower its standard error, we would
then inevitably conclude that it as a good rewrite if the new
predicted friction rate is closer to the tune of 13 percent (1
percent), and a bad rewrite if instead it is closer to 18 per-
cent (1 percent). Even if the rewrite turns out to be bad after
our active explorations, the data is still not wasted, as the
investment is only short-term and the data for a particular
rewrite is also shared in model learning by other rewrites
with similar features.

This kind of reward-driven exploration ideas has been
well researched in multi-arm bandit algorithms. As a mat-
ter of reference, LinUCB (2010) and derived applications
using penalized logistic regression as mentioned in (2011).
Here, UCB stands for upper confidence bound. Our exam-
ple of using 17.1 percent — 6.87 percent for the possible
true friction rate of “play big shrimp” — “play big shrimp by
flatbush zombies” is similar to UCB ideas. Strictly applying

2\

AI MAGAZINE

UCB ideas in our example, we make the decision based
on the lower bound of predicted friction rate, that is,
rewrite 17.1 percent — a %6.87 percent, as opposite to orig-
inal utterance 15.3 percent — a * 1.49 percent. Here a is
a technical parameter related to sample size and confi-
dence. Additionally, from a Thompson Sampling (1933)
and related applications for example (2010), and (2017) per-
spective, one can consider having three arms for the exam-
ple “play a. b. ¢.” in Table 3 - no-rewrite, rewrite “play
the a. b. c. song,” or rewrite “play the alphabet song.” The
idea would be along this line: every time we see an utter-
ance traffic with “play a. b. c.,” we draw one random sam-
ple from each arm’s predicted defect distribution approxi-
mated by Gaussian distribution with estimated mean and
SE, N(78.5 percent,1.26 percent), N(32.8 percent, 0.73 per-
cent) and N(34.1 percent, 6.27 percent). Then we select the
arm with the lowest sampled friction rate as our decision
for that particular traffic.

APPLICATION DEPLOYMENT
Offline rewrite mining

Since there are thousands of new utterances per day, and
there are constant changes to the upstream and down-
stream systems in Alexa on a daily basis, it is important
to update our rewrites on a regular basis to remove stale
and ineffective rewrites. We run daily jobs to mine the most
recent rewrites in an offline fashion. This allows us to find
the most recent rewrites and serve them to users. It is note-
worthy that in case of conflicts between the rewrites, we
pick the most recent rewrite, since it has the latest data.
We have online alarms and metrics to monitor daily jobs,
since sometimes changes to the upstream and downstream
Alexa components can impact our rewrite mining algo-
rithm. In case of large changes in our metrics, we do a dive
deep into the data to find the root cause.

Online service

Since the graph is static during the period it is used, and
there are many repetitive utterances per day, we opted
to mine the rewrites as key-value pairs, where the orig-
inal utterance is the key, and the rewrite is the value.
For example, we store “play babe shark” — “play baby
shark” as one entry. We then serve these pairs in a high-
performance database to meet the low latency require-
ment. This allows us to decouple the offline mining process
and the online serving process for high availability and low
latency requirements.

Rewrite selection system

Due to the quick change of contents in Alexa traffic as well
as its evolving ASR & NLU systems, graph alone is not
quick enough to adapt to all changes. The guardrail rewrite
selection system runs its algorithms every 4 h, refresh and
store selection actions for all rewrite pairs in another high-
performance database that is coupled with graph online
service.

Online performance

Following the offline analysis and traffic simulations, we
launched the graph rewrites in production in an A/B test-
ing setup. We monitored the performance of our rewrites
against no-rewrites for over 2 weeks, and we observed
more than 30 percent average reduction in defect rate (p —
value < 0.001), helping millions of users. Here, the notion
of defect is based on an ML model which scores user dis-
satisfaction at every turn. In a separate 9 week randomized
control trial, we also noted as defect decreased, a new dia-
log interaction was created for every two corrections made
by the system (p — value < 0.01), which in turn translates
to greater user engagement. We further measured the win-
loss ratio 3 months after the system’s release by tallying the
number of unique rewrites where rewriting significantly
improved i.e. wins — or worsened i.e. losses over the no-
rewrite option (we used Z-test to test the significance, and
set p-value threshold of 0.01). The post-launch win-loss
ratio closely matched our offline estimate (11.8 online vs.
12.0 offline).

We have been running this application for over 15
months in production, and it has been serving millions
of users, since improving their experience on a daily basis
without getting in their way. We know this for a fact since
we have been monitoring customer satisfaction metrics on
a weekly basis. We monitor the total number of rewrites,
and the average friction rate for the rewrites, along with
average friction for no-rewrites, where for the latter two,
the aforementioned 30 percent margin still prevails. On top
of tracking online metrics, we continue doing offline evalu-
ations on a weekly basis, where we sample our traffic, and
send it for annotation. Combining the online and offline
metrics in a longitudinal fashion allows us to closely fol-
low the changes in the customer experience, which is the
ultimate metric for our system.

CONCLUSION

As conversational agents become more popular and grow
into new scopes, it is critical for these systems to have

AI MAGAZINE

self-learning mechanisms to fix the recurring issues con-
tinuously with minimal human intervention. In this paper,
we presented a self-learning system that is able to effi-
ciently target and rectify both systemic and customer
errors at runtime by means of query reformulation. In
particular, we proposed a highly scalable collaborative-
filtering mechanism based on an absorbing Markov chain
to surface successful utterance reformulations in conver-
sational AI agents. Our system achieves a high precision
performance thanks to aggregating large amounts of cross-
user data in an offline fashion, without adversely impact-
ing users’ perceived latency by serving the rewrites in a
look-up manner online. This coupled with our rewrite
selection mechanism which reactively evaluates the viabil-
ity of rewrites at a greater cadence has helped maintain the
aforementioned high precision at runtime. We have tested
and deployed our system into production across millions
of users, reducing customer frictions by more than 30 per-
cent and achieving a win-loss ratio of 11.8. Our solution
has been customer-facing for over 36 months now, and it
has helped millions of users to have a more seamless expe-
rience with Alexa.

ACKNOWLEDGEMENTS

The authors would very much like to thank Steven Wasik
and his team for their analysis into customer engagement
and Jin Hock Ong and his team, particularly Karen Stabile
and Vincent Ly for their continued engineering support in
maintaining and monitoring the system as a whole.

REFERENCES

Chapelle, O., and L. Li. 2011. “An empirical evaluation of thomp-
son sampling.” In Advances in Neural Information Processing Sys-
tems, NIPS’11, 2249-57. Granada, Spain: Curran Associates, Inc.

Devlin, J., M. Chang, K. Lee, and K. Toutanova. 2018. “BERT: Pre-
training of deep bidirectional transformers for language under-
standing.” CoRR abs/1810.04805.

Doob, J. L. 1935. “The limiting distributions of certain statistics.” The
Annals of Mathematical Statistics 6(3): 160-9.

Fahrmeir, L., and H. Kaufmann. 1985. “Consistency and asymptotic
normality of the maximum likelihood estimator in gener- alized
linear models.” The Annals of Statistics 13: 342-68.

Fouss, F., S. Faulkner, M. Kolp, A. Pirotte, and M. Saerens 2005. “Web
recommendation system based on a markov-chain model.” In Pro-
ceedings of the Seventh International Conference on Enterprise
Information Systems, 56-63. Miami, USA: SciTePress.

Gao, J., M. Galley, and L. Li. 2018. “Neural approaches to conversa-
tional AL” CoRR abs/1809.08267.

Graepel, T., J. Q. Candela, T. Borchert, and R. Herbrich. 2010. “Web-
scale bayesian click-through rate prediction for spon- sored search
advertising in microsoft’s bing search engine.” In Proceedings of
the 27th International Conference on International Conference on
Machine Learning, ICML’10, 13-20. Madison, WI, USA: Omni-
press.

Grinstead, C. M., and J. L. Snell. 1997. Introduction to Probability.
American Mathematical Society.

y NE

Hill, D. N., H. Nassif, Y. Liu, A. Iyer, and S. Vishwanathan. 2017. “An
efficient bandit algorithm for realtime multivariate optimization.”
In Proceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 1813-21. Halifax,
NS, Canada: Association for Computing Machinery.

Jansen, B.J., D. L. Booth, and A. Spink. 2005. “Patterns of query refor-
mulation during web searching.” Journal of the American Society

for Information Science and Technology 60(7): 1358-71.

Khorasani, E. S., Z. Zhenge, and J. Champaign. 2016. “A markov chain
collaborative filtering model for course enrollment recommenda-
tions.” In IEEE International Conference on Big Data, 3484-3490.
Washington, DC, USA: IEEE.

Li, L., W. Chu, J. Langford, and R. E. Schapire. 2010. “A contextual-
bandit approach to personalized news article recommen- dation.”
In Proceedings of the 19th International Conference on World
Wide Web, 661-70. Raleigh, North Carolina, USA: Association for
Computing Machinery.

Mohri, M., F. Pereira, and M. Riley. 2002. “Weighted finite-state trans-
ducers in speech recognition.” Computer Speech & Language 16(1):
69-88.

Sahoo, N., P. V. Singh, and T. Mukhopadhyay. 2012. “A hidden
Markov model for collaborative filtering.” MIS Quarterly 36: 1329-
56.

Sarikaya, R. 2017. “The technology behind personal digital assistants:
An overview of the system architecture and key compo- nents.”
IEEE Signal Processing Magazine 34(1): 67-81.

See, A., P.J. Liu, and C. D. Manning. 2017. “Get to the point: Summa-
rization with pointer-generator networks.” Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics 1:
1073-83.

Sutskever, 1., O. Vinyals, and Q. V. Le. 2014. “Sequence to sequence
learning with neural networks.” In Proceedings of the 27th Inter-
national Conference on Neural Information Processing Systems,
3104-3112. Montreal, Canada: MIT Press.

Terveen, L., and W. Hill. 2001. “Beyond recommender systems: Help-
ing people help each other.” In The New Millennium, Jack Carroll.
New York, N.Y., USA.

Thompson, W. R. 1933. “On the likelihood that one unknown prob-
ability exceeds another in view of the evidence of two samples.”
Biometrika 25(3/4): 285-94.

Wang, J., J. Z. Huang, and D. Wu. 2015. “Recommending high utility
queries via query-reformulating graph.” Mathematical Problemsin
Engineering, 2015: 1-14.

Zaharia, M., R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X.
Meng, et al. 2016. “Apache spark: A unified engine for big data
processing.” Communications of the ACM 59(11): 56-65.

Zhu, X., J. Guo, X. Cheng, and Y. Lan. 2012. “More than rel-
evance: High utility query recommendation by mining users’
search behaviors.” In CIKM’12, October 29-November 2, Maui, HI,
USA.

AUTHOR BIOGRAPHIES

Pragaash Ponnusamy is an applied scientist at Ama-
zon Alexa Al. He received his B.S. degree in electrical
engineering and computer science from the University
of California, Berkeley in 2016.

2N

AI MAGAZINE

Alireza Roshan Ghias is an applied science manager
at Amazon. He received his B.S degree from the Univer-
sity of Tehran in 2004 and his M.S. degree from Sharif
University of Technology in 2006, both in Mechani-
cal Engineering. In 2012, he received his Ph.D. degree
from Ecole Polytechnique Fetdetrale de Lausanne in
Biomedical Engineering.

Yi Yi is a senior applied scientist at Amazon. He
received his B.S degree in Mathematics and Applied
Mathematics from Shanghai University in 2010; and his
Ph.D. degree in statistics from the University of Califor-
nia, Los Angeles in 2016.

Benjamin Yao is a senior applied science manager at
Alexa Al at Amazon. He received his B.S degree in Elec-
trical Engineering from the University of Science and
Technology of China in 2003 and his M.S. degree in
Image Analysis in 2006 from Chinese Academy of Sci-
ences. In 2011, he receieved his Ph.D. degree in Statistics
from the University of California, Los Angeles.

Chenlei Guo is the director of applied science at
Amazon. He received his B.S. degree in 2005 and his
M.S. degree in 2008 from Fudan Univeristy, both in
Electronics Engineering. In 2009, he received his M.S.
degree in Computer Engineering from Carnegie Mel-
lon University. He was a principal engineering man-
ager at Microsoft from 2009 to 2017, where he led the
team to launch multiple products such as the entity
ranking for Bing search, the office insight and peo-
ple/location/time search in Office 365 product.

Ruhi Sarikaya is the director of applied science at
Amazon. He received his B.S. degree from Bilkent
University, Ankara, Turkey, in 1995; his M.S. degree
from Clemson University, South Carolina, in 1997
and his Ph.D. degree from Duke University Durham,
North Carolina, in 2001, all in Electrical and Com-
puter Engineering. He was a principal science man-
ager at Microsoft from 2011 to 2016, where he founded
and managed the team that built language understand-

ing and dialog management capabilities of Cortana and
Xbox One. Before Microsoft, he was with IBM Research
for 10 years. Prior to joining IBM in 2001, he was a
researcher at the University of Colorado at Boulder for
2 years.

How to cite this article: Ponnusamy, P., A. R.
Ghias, Y. Yi, B. Yao, C. Guo, and R. Sarikaya. 2021.
“Feedback-based self-learning in large-scale
conversational Al agents.” AI Magazine 42: 43-56.
https://doi.org/10.1609/aaai.12025

UNIVERSITY of
FLORIDA
Assistant Professor in Artificial Intelligence
Electrical and Computer Engineering
Herbert Wertheim College of Engineering
University of Florida

The Department of Electrical and Computer Engineering (ECE) in the
Herbert Wertheim College of Engineering (HWCOE) at the University of
Florida (UF) invites applications for four full-time, nine-month tenure-
track faculty positions at the rank of Assistant Professor. The open
positions are for candidates working in one or more of the following
areas related to Artificial Intelligence (Al): Machine Learning and
Climate, Self-Aware Al Computing Systems, Al of Things, and Cognitive
Architectures. The successful candidates are expected to have a
doctoral degree in a relevant engineering field at the time of hire. The
anticipated start date for the position is Fall 2022 with some flexibility
for a later start based on individual needs. The University of Florida is
an equal opportunity institution.

Additional information about the position, department,
and application package is available at
e https://facultyjobs.hr.ufl.edu/posting/96173
e https://facultyjobs.hr.ufl.edu/posting/96127
e https://facultyjobs.hr.ufl.edu/posting/96148
e https://facultyjobs.hr.ufl.edu/posting/96168

Please email any questions to search-Al@ece.ufl.edu

