ITA-ECBS: A Bounded-Suboptimal Algorithm for Combined Target-Assignment and Path-Finding Problem


  • Yimin Tang University of Southern California
  • Sven Koenig University of Southern California
  • Jiaoyang Li Carnegie Mellon University



Multi-Agent Path Finding (MAPF), i.e., finding collision-free paths for multiple robots, plays a critical role in many applications. Sometimes, assigning a target to each agent also presents a challenge. The Combined Target-Assignment and Path-Finding (TAPF) problem, a variant of MAPF, requires one to simultaneously assign targets to agents and plan collision-free paths for agents. Several algorithms, including CBM, CBS-TA, and ITA-CBS, optimally solve the TAPF problem, with ITA-CBS being the leading algorithm for minimizing flowtime. However, the only existing bounded-suboptimal algorithm ECBS-TA is derived from CBS-TA rather than ITA-CBS. So, it faces the same issues as CBS-TA, such as searching through multiple constraint trees and spending too much time on finding the next-best target assignment. We introduce ITA-ECBS, the first bounded-suboptimal variant of ITA-CBS. Transforming ITA-CBS to its bounded-suboptimal variant is challenging because different constraint tree nodes can have different assignments of targets to agents. ITA-ECBS uses focal search to achieve efficiency and determines target assignments based on a new lower bound matrix. We show that it runs faster than ECBS-TA in 87.42% of 54,033 test cases.