A Suboptimality Bound for 2k Grid Path Planning

Authors

  • Benjamín Kramm Pontificia Universidad Catolica de Chile
  • Nicolas Rivera University of Cambridge
  • Carlos Hernandez Universidad Andres Bello
  • Jorge Baier Pontificia Universidad Catolica de Chile

DOI:

https://doi.org/10.1609/socs.v9i1.18459

Abstract

The 2k neighborhood has been recently proposed as an alternative to optimal any-angle path planning over grids. Even though it has been observed empirically that the quality of solutions approaches the cost of an optimal any-angle path as k is increased, no theoretical bounds were known. In this paper we study the ratio between the solutions obtained by an any-angle path and the optimal path in the 2kk, that generalizes previously known bounds for the 4- and 8-connected grids. We analyze two cases: when vertices of the search graph are placed (1) at the corners of grid cells, and (2) when they are located at their centers. For case (1) we obtain a suboptimality bound of 1 + 1/8k2 + O(1/k3), which is tight; for (2), however, worst-case suboptimality is a fixed value, for every k ≤ 3. Our results strongly suggests that vertices need to be placed in corners in order to obtain near-optimal solutions. In an empirical analysis, we compare theoretical and experimental suboptimality.

Downloads

Published

2021-09-01