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1 Introduction
We study the problem of generating environments to im-
prove the throughput of multi-robot systems in automated
warehouses. A previous work (Zhang et al. 2023) formu-
lates the environment optimization problem as a Quality Di-
versity (QD) optimization problem and optimizes the envi-
ronments by searching for the best allocation of shelf and
endpoint locations. Inspired by evolutionary algorithms, QD
algorithms are a class of stochastic optimization algorithms
capable of generating an archive of diverse solutions by si-
multaneously optimizing an objective and a set of diversity
measures. Zhang et al. (2023) use a QD algorithm to iter-
atively generate new environments and then repairs them
with a Mixed Integer Linear Programming (MILP) solver
to enforce constraints such as the storage capacity and graph
connectivity. The repaired environments are evaluated with
a lifelong Multi-Agent Path Finding (MAPF) simulator. Fig-
ure 1a shows an example optimized environment.

However, the aforementioned method requires a large
number of runs in the lifelong MAPF simulator and the
MILP solver. For example, it took up to 24 hours on a 64-
core machine to optimize a warehouse environment of size
only 36 × 33 with 200 robots, while practical warehouses
are reported to have more than 1,000 robots with size up to
179 × 69 (Yu and Wolf 2023).

Therefore, in this paper, instead of optimizing the environ-
ments directly, we present a method to train Neural Cellular
Automata (NCA) (Earle et al. 2022) environment genera-
tors capable of scaling their generated environments arbitrar-
ily. NCA is a convolutional neural network (CNN) that in-
crementally constructs environments through local interac-
tions between cells, evolving a fixed simple environment to a
complex one. We follow a prior work (Earle et al. 2022) and
use QD algorithms to efficiently train a diverse collection
of NCAs in small environments. We then use the NCAs to
generate arbitrarily large environments with consistent and
regularized patterns. We adopt the MILP solver (Zhang et al.
2023) to repair the environments in case they are invalid.
Figure 1b shows an example NCA-generated environment
with regularized patterns.
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Figure 1: Examples of optimized warehouse environments.
Robots move to blue (endpoints) and pink (workstations)
tiles alternatively to transport goods. Black tiles are non-
traversable shelves and white tiles are traversable empty
spaces. We optimize tiles inside red box.

2 Problem Definition
Our definition of environment and valid environment follows
the previous work (Zhang et al. 2023) with the tile types
shown in Figure 1. We define the problem of environment
optimization as follows.

Definition 1 (Environment Optimization). Given an objec-
tive function f : X → R and a measure function m : X →
Rm, where X is the space of all possible environments, the
environment optimization problem searches for valid envi-
ronments that maximize the objective function f while di-
versifying the measure function m.

3 Methods
We extend previous works (Earle et al. 2022; Zhang et al.
2023) to use CMA-MAE (Fontaine and Nikolaidis 2023),
a state-of-the-art QD algorithm specialized for continuous
search spaces, to train NCAs with the objective and diversity
measures computed from a lifelong MAPF simulator. Fig-
ure 2 provides an overview of our method. We start by sam-
pling a batch of b parameter vectors θ from a multivariate
Gaussian distribution, forming b NCAs. From a fixed initial
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Figure 2: Overview of our method of using CMA-MAE to
train diverse NCAs.

environment, each NCA generates an environment which is
then repaired by a MILP solver. We then evaluate the en-
vironments by running a lifelong MAPF simulator for Ne

times, each with T timesteps, and compute the average ob-
jective and measures. We add the evaluated NCAs to both
an optimization archive and a result archive. Finally, we up-
date the parameters of the multivariate Gaussian distribution
and start a new iteration. We run CMA-MAE until the total
number of evaluations reaches Neval.
NCA. Following previous work (Earle et al. 2022), we use
a CNN with 3 convolutional layers of kernel size 3 × 3 and
about 3,000 parameters as our NCA. Starting from a fixed
initial environment, the NCA iteratively updates the envi-
ronment for C iterations, where C is a hyperparameter.
MILP Repair. We use the same MILP solver in the previous
work (Zhang et al. 2023) to repair the invalid environments
generated by NCA.
Objectives. Our objective function is fopt = fres + α · ∆,
where fres runs a lifelong MAPF simulator for Ne times and
returns the average throughput, ∆ is the percentage of tiles
that are the same in the unrepaired and repaired environ-
ments by MILP, and α is a hyperparameter. ∆ is a regular-
ization term to bias the search towards NCAs that are more
inclined to directly generate valid environments. However,
we eventually evaluate the NCAs using throughput. There-
fore, we use fopt as the objective of the optimization archive
and fres as the objective of the a separate result archive. We
take the best NCA in the result archive for evaluation.
Diversity Measures. We use (1) the number of connected
shelf components (following previous work (Zhang et al.
2023)) and (2) the environment entropy as the diversity mea-
sures. The environment entropy quantifies how much pattern
the environment possesses. A lower value of environment
entropy indicates a higher degree of pattern regularization.
We use environment entropy as a diversity measure to find
NCAs that can generate a broad spectrum of environments
of varying patterns.

4 Experimental Evaluation
Setup. We train the NCAs with environments of size S =
36 × 33 and then evaluate them in sizes of both S and
Seval = 101× 102. For NCA, we set C = 50 for size S and
Ceval = 200 for size Seval. For the lifelong MAPF simula-
tor, we use RHCR (Li et al. 2021), a state-of-the-art central-
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Figure 3: Throughput with an increasing number of agents
in environments of size S and Seval. The solid lines are the
average throughput while the shaded area shows the 95%
confidence interval.

ized lifelong MAPF planner. We run each simulation with
200 agents for T = 1, 000 timesteps during training and
Teval = 5, 000 timesteps during evaluation and stop early
in case of congestion, which happens if more than half of
the agents take wait actions at the same timestep. For CMA-
MAE, we set Ne = 5, b = 50, and Neval = 10, 000. We
initialize the Gaussian distribution with mean 0 and stan-
dard deviation 0.2. For the objective, we use α = 5 for it
empirically yields the best result.

Result. We compare our NCA-generated environments
with those optimized by DSAGE (Zhang et al. 2023), the
state-of-the-art environment optimization method, and those
designed by human (Li et al. 2021). Figure 3 shows the
throughput with different number of agents in environments
of size S and Seval. Our NCA-generated environments have
higher throughput than the baseline environments with an
increasingly larger gap with more agents. In size Seval, we
scale RHCR from less than 300 agents to more than 1300.
In addition, the environments both sizes have the same reg-
ularized patterns.
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