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1 Introduction
Today, hundreds of robots are navigating autonomously in
warehouses to transport goods from one location to an-
other. Such warehouses are a multi-billion-dollar industry.
To improve the throughput of automated warehouses, many
works have studied the underlying lifelong Multi-Agent
Path Finding (MAPF) problem for coordinating warehouse
robots (Li et al. 2021). However, these works always use
human-designed layouts, with an example shown in Fig-
ure 1a, to evaluate lifelong MAPF algorithms for automated
warehouses. These human-designed layouts originated from
the layouts for traditional warehouses where human work-
ers, instead of robots, transport goods. They usually follow
regularized patterns for human works to easily locate goods,
but such patterns hardly matter for robots.

Therefore, instead of developing better lifelong MAPF al-
gorithms, we propose to improve the throughput of auto-
mated warehouses by optimizing warehouse layouts, with
an example shown in Figure 1b. We use the Quality Diver-
sity (QD) algorithm MAP-Elites (Mouret and Clune 2015)
to optimize the warehouse layouts with the objective of max-
imizing the throughput produced by a lifelong MAPF-based
robot simulator while diversifying a set of user-defined mea-
sures, such as travel distances of the robots and the distribu-
tion of the shelves. In case the layout found is invalid, we
follow previous work (Fontaine et al. 2021) and use a Mixed
Integer Linear Programming (MILP) solver to repair it.

In this paper, we propose the first layout optimization
method for automated warehouses based on MAP-Elites. We
show that our optimized layouts greatly reduce the traffic
congestion and improve the throughput compared to com-
monly used human-designed layouts.

2 Problem Definition
We first formally define the warehouse layouts. Following
the terminology in the lifelong MAPF community, we use
agents to refer to robots.

Definition 1 (Warehouse layout). We represent the ware-
house layout as a four-neighbor grid, comprising four tile
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Figure 1: Example of a commonly used human-designed
layout and our optimized layout.

types: black tiles for shelves, blue tiles for endpoints next
to shelves where agents interact with shelves, pink tiles for
workstations where agents interact with human, and white
tiles for empty spaces. Agents can traverse non-black tiles.

The task assigned to each agent is to move to blue and
pink tiles alternatively to transport goods. To ensure the suc-
cessful execution of the tasks, the layout must be valid.

Definition 2 (Valid layout). A warehouse layout is valid iff
(1) any two tiles of blue or pink color are connected through
a path with non-black tiles, (2) each blue tile is adjacent to
at least one black tile, and (3) each black tile is adjacent to
at least two blue tiles.

Then, we define our optimization objective throughput
and our layout optimization problem. For simplicity, we
only optimize the storage area, namely the area inside the
red boxes in Figure 1.

Definition 3 (Throughput). An agent finishes a task when it
reaches its current assigned goal location. The throughput
is the average number of finished tasks per timestep.

Definition 4 (Layout Optimization). Given the layout of a
non-storage area and a desired number of shelves Ns, the
layout optimization problem searches for the allocation of
tiles inside the storage area to find valid layouts with Ns

black tiles while maximizing their throughput and diversify-
ing their user-defined diversity measures.
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Setup Ssa |X| Sf Ns Na Pa

1 12× 17 3204 16× 17 40 90 39%
2 32× 33 31056 36× 33 240 200 20%

Table 1: Summary of the experiment setup. Ssa is the size
of the storage area. |X| is the number of all possible layouts
without constraints, Sf is the full size of the layout, Ns is the
number of shelves, Na is the number of agents, and Pa =

Na

Sf− Ns
is the agent density, computed as the percentage of

traversable tiles (i.e., non-black tiles) occupied by agents.

3 Layout Optimization Approach
QD Formulation QD algorithms simultaneously optimize
an objective function while diversifying a set of diversity
measure functions. We search over the possible tile combi-
nations. We represent the storage area of a warehouse layout
as a vector of discrete variables x⃗ ∈ X, where each discrete
variable xi ∈ {black, blue, white} corresponds to the tile
type of the ith tile in the layout, and X is the space of all pos-
sible layouts. Our objective function runs a lifelong MAPF
simulator on the input layout for Ne times and returns the
average throughput. Our diversity measure functions com-
pute (1) the number of connected shelf components and (2)
the average length of tasks in the layout.

MAP-Elites MAP-Elites (Mouret and Clune 2015) is a
popular QD algorithm. It discretizes the measure space de-
fined by the measure functions, referred to as an archive,
and searches for the best solution in each discretized cell,
referred to as an elite. We use MAP-Elites to search for
the elite layouts by iteratively updating the archive. In each
iteration, we choose a batch of b elite layouts from the
archive uniformly with replacement. Inspired by a previous
work (Fontaine et al. 2021), we mutate each of the b elite
layouts by uniformly selecting k tiles from each layout and
changing the tile type of each of them to a random tile type.
The variable k is sampled from a geometric distribution with
P (X = k) = (1 − p)k−1p with p = 1

2 . When the archive
is empty in the first iteration, we generate b random layouts.
Then, we repair the layouts with a MILP solver to ensure
that they are valid (see details below). We then extract the
average throughput and measures by running the lifelong
MAPF simulator Ne times, each runs for T timesteps with
Na agents. Finally, we add the evaluated layouts to the cor-
responding cells in the archive if their throughput is larger
than that of the elite layouts in the same cells. We run MAP-
Elites for I iterations with batch size b, resulting in a total of
Neval = b× I evaluations.

MILP Repair After we generate or mutate a layout, we
add the non-storage area back to the layout and repair it so
that it becomes valid. We follow the previous work (Fontaine
et al. 2021) and formulate the repair as a MILP. We mini-
mize the hamming distance between the unrepaired layout
x⃗in and the repaired layout x⃗out while asking x⃗out to satisfy
the following constraints: (1) the non-storage area of x⃗out

is kept unchanged, (2) x⃗out is valid, and (3) the number of
shelves in x⃗out is equal to Ns.
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Figure 2: Throughput with different numbers of agents. The
solid line shows average and the shaded area is the 95% con-
fidence interval.

4 Experimental Evaluation
Experiment Setup Table 1 summarizes the setup. We use
two map sizes to show how our methods scale with the size
of the maps. We use RHCR (Li et al. 2021), a state-of-
the-art centralized lifelong MAPF algorithm to evaluate the
throughput. RHCR replans paths for all agents at every h
timesteps, and the planned paths are provably collision-free
for w timesteps. We use w = 10 and h = 5 with PBS (Ma
et al. 2019) as the MAPF solver. The goal locations alternate
between randomly chosen workstations and endpoints. For
MAP-Elites, we set b = 50, Neval = 10, 000, T = 1, 000,
and Ne = 5. We stop the lifelong MAPF simulation early
if (unrecoverable) congestion occurs, which happens when
more than half of the agents take wait actions.

Results Figure 2 shows the throughput with different
numbers of agents on layouts that are optimized with Na

agents. In comparison to the human-designed layouts, our
optimized layouts achieve similar throughput for small num-
bers of agents and significantly better throughput for large
numbers of agents. We double the scalability of RHCR from
fewer than 150 agents to more than 300 agents in setup 2.
However, the improvement is less significant in setup 1 due
to larger agent density (Pa).
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