
Planning and Execution in Multi-Agent Path Finding: Models and Algorithms
(Extended Abstract) *

Yue Zhang, Zhe Chen, Daniel Harabor, Pierre Le Bodic, Peter J. Stuckey
Monash University, Australia

{Yue.Zhang, Zhe.Chen, Daniel.Harabor, Pierre.LeBodic, Peter.Stuckey}@monash.edu

Abstract

In applications of Multi-Agent Path Finding (MAPF), it is
often the sum of planning and execution times that needs to
be minimised (i.e., the Goal Achievement Time). Yet current
methods seldom optimise for this objective. Optimal algo-
rithms reduce execution time, but may require exponential
planning time. Non-optimal algorithms reduce planning time,
but at the expense of increased path length. To address these
limitations we introduce PIE (Planning and Improving while
Executing), a new framework for concurrent planning and ex-
ecution in MAPF. We first show how PIE for one-shot MAPF
improves practical performance compared to sequential plan-
ning and execution. We then adapt PIE to Lifelong MAPF, a
popular application setting where agents are continuously as-
signed new goals and where additional decisions are required
to ensure feasibility. We examine a variety of different ap-
proaches to overcome these challenges and we conduct com-
parative experiments vs. recently proposed alternatives. Re-
sults show that PIE substantially outperforms existing meth-
ods for One-shot and Lifelong MAPF.

Introduction
Multi-Agent Path Finding (MAPF) (Stern et al. 2019) is the
problem of finding collision-free paths for a team of agents.
Conventional MAPF focuses on solving the “one-shot” ver-
sion of this problem, which is solved when all agents are
at their goal. Existing studies typically solve MAPF by
assuming that necessary computation time is available up
front (Lam et al. 2022; Li et al. 2021b,a; Okumura 2023).
Smaller times are preferable but typically not reflected in
the corresponding objective functions, which instead aim to
minimise action costs; e.g, Makespan (Yu and LaValle 2013)
or Sum-of-Costs (Stern et al. 2019). The main advantage of
this approach, sometimes known as offline planning is that
execution times are as small as possible, subject to time-
out limits (which can range from seconds to hours). The
main drawback to offline planning is a mismatch between
the model assumptions and the requirements of real applica-
tions, which can be entirely online. In other words, if a plan
is not immediately available real-world agents simply wait
in place, until the planner can provide instructions.

*This paper has been accepted to ICAPS 2024
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

0 20 40 60 80 100
time(s)

16000
18000
20000
22000
24000
26000
28000

So
C

19248
19251

28187

1s 30s 73s 116s99s

PIE LaCAM MAPF-LNS

Figure 1: Planning and execution costs for 3 different MAPF
algorithms on a small grid map; random-32-32-20 with
400 agents and unit action costs. PIE and LaCAM* com-
pute the same initial solution and begin execution after 1s.
MAPF-LNS plans for a further 29s then begins execution.

In this work, we propose a new concurrent planning
framework, which we call PIE: Planning and Improving
while Executing, to optimise the sum of planning time and
execution time for each agent. PIE leverages fast solvers
to quickly compute and commit to a small number of ac-
tions for each agent. During the execution of these actions,
PIE optimises the remaining paths of agents and then com-
mits to a new set of actions. Figure 1 illustrates the con-
crete advantages of PIE for MAPF (in blue) compared with
two leading offline planners: MAPF-LNS (Li et al. 2021a)
(the best known algorithm for anytime MAPF, in yellow)
and LaCAM⋆ (Okumura 2023) (the best known algorithm
for scalable MAPF, in green). The graph shows Sum-of-
(executed action)-Cost (SoC) over time, with the endpoint
of each line indicating the end of execution (i.e., GAT for
the last arriving agent). We make three observations: (i)
PIE finishes executing substantially faster than either offline
planner; (ii) the execution costs for PIE are very similar to
MAPF-LNS, which requires 29 seconds of additional com-
pute; (iii) advantages are magnified when considering up-
front wait costs: +400 for PIE and LaCAM⋆ and +12000
(400×30) for MAPF-LNS.

Planning and Improving while Executing
PIE has several components, which must be instantiated:
Initial Planning Time (Tinit): this variable is the time al-
lowed to compute an initial solution. Tinit is also counted as

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

303



Algorithm 1: PIE Framework

Input: ⟨G,A⟩; Tinit, initial planning time limit; Taction, execu-
tion time for one action; k, number of actions per commit.

1: Texec ← Taction ∗ k
2: π ← Plan Improve(⟨G,A⟩, ∅, Tinit)
3: Commit πk

4: π ← π \ πk

5: while (Execution of πk) do
6: Update A.starts, A.goals from TO
7: π ← Plan Improve(⟨G,A⟩, π, T exec)
8: Commit πk

9: π ← π \ πk

a waiting cost for every agent in the SGAT.
How Long to Commit (k): this variable is the number of ac-
tions that the agents commit to during each execution phase.
Once committed, these k actions cannot be changed.
Execution time (Taction): this variable specifies the time re-
quired to execute a single action. Multiplying by k gives the
time available for the planner to compute the next set of ac-
tions before the agents incur additional waiting time.
Planner: the main ingredient in PIE is the planner. We sug-
gest algorithms that can incrementally improve the solution
until time out. However, any MAPF planner can be used.

Pseudocode for the PIE framework is shown in Algo-
rithm 1, we take as input Tinit, k, Taction, the map G and
a set of agents A with initially assigned start and goal lo-
cations. PIE starts by generating an initial solution π and
improves π within the runtime limit Tinit (line 2). The algo-
rithm then commits the first k actions of π, and updates the
solution π to be the uncommitted part of the solution. Then
agents iteratively commit and execute (lines 5-9). The loop
terminates when all agents stay at goals. During each execu-
tion, the planner will plan and improve the uncommitted part
of the solution with runtime limit Texec (line 7). After plan-
ning, the planner commits the next k actions and updates the
uncommitted solution π (line 8-9).

We instantiate PIE for one-shot MAPF (where each agent
has a single target) and for Lifelong MAPF (where agents
are continuously assigned new tasks).
PIE for One-Shot MAPF: We combine LaCAM⋆, which
we use to compute fast feasible solutions, and MAPF-LNS,
which we use to improve the costs of uncommitted actions
for planning and improving solutions.
PIE for Lifelong MAPF: In Lifelong settings, neither
LaCAM⋆ nor MAPF-LNS can be directly applied due to:
(1) agents constantly receive new goals during ongoing ex-
ecution, and new conflict-free paths to new goals are con-
stantly required; (2) the planner is not aware of where the
agent should go after reaching the goal and planner will fail
when planning for agents with the same goals.

See the full version of this paper for a complete discus-
sion of the choices of different components for PIE, different
strategies for adapting PIE and their trade-offs.

Experiments: Lifelong MAPF
We run experiments in a VM instance with 32GB RAM,
16 AMD EPYC-Rome CPUs. Tinit is set to 1s. Figure 2

100 200 300 400 500 600 700
0
2
4
6
8
10

Th
ro
ug
hp
ut

200 400 600 800 1000 1200 1400
0
2
4
6
8
10
12

Figure 2: Throughput of RHCR, LaCAM⋆, PIEL and PIEF .

shows the throughput of PIE, RHCR (Li et al. 2021c), the
existing start-of-the-art Lifelong MAPF solver, and an ap-
proach of simply replanning every commit using LaCAM⋆

on two maps from the grid-based MAPF benchmarks ((Stern
et al. 2019)). PIEL denotes replan all agents when receiving
new goals, while PIEF means replan only affected agents
when receiving new goals. PIEF is the highest throughput
approach until the number of agents reaches a point where
Replan Affected can not find a solution for affected agents
within the commit time, where PIEL takes over.

Conclusions and Future Work
In this paper, we generate an efficient approach to plan-
ning and improving while executing for One-Shot MAPF
and Lifelong MAPF problems. Overall PIE provides sig-
nificantly greater performance than competing approaches.
Future work will extend PIE to consider execution delaies,
which is an important feature for real-life applications.

Acknowledgements
This work is supported by the Australian Research Council
under grant DP200100025, and by a gift from Amazon.

References
Lam, E.; Le Bodic, P.; Harabor, D.; and Stuckey, P. J.
2022. Branch-and-cut-and-price for multi-agent path find-
ing. Computers & Operations Research, 144: 105809.
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.
2021a. Anytime Multi-Agent Path Finding via Large Neigh-
borhood Search. In IJCAI, 4127–4135.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; Gange, G.;
and Koenig, S. 2021b. Pairwise symmetry reasoning for
multi-agent path finding search. Artificial Intelligence, 301:
103574.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. S.;
and Koenig, S. 2021c. Lifelong multi-agent path finding in
large-scale warehouses. In AAAI, volume 35, 11272–11281.
Okumura, K. 2023. Improving LaCAM for Scalable Even-
tually Optimal Multi-Agent Pathfinding. In IJCAI.
Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; et al.
2019. Multi-agent pathfinding: Definitions, variants, and
benchmarks. In SOCS, volume 10, 151–158.
Yu, J.; and LaValle, S. 2013. Structure and intractability
of optimal multi-robot path planning on graphs. In AAAI,
volume 27, 1443–1449.

304


