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Figure 1: Two solutions of the same MAPF instance: with
cardinal moves only (left) and with any-angle moves (right).

Introduction
Multi-agent pathfinding (MAPF) is the problem of finding a
set of conflict-free paths for a set of agents. Most prior work
on MAPF assumed that the agents move over a pre-defined
graph of locations and allowed transitions between them. We
focus on relaxing this assumption, allowing each agent to
move between any pair of locations. This type of pathfind-
ing is called any-angle pathfinding (Nash et al. 2007), We
refer to its MAPF version as Any-Angle MAPF. A solution
to an AA-MAPF problem is a set of n plans transferring
the agents from their start vertices to their goal ones, such
that each pair of plans is collision-free. We wish to solve the
problem optimally w.r.t. the sum-of-cost objective, which
is Figure 1 illustrates the difference between a solution to
an AA-MAPF problem and a solution to a classical MAPF
problem. Algorithms such as Anya (Harabor and Grastien
2013) and TO-AA-SIPP (Yakovlev and Andreychuk 2021)
have been proposed for optimal single-agent any-angle path
finding. In (Yakovlev and Andreychuk 2017) a suboptimal
AA-MAPF solver was described. We propose AA-CCBS,
the first AA-MAPF algorithm that is guaranteed to re-
turn cost optimal solutions.

AA-CCBS integrates the Continuous Conflict-based
Search (CCBS) MAPF algorithm (Andreychuk et al. 2022)
with TO-AA-SIPP. AA-CCBS is guaranteed to return opti-
mal solutions, but scales poorly since any-angle path find-
ing induces search trees with a very large branching factor.
To mitigate this, we propose several enhancements to AA-
CCBS based on techniques from classical MAPF, namely
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Figure 2: Actions comprising the different versions of MCs.
Note that besides the shown actions, MC3 considers all the
actions from MC2 as well.

disjoint splitting (DS) (Li et al. 2019a) and multi-constraints
(MC) (Walker, Sturtevant, and Felner 2020).

Multi-Constraints in Any-Angle MAPF
CCBS resolves a conflict by adding a single constraint to one
of the agents and replanning. However, adding multiple con-
straints (multi-constraint) when resolving a single conflict
can reduce the number of high-level search iterations (Li
et al. 2019b; Walker, Sturtevant, and Felner 2020). In par-
ticular, Walker et al. (2020) proposed the Time-Annotated
Biclique (TAB) method adding multiple constraints in do-
mains with non-uniform actions. For two conflicting actions,
(ai, ti) and (aj , tj), TAB iterates over all actions that have
the same source vertices as ai and aj , and identifies the sub-
sets of them, Ai and Aj , that are mutually conflicting, i.e.
each pair of actions from Ai × Aj lead to a conflict (if they
start at ti, tj respectively). The multi-constraint (MC), that is
added to the first agent is made of the constraints (ai, [t, t′])
where [t, t′] is the largest time interval that is fully included
into the unsafe intervals induced by ai and all aj ∈ Aj . The
MC added to the second agent is defined similarly. TAB is
applicable in AA-CCBS. We call this variant as MC1.

The problem with MC1 is that in AA-MAPF the number
of mutually-conflicting actions may be large. Thus, we need
to intersect numerous unsafe intervals to get the final one
which is likely to get extremely trimmed, i.e. its ending point
is very close to the start point. Thus the pruning power of
MC diminishes. To this end we suggest two modifications.

First, we consider only a limited set of actions to form Ai

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

295



Figure 3: Number of the solved instances.

(Aj similarly). The source of such an action is the same as
the source of the initially conflicting action ai. The destina-
tion, however, must be a vertex that is swept by the agent
when executing ai, i.e. the agent’s body intersects this ver-
tex (grid cell). Thus the resulting actions form a “stripe”
along ai – see Fig. 2 (the cells that form a stripe are high-
lighted). The second modification is filtering out the actions
from the candidate set of MC that lead to trimming of the
original unsafe interval. In particular, if unsafe(ai, a′j) ̸⊂
unsafe(ai, aj) then a′j is excluded from Aj . Here ai and
aj are the original conflicting actions, and {a′j} is the set of
actions that are in conflict with all a ∈ Ai. The combination
of those two enhancements is dubbed MC2.

Finally, we also suggest a way of composing the action
set of MC that was mentioned by Walker (2020) but never
implemented. I.e. we enlarge the action sets of MC2 with
the actions that have the same target vertex (as the original
conflicting actions) but different source vertices. We chose
those source vertices to lie on the same strip as before – see
Fig. 2 (right). The rationale behind this is that these actions
are likely to lead to the collisions that will happen between
the same agents and nearly in the same place. Thus it is nat-
ural to include them into the same (multi) constraint.

Disjoint Split with Multi-Constraint
Disjoint splitting (DS) (Li et al. 2019a) is a powerful tech-
nique for reducing search effort for CBS-based algorithm
that has been used also for CCBS (Andreychuk et al. 2021).
When adopting CCBS to AA-MAPF one might consider two
options: using DS as-is or use DS with MC. The first option
only requires adapting TO-AA-SIPP to be able to plan with
the landmarks. Integrating DS with MC is more involved,
since some constraints may involve actions starting at dif-
ferent vertices (like MC3). Thus, we focused on combining
DS with the MCs that contain actions starting from the same
vertex (MC1 and MC2).

When planning with the landmarks that are made of the
multiple actions starting in the same vertex and ending in
the different ones, a special care should be paid to the search
states that result from applying the landmark actions as these
states become the start search nodes of the next search. This
is because better paths to these nodes may be found, and
thus additional bookkeeping is needed to ensure complete-
ness and optimality.

Experimental Results and Future Work
We evaluate six versions of AA-CCBS, AA-CCBS (vanilla),
AA-CCBS+MC1, AA-CCBS+MC2, AA-CCBS+MC3,
AA-CCBS+DS, AA-CCBS+DS+MC2, on five different
maps from the MovingAI benchmark (Stern et al. 2019).
For each map the benchmark provides 25 scenarios files,
and we measured the number of problems solved within
a time-limit of 300 seconds. Fig. 3 shows the results. The
results show that MC1 and MC2 do not provide significant
improvement over vanilla AA-CCBS. MC3, DS, AND
DS+MC2, however, notably outperform it, especially the
ones that use DS.

We have presented AA-CCBS, the first optimal any-angle
MAPF algorithm and showed how to incorporate existing
CCBS enhancements, namely disjoint splitting and multi-
constraints, to make it scale better. Future work can explore
more sophisticated procedures of forming multi-constraints,
identifying which sets of actions should be considered in
each step, as well as adapting incremental search techniques
in the any-angle low-level search.
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