Large-Scale Multi-Robot Coverage Path Planning via Local Search*

Jingtao Tang, Hang Ma

Simon Fraser University {jingtao tang, hangma}@sfu.ca

Introduction

We study the Multi-Robot Coverage Path Planning (MCPP), which aims to coordinate the paths of multiple robots to completely cover the given terrain. We follow existing graph-based MCPP algorithms (Zheng et al. 2010) that represent the terrain to be covered as a 4-connected 2D grid graph G and then leverage STC (Gabriely and Rimon 2001) to generate coverage path on a decomposed graph D of G for each robot by circumnavigating a subtree of G . Specifically, in an MCPP instance, we are given a terrain graph $G =$ (V_g, E_g) and its corresponding decomposed graph $D =$ $(\overline{V}_d, \overline{E}_d)$, where each terrain vertex in V_g is decomposed into four small adjacent vertices in V_d (see Fig. 1-(a)). Given a set $I = \{1, 2, ..., k\}$ robots with a set $R = \{r_i\}_{i \in I} \subseteq V_d$ of initial root vertices, the graph-based MCPP problem is to fnd a set $\Pi = {\pi_i}_{i \in I}$ of k paths such that each $v \in V_d$ is visited by at least one path for complete coverage and each π_i starts and ends at r_i . The solution quality is measured by the makespan $\tau = \max\{c(\pi_1), c(\pi_2), ..., c(\pi_k)\}\$, where the cost $c(\pi)$ of any path π is defined to be the sum of the weight w_e of every edge $e \in E_d$ in π . In essence, existing STC-based MCPP algorithms reduce MCPP to the NP-hard min-max rooted tree cover problem on G , which aims to optimize the weight of the largest-weighted tree in the tree cover since it determines the makespan of the resulting coverage paths on D. However, operating exclusively in G does not ensure complete coverage for an incomplete terrain graph G where some decomposed vertices are absent in D. As they explore only a portion of the solution space that encompasses all possible sets of coverage paths on D , the resulting MCPP solutions are often suboptimal even with an optimal tree cover on G (see Fig. 1-(c) and (d)). Therefore, we propose the LS-MCPP framework that takes a different route to explore how to systematically search for good coverage paths directly on the decomposed graph. Our extensive experiments demonstrate the effectiveness of LS-MCPP, consistently improving the initial solution returned by two state-of-the-art baseline algorithms that compute suboptimal tree covers on G. Moreover, LS-MCPP consistently matches or surpasses the results of optimal tree cover computation with orders of magnitude faster runtime.

*Code: https://github.com/reso1/LS-MCPP

Copyright © 2024, Association for the Advancement of Artifcial Intelligence (www.aaai.org). All rights reserved.

Figure 1: Graph-based CPP and MCPP: Gray squares, black circles, and black stars represent terrain graph vertices, decomposed graph vertices, and initial vertices of robots, respectively; Solid lines and dashed lines represent coverage paths and spanning edges, respectively. (a) Terrain graph with uniform edge weights. (b) Single-robot coverage path generated by STC. (c)(d) Suboptimal and optimal 2-robot MCPP solutions with makespans 2 and 1.5, respectively.

Figure 2: The proposed LS-MCPP algorithmic framework.

The LS-MCPP Framework

As demonstrated in Fig. 2, LS-MCPP employs a hierarchical sampling approach for efficient exploration of the constructed neighborhood and uses ESTC to evaluate a set ${D_i = (V_{d,i}, E_{d,i})}_{i \in I}$ of k connected subgraphs of D in each iteration of its local search. Given an initial solution Π, it frst selects an operator pool using the *roulette wheel* selection from three pools, each containing operators of the same type. We define a *duplication* set $V^+ = \{ v \in V_d \mid n_v > 1 \},$ where $n_v = \sum_{i \in I} |\{x \in V_{d,i} | x = v\}|$ counts the occurrences of vertex $v \in V_d$ across all subgraphs. Then, three heuristics functions are tailored to evaluate their potential in guiding the neighborhood search and improving the solution. Considering an edge $e = (u, v)$, the heuristic for a grow operator $o_g(i, e)$ of D_i is defined as $-k \cdot c(\pi_i) - (n_u + n_v)/2$ with the considerations of (1) prioritizing growing light subgraphs with small coverage path costs and (2) prioritizing covering vertices with less duplication, the heuristic value for deduplicate operators $o_d(i, e)$ of D_i is defined as $k \cdot c(\pi_i) + (n_u+n_v)/2$ with the opposite consideration comparing to grow operator, and the heuristic value for exchange operators $o_e(i, j, e)$ of D_i and D_j is defined as $c(\pi_i) - c(\pi_i)$ to prioritize two subgraphs with a big difference in their coverage path costs. After sampling the operator, *simulated annealing* is adopted to determine whether to accept the current solution or not. LS-MCPP also calls the FORCEDDEDUPLI-CATION function periodically to exploit the current neighborhood and achieve a low-makespan solution in two folds. First, it iterates through each coverage path $\pi_i \in \Pi$ in a costdecreasing order to remove any U-turn, defned as an edge $(u, v) \in \pi_i$ with $u, v \in V^+ \cap V_{d,i}$ satisfying $\exists (p, q) \in \pi_i$ such that $(u, p), (v, q) \in \pi_i$. Second, it recursively applies all deduplicate operators in D_i in descending order of the path costs and ascending order of the heuristic values.

Extended-STC (ESTC): To address CPP on incomplete terrain graphs, ESTC cleverly integrates a path-deformation procedure of Full-STC into the offine computation of STC. ESTC operates on the augmented terrain graph G' where some edges in G are removed in G' to reflect the connectivity between its terrain vertices. Specifically, edge ε = $(\delta_u, \delta_v) \in E_g$ is removed in G' if each decomposed vertex u of terrain vertex δ_u is nonadjacent to each v of δ_v . ESTC considers non-uniform edge weights. An edge ε = (δ_u, δ_v) has the same weight as in G if both δ_u and δ_v are complete. Otherwise, ε has a manipulated edge weight of $w_{\text{max}} \cdot \frac{1}{2} \cdot (\sum_{\varepsilon \sim \delta_u} w_{\varepsilon} + \sum_{\varepsilon \sim \delta_v} w_{\varepsilon})$, where w_{max} is the maximal edge weights of E_g to prioritize using edges connecting complete terrain vertices. With the above modifcations, ESTC produces the same circumnavigating coverage path on the minimum spanning tree of G' . By applying ESTC on each CPP instance relating to each D_i in the set of k subgraphs, LS-MCPP addresses the suboptimality problem in STC-based MCPP algorithms with a larger search space.

Boundary Editing Operators: We introduce three types of boundary editing operators designed to modify the boundaries of each subgraph D_i . Denoting set $F_i = \{(u, v) \in$ $E_{d,i} | \delta_u = \delta_v$, a boundary editing operator alters the set $\{D_i\}_{i\in I}$ of subgraphs using an edge $e \in F_i$, but ensures that its property of complete coverage and subgraph connectivity remains invariant. Fig. 3-(a) shows a grow operator $o_g(i, e)$ adding edge $e \in F_i$ with $u, v \in B_i$ and all relevant edges into D_i , where $\exists (p,q) \in E_{d,i}$ such that $(u,p), (v,q) \in E_{d,i}$, and B_i is the set of vertices that are not part of D_i but adjacent to a vertex of D_i . In Fig. 3-(c), a deduplicate operator $o_d(i, e)$ removes edge $e \in F_i$ with $u, v \in V^+ \cap V_{d,i}$ and all relating edges from D_i if δ_u is incomplete, otherwise satisfying that: (1) δ_e^t is not in $V_{g,i}$; (2) all decomposed vertices of δ_e^b are in $V_{d,i}$; and (3) if $\delta = \delta_e^l, \delta_e^r$ is in $V_{g,i}$, then all decomposed vertices of both δ and its (only) common neighboring vertex with δ_e^b are in $V_{d,i}$. An exchange operator $o_e(i, j, e)$ is a combination of a grow operator $o_q(i, e)$ and a deduplicate operator $o_d(j, e)$ that adds $e \in F_i$ and all relevant edges into D_i and removes them from D_i .

Figure 3: (a) Grow operator $o_q(i, e)$. (b) Four neighbors of terrain vertex δ_u . (c) Deduplicate operator $o_d(i, e)$.

Empirical Evaluation

We test LS-MCPP on nine MCPP instances, where their numbers of graph vertices, graph edges, and robots range from 46 to 11892, 60 to 22311, and 4 to 32, respectively. Through our extensive ablation study, we have several fndings relating to the components of LS-MCPP: 1) ESTC consistently outperforms Full-STC on incomplete terrain graphs; 2) MFC (Zheng et al. 2010) strikes a balance between efficiency and solution quality as the initial solutions for LS-MCPP; 3) the three types of operators on LS-MCPP are necessary to guide an efficient neighborhood search; 4) the proposed heuristic sampling method and the FORCEDDEDUPLICATION function helps LS-MCPP a fast convergence. We compare LS-MCPP against VOR (based on Voronoi decomposition and ESTC), MFC (Zheng et al. 2010), MSTC[∗] (Tang, Sun, and Zhang 2021), and MIP/MIP(H) (Tang and Ma 2023). In summary, LS-MCPP outperforms VOR, MFC, MSTC[∗] for all instances within 20 minutes, demonstrating a makespan reduction of up to 67.0%, 35.7%, and 30.3%, and on average, 50.4%, 26.7%, and 13.4%, respectively. For the frst six smaller instances where MIP(H) and MIP can almost compute the optimal tree cover, LS-MCPP achieves an average makepan reduction of -1.02% and 1.16% with orders of magnitude faster runtime.

Acknowledgements

This extended abstract is a short version of (Tang and Ma 2024) and was supported by the NSERC under grant number RGPIN2020-06540 and a CFI JELF award.

References

Gabriely, Y.; and Rimon, E. 2001. Spanning-tree based coverage of continuous areas by a mobile robot. *Annals of mathematics and artifcial intelligence*, 31: 77–98.

Tang, J.; and Ma, H. 2023. Mixed integer programming for time-optimal multi-robot coverage path planning with effcient heuristics. *IEEE Robotics and Automation Letters*, 8(10): 6491–6498.

Tang, J.; and Ma, H. 2024. Large-Scale Multi-Robot Coverage Path Planning via Local Search. In *Proceedings of the AAAI Conference on Artifcial Intelligence (to appear)*.

Tang, J.; Sun, C.; and Zhang, X. 2021. MSTC^{*}: Multirobot coverage path planning under physical constrain. In *IEEE International Conference on Robotics and Automation (ICRA)*, 2518–2524.

Zheng, X.; Koenig, S.; Kempe, D.; and Jain, S. 2010. Multirobot forest coverage for weighted and unweighted terrain. *IEEE Transactions on Robotics*, 26(6): 1018–1031.