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Introduction
We study the Multi-Robot Coverage Path Planning (MCPP),
which aims to coordinate the paths of multiple robots to
completely cover the given terrain. We follow existing
graph-based MCPP algorithms (Zheng et al. 2010) that rep-
resent the terrain to be covered as a 4-connected 2D grid
graph G and then leverage STC (Gabriely and Rimon 2001)
to generate coverage path on a decomposed graph D of G
for each robot by circumnavigating a subtree of G. Specifi-
cally, in an MCPP instance, we are given a terrain graph G =
(Vg, Eg) and its corresponding decomposed graph D =
(Vd, Ed), where each terrain vertex in Vg is decomposed into
four small adjacent vertices in Vd (see Fig. 1-(a)). Given a set
I = {1, 2, ..., k} robots with a set R = {ri}i∈I ⊆ Vd of ini-
tial root vertices, the graph-based MCPP problem is to find
a set Π = {πi}i∈I of k paths such that each v ∈ Vd is vis-
ited by at least one path for complete coverage and each πi

starts and ends at ri. The solution quality is measured by the
makespan τ = max{c(π1), c(π2), ..., c(πk)}, where the cost
c(π) of any path π is defined to be the sum of the weight we

of every edge e ∈ Ed in π. In essence, existing STC-based
MCPP algorithms reduce MCPP to the NP-hard min-max
rooted tree cover problem on G, which aims to optimize the
weight of the largest-weighted tree in the tree cover since
it determines the makespan of the resulting coverage paths
on D. However, operating exclusively in G does not ensure
complete coverage for an incomplete terrain graph G where
some decomposed vertices are absent in D. As they explore
only a portion of the solution space that encompasses all
possible sets of coverage paths on D, the resulting MCPP so-
lutions are often suboptimal even with an optimal tree cover
on G (see Fig. 1-(c) and (d)). Therefore, we propose the
LS-MCPP framework that takes a different route to explore
how to systematically search for good coverage paths di-
rectly on the decomposed graph. Our extensive experiments
demonstrate the effectiveness of LS-MCPP, consistently im-
proving the initial solution returned by two state-of-the-art
baseline algorithms that compute suboptimal tree covers on
G. Moreover, LS-MCPP consistently matches or surpasses
the results of optimal tree cover computation with orders of
magnitude faster runtime.

*Code: https://github.com/reso1/LS-MCPP
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(a) (b) (c) (d)

Figure 1: Graph-based CPP and MCPP: Gray squares, black
circles, and black stars represent terrain graph vertices, de-
composed graph vertices, and initial vertices of robots, re-
spectively; Solid lines and dashed lines represent coverage
paths and spanning edges, respectively. (a) Terrain graph
with uniform edge weights. (b) Single-robot coverage path
generated by STC. (c)(d) Suboptimal and optimal 2-robot
MCPP solutions with makespans 2 and 1.5, respectively.
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Figure 2: The proposed LS-MCPP algorithmic framework.

The LS-MCPP Framework
As demonstrated in Fig. 2, LS-MCPP employs a hierar-
chical sampling approach for efficient exploration of the
constructed neighborhood and uses ESTC to evaluate a set
{Di = (Vd,i, Ed,i)}i∈I of k connected subgraphs of D in
each iteration of its local search. Given an initial solution Π,
it first selects an operator pool using the roulette wheel selec-
tion from three pools, each containing operators of the same
type. We define a duplication set V + = {v ∈ Vd |nv > 1},
where nv =

∑
i∈I |{x ∈ Vd,i|x = v}| counts the occur-

rences of vertex v ∈ Vd across all subgraphs. Then, three
heuristics functions are tailored to evaluate their potential
in guiding the neighborhood search and improving the solu-
tion. Considering an edge e = (u, v), the heuristic for a grow
operator og(i, e) of Di is defined as −k ·c(πi)−(nu+nv)/2
with the considerations of (1) prioritizing growing light
subgraphs with small coverage path costs and (2) priori-
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tizing covering vertices with less duplication, the heuristic
value for deduplicate operators od(i, e) of Di is defined as
k ·c(πi)+(nu+nv)/2 with the opposite consideration com-
paring to grow operator, and the heuristic value for exchange
operators oe(i, j, e) of Di and Dj is defined as c(πj)−c(πi)
to prioritize two subgraphs with a big difference in their cov-
erage path costs. After sampling the operator, simulated an-
nealing is adopted to determine whether to accept the current
solution or not. LS-MCPP also calls the FORCEDDEDUPLI-
CATION function periodically to exploit the current neigh-
borhood and achieve a low-makespan solution in two folds.
First, it iterates through each coverage path πi ∈ Π in a cost-
decreasing order to remove any U-turn, defined as an edge
(u, v) ∈ πi with u, v ∈ V + ∩ Vd,i satisfying ∃ (p, q) ∈ πi

such that (u, p), (v, q) ∈ πi. Second, it recursively applies
all deduplicate operators in Di in descending order of the
path costs and ascending order of the heuristic values.

Extended-STC (ESTC): To address CPP on incomplete ter-
rain graphs, ESTC cleverly integrates a path-deformation
procedure of Full-STC into the offline computation of STC.
ESTC operates on the augmented terrain graph G′ where
some edges in G are removed in G′ to reflect the connec-
tivity between its terrain vertices. Specifically, edge ε =
(δu, δv) ∈ Eg is removed in G′ if each decomposed ver-
tex u of terrain vertex δu is nonadjacent to each v of δv .
ESTC considers non-uniform edge weights. An edge ε =
(δu, δv) has the same weight as in G if both δu and δv are
complete. Otherwise, ε has a manipulated edge weight of
wmax· 12 ·

(∑
ε∼δu

wε +
∑

ε∼δv
wε

)
, where wmax is the max-

imal edge weights of Eg to prioritize using edges connect-
ing complete terrain vertices. With the above modifications,
ESTC produces the same circumnavigating coverage path
on the minimum spanning tree of G′. By applying ESTC on
each CPP instance relating to each Di in the set of k sub-
graphs, LS-MCPP addresses the suboptimality problem in
STC-based MCPP algorithms with a larger search space.

Boundary Editing Operators: We introduce three types of
boundary editing operators designed to modify the bound-
aries of each subgraph Di. Denoting set Fi = {(u, v) ∈
Ed,i | δu = δv}, a boundary editing operator alters the set
{Di}i∈I of subgraphs using an edge e ∈ Fi, but ensures that
its property of complete coverage and subgraph connectivity
remains invariant. Fig. 3-(a) shows a grow operator og(i, e)
adding edge e ∈ Fi with u, v ∈ Bi and all relevant edges
into Di, where ∃ (p, q) ∈ Ed,i such that (u, p), (v, q) ∈ Ed,i,
and Bi is the set of vertices that are not part of Di but adja-
cent to a vertex of Di. In Fig. 3-(c), a deduplicate operator
od(i, e) removes edge e ∈ Fi with u, v ∈ V + ∩ Vd,i and all
relating edges from Di if δu is incomplete, otherwise satis-
fying that: (1) δte is not in Vg,i; (2) all decomposed vertices of
δ b
e are in Vd,i; and (3) if δ = δle, δ

r
e is in Vg,i, then all decom-

posed vertices of both δ and its (only) common neighboring
vertex with δbe are in Vd,i. An exchange operator oe(i, j, e) is
a combination of a grow operator og(i, e) and a deduplicate
operator od(j, e) that adds e ∈ Fi and all relevant edges into
Di and removes them from Dj .
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Figure 3: (a) Grow operator og(i, e). (b) Four neighbors of
terrain vertex δu. (c) Deduplicate operator od(i, e).

Empirical Evaluation
We test LS-MCPP on nine MCPP instances, where their
numbers of graph vertices, graph edges, and robots range
from 46 to 11892, 60 to 22311, and 4 to 32, respectively.
Through our extensive ablation study, we have several find-
ings relating to the components of LS-MCPP: 1) ESTC
consistently outperforms Full-STC on incomplete terrain
graphs; 2) MFC (Zheng et al. 2010) strikes a balance be-
tween efficiency and solution quality as the initial solu-
tions for LS-MCPP; 3) the three types of operators on
LS-MCPP are necessary to guide an efficient neighbor-
hood search; 4) the proposed heuristic sampling method
and the FORCEDDEDUPLICATION function helps LS-MCPP
a fast convergence. We compare LS-MCPP against VOR
(based on Voronoi decomposition and ESTC), MFC (Zheng
et al. 2010), MSTC∗ (Tang, Sun, and Zhang 2021), and
MIP/MIP(H) (Tang and Ma 2023). In summary, LS-MCPP
outperforms VOR, MFC, MSTC∗ for all instances within
20 minutes, demonstrating a makespan reduction of up to
67.0%, 35.7%, and 30.3%, and on average, 50.4%, 26.7%,
and 13.4%, respectively. For the first six smaller instances
where MIP(H) and MIP can almost compute the optimal tree
cover, LS-MCPP achieves an average makepan reduction of
-1.02% and 1.16% with orders of magnitude faster runtime.
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