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Introduction
We study the Multi-Robot Coverage Path Planning (MCPP),
which aims to coordinate the paths of multiple robots to
completely cover the given terrain. A fundamental chal-
lenge of MCPP lies in generating cost-balancing coverage
paths to optimize task efficiency, commonly quantified by
the makespan (i.e., the maximum path cost of all robots).
This challenge is further compounded when dealing with
large-scale applications where the number of robots and the
size of the terrain increase. We follow existing graph-based
MCPP algorithms (Zheng et al. 2010) that represent the ter-
rain to be covered as a 4-connected 2D grid graph G and
then leverage STC (Gabriely and Rimon 2001) to gener-
ate coverage path on a decomposed graph D of G for each
robot by circumnavigating a subtree of G in Fig. 1. The
STC paradigm effectively reduces MCPP into the Min-Max
Rooted Tree Cover (MMRTC) problem, which results in an
MCPP solution with an asymptotic optimality ratio of 4. We
propose a Mixed Integer Programming (MIP) model to op-
timally solve MMRTC and prove its correctness. We design
two efficient suboptimal heuristics to reduce the model size
with a configurable loss of optimality. We prove that the two
reduced-size models are complete (i.e., guarantee to find a
solution if one exists) for all MMRTC instances. Our exten-
sive experiments show that our MIP-based MCPP planner
yields higher-quality solutions at the cost of longer runtime.

Our Approaches
In an MCPP instance (G,D,R), we are given a terrain graph
G = (V,E) and its corresponding decomposed graph D =
(Vd, Ed), where each v ∈ V is decomposed into four small
adjacent vertices in Vd. Given a set I = {1, 2, ..., k} robots
with a set R = {ri}i∈I ⊆ V of initial root vertices, the
graph-based MCPP problem is to find a set Π = {πi}i∈I of
k paths such that each v ∈ Vd is visited by at least one cover-
age path for complete coverage and each πi starts and ends at
a decomposed vertex (e.g., the left-top one) of ri ∈ R. The
coverage time is thereby measured by the makespan, defined
to be the maximum path cost among all paths in Π. For an
MCPP instance (G,D,R), its corresponding MMRTC in-

*Code: https://github.com/reso1/MIP-MCPP
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

stance aims to find a set of k subtrees {Ti}i∈I such that each
Ti must be rooted at ri ∈ R and each vertex v ∈ V is in-
cluded in at least one subtree. We define the weight w(Ti)
of any Ti as the sum of the weight we of every edge e in
Ti. The optimal set of subtrees is the one that minimizes the
maximum weight among all subtrees (i.e., makespan):
{T ∗

i }i∈I = argmin
T1,T2,...,Tk

max{w(T1), w(T2), ..., w(Tk)} (1)

MIP Formulation for MMRTC: We introduce two sets of
binary variables x = {xi

e}i∈I
e∈E and y = {yiv}i∈I

v∈V , where xi
e

and yiv take value 1 if edge e or vertex v is included in the
i-th subtree Ti, respectively, and 0 otherwise. Assuming that
each edge has one unit of flow, we further introduce a set of
non-negative continuous flow variables f = {f i

e,u, f
i
e,v}i∈I

e∈E
to represent the amount of flow assigned to vertices u and v
for each edge e = (u, v) ∈ E. Let τ denote the makespan
and e ∼ v denote that v is one of the endpoints of edge e.
Our MIP model for MMRTC is formulated as follows:

(MIP) minimize
x,y,f,τ

τ (2)

s.t.
∑
e∈E

wex
i
e ≤ τ, ∀i ∈ I (3)

∑
i∈I

yi
v ≥ 1, ∀v ∈ V (4)

yi
ri = 1, ∀i ∈ I (5)∑

v∈V

yi
v = 1 +

∑
e∈E

xi
e, ∀i ∈ I (6)

f i
e,u + f i

e,v = xi
e, ∀e = (u, v) ∈ E, ∀i ∈ I (7)∑

e∈E
e∼v

f i
e,v ≤ 1− 1

|V | , ∀v ∈ V, ∀i ∈ I (8)

xi
e ≤ yi

v, ∀v ∈ V, ∀e ∈ E, e ∼ v, ∀i ∈ I (9)

xi
e, y

i
v ∈ {0, 1}, ∀v ∈ V, ∀e ∈ E, ∀i ∈ I (10)

f i
e,u, f

i
e,v, τ ∈ R+, ∀e = (u, v) ∈ E, ∀i ∈ I (11)

where the constraints in the model can be grouped as fol-
lows: a) Makespan: Eqn. (3) ensures that τ equals the max-
imum weight among all subtrees, which is minimized in the
objective function defined in Eqn. (2); b) Cover: Eqn. (4)
enforces that each v ∈ V is included in at least one subtree;
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Figure 1: Graph-based STC in the instance: (a) local view of
STC modeling of a weighted terrain to be covered; (b) black
squares, color-filled markers, and hollowed circles represent
obstacles, vertices of G, and vertices of D, respectively;
(c)(d) the rooted subtrees (thin lines) in G and the result-
ing coverage paths (thick lines) in D.

c) Rooted: Eqn. (5) enforces each Ti is rooted at ri ∈ R; d)
Tree: Eqn. (6) ensures that each Ti is either a single tree or a
forest with cycles in some of its trees, while Eqn. (7) and (8)
eliminate any cycles in Ti. Together, these constraints ensure
that any subtree is a single tree. With Theorem 1 proven in
our full paper, we ensure that any solution of our model is
feasible for its corresponding MMRTC instance.
Efficient Suboptimal Heuristics: We propose two heuris-
tics, namely Parabolic Removal Heuristic (PRH) and Sub-
graph Removal Heuristic (SRH) in Fig. 2, to reduce the com-
plexity of the above MIP model while sacrificing the opti-
mality. Both heuristics work by generating an inferior graph
Hi for each subtree Ti and preventing Ti from covering the
vertices of Hi, and then replace the original terrain graph G
for each Ti in the MIP model with a residual graph obtained
by removing all the vertices and edges of Hi from G. For
each Ti, Hi is generated by identifying its sub-component
Hij concerning each subtree Tj with j ∈ I/{i} such that the
vertices of Hij are not to be included in Ti, since they are
closer to the root rj of Tj and thus inefficient to be covered
by Ti. Specifically speaking, for PRH, it builds a parabola
Ωij with ri as its base and a hyperparameter α to control
the parabola size, and then regards the graph induced by
the inner area of Ωij be the sub-component Hij of Hi for
arbitrary i, j ∈ I, i ̸= j. For SRH, it uses a Farthest-First-
Search (FFS) to generate each sub-component Hij to further
construct Hi. The FFS is just a Breadth-First-Search starting
from ri with the queue prioritized by the distance from each
vertex to ri and a hyperparameter β to control the FFS tree
size. Using Lemma 2 in the full paper, we proved that the
reduced-size MIP models with both heuristics still ensure
complete coverage.

Empirical Evaluation
We compare the coverage time and runtime of our MIP-
based MCPP planner with state-of-the-art MCPP planners,
MFC (Zheng et al. 2010), and MSTC∗ (Tang, Sun, and
Zhang 2021). All MIP models are solved with warm-startup

(a) Parabolic Removal Heuristics (b) Subgraph Removal Heuristics

Figure 2: Proposed suboptimal heuristics on the root vertex
(red star) to all other root vertices (colored circles). Black
squares, black crosses, and black dots are obstacles, inferior
graph vertices, and residual graph vertices, respectively.

which uses a valid initial solution to accelerate the model
solving, and their reported runtimes include the computa-
tion time of their respective warm-startup solutions. Over-
all, our MIP-based MCPP planner consistently delivers su-
perior solution quality at the cost of longer runtime, result-
ing in an average reduction in coverage time of 27.65%
and 23.24% compared to MFC and MSTC∗, respectively.
The performance improvements are significant across differ-
ent instance types. Specifically, the average reduction ratios
compared to MFC and MSTC∗ are 22.61% and 41.03% for
maze instances, 35.65% and 21.62% for floor instances, and
25.43% and 11.11% for terrain instances, respectively. No-
tably, our MIP-based planner performs exceptionally well
for maze instances with relatively shorter runtimes. How-
ever, when the root vertices are clustered, particularly in
a straight line, the proposed MIP models may result in a
smaller reduction in coverage time. This is due to the in-
creased likelihood of the inferior graphs of roots coinciding,
requiring more time to converge.
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