
On Parallel External-Memory Bidirectional Search (Extended Abstract)

Lior Siag1, Shahaf S. Shperberg1, Ariel Felner1, Nathan R. Sturtevant2,3

1 Ben-Gurion University of the Negev
2 University of Alberta

3Alberta Machine Intelligence Institute (Amii)
siagl@post.bgu.ac.il, {shperbsh, felner}@bgu.ac.il, nathanst@ualberta.ca

Abstract

Parallelization and External Memory (PEM) techniques sig-
nificantly enhance the capabilities of search algorithms for
solving large-scale problems. While previous research on
PEM has primarily centered on unidirectional algorithms, this
work presents a versatile PEM framework that integrates both
uni- and bi-directional best-first search algorithms.

Introduction
The intersection of parallel and external memory (PEM)
within BiHS has only been explored in the context of the
meet-in-the-middle (MM) algorithm (Holte et al. 2017),
yielding a variant called PEMM (Sturtevant and Chen 2016)
which this work builds upon. However, recent advance-
ments in BiHS algorithms necessitate a framework for con-
verting BiHS algorithms into corresponding PEM variants.
Therefore, we introduce a flexible framework capable of
integrating any UniHS or BiHS algorithm into the PEM
paradigm. Subsequently, we leverage this framework to de-
velop a PEM variant of BAE* (Sadhukhan 2013), resulting
in PEM-BAE*. Empirical evaluation shows that PEM-BAE*
outperforms the PEM variants of A* and the MM algorithm,
as well as a parallel variant of IDA*, in solving challenging
problems with significantly improved efficiency.

The PEM-BiHS Framework
We introduce a high-level framework called Parallel Exter-
nal Memory Bidirectional Heuristic Search (PEM-BiHS).
We give a high-level description of PEM-BiHS together with
the pseudo-code presented in Algorithm 1. PEM-BiHS ini-
tializes an OPEN and CLOSED list for each direction (line 3).
These lists do not explicitly store search nodes; instead, they
maintain references to files (buckets) that contain the corre-
sponding nodes. PEM-BiHS interates through the following
stages:
Halting condition (line 6): During each expansion cycle,
PEM-BiHS evaluates the cost U of the current incumbent
solution in comparison to the calculated lower bound LB,
derived from the nodes within the open lists. If U ≤ LB or
one of the open lists is empty, PEM-BiHS halts and returns
the current solution cost. Otherwise, the search continues.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Algorithm 1: PEM-BiHS General Framework

1: procedure PEM-BIHS (start, goal)
2: U ←∞, LB ← ComputeLowerBound()
3: OPENF, OPENB, CLOSEDF,CLOSEDB ← ∅
4: Push(start, OPENF) \\ create bucket and record
5: Push(goal, OPENB)
6: while OPENF ̸= ∅ ∧ OPENB ̸= ∅ ∧ U > LB do
7: D← ChooseDirection()
8: b← ChooseNextBucket(OPEND)
9: ParallelReadBucket(b, D) \\

10: RemoveDuplicates(b, CLOSEDD)
11: CheckForSolution(U , b, CLOSEDD)
12: ParallelExpandBucket(b, OPEND)
13: WriteToClosed(b, CLOSEDD)
14: LB ← ComputeLowerBound()
15: return U

Choose direction and bucket (line 7–8): Choosing the
search direction D and a bucket from OPEND to expand.
Retrieving the bucket: Performing a parallel reading of the
file containing the bucket from external memory into the in-
ternal memory (RAM). This stage involves eliminating du-
plicate states within the bucket.
Duplicate Detection (line 10): Eliminate duplicate nodes
with other buckets in CLOSEDD.
Detect Solution (Line 11): Check if a solution was found.
Expansion (Line 12): Nodes from memory are concurrently
expanded, generating children. These children are then writ-
ten to their respective buckets.
Writing to disk (Line 13): Finally, the expanded nodes are
written to disk, creating a new duplicate-free bucket. A ref-
erence to this bucket is inserted into CLOSED.

Experimental Results
We tested the PEM-BiHS instantiations of BAE*, A∗ (start
to goal and the reverse), and MM. In addition, we used
a public implementation of Asynchronous Parallel IDA∗

(AIDA∗), (Reinefeld and Schnecke 1994)). We experi-
mented on 3 domains: 15- and 24-Puzzle, and 4-Peg Towers
of Hanoi (ToH4). All experiments were executed on 2 Intel
Xeon Gold 6248R Processor 24-Core 3.0GHz with 2 threads
each, 192 GB of 3200MHz DDR4 RAM, and 100TB SSD.

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

283



MD PDB
Time Expansions Time Expansions

All instances
AIDA∗ 3.45 451,421,959 0.43 7,762,927
rAIDA∗ 2.44 335,167,556 0.37 6,118,084
PEM-A∗ 102.33 56,542,721 2.01 2,724,974
PEM-rA∗ 84.38 43,451,519 1.85 2,302,668
PEM-MM 16.49 26,771,047 5.2 2,572,780
PEM-BAE∗ 6.11 3,113,271 3.06 626,440
The 10 hard instances: 3, 15, 17, 32, 49, 56, 60, 66, 82, 88
AIDA∗ 22.18 2,943,505,999 2.13 46,314,389
rAIDA∗ 16.67 2,695,821,070 1.93 41,047,358
PEM-A∗ 901.19 350,840,875 7.8 17,124,704
PEM-rA∗ 786.58 308,829,220 6.67 14,371,919
PEM-MM 74.14 165,459,580 13.07 14,989,610
PEM-BAE∗ 13.31 15,749,202 6.05 3,199,891

Table 1: 15-puzzle Results. Time in seconds.

95 100 105 110
Instances Ordered by Solution Length

0

100

200

300

400

Ti
m

e 
(T

ho
us

an
d 

Se
co

nd
s) rAIDA* (44.8K)

AIDA* (27.3K)
PEM-BAE* (6.04K)

95 100 105 110
Instances Ordered by Solution Length

0

2000

4000

6000

Ex
pa

ns
io

ns
 (B

ill
io

ns
) rAIDA* (598B)

AIDA* (295B)
PEM-BAE* (12.8B)

Figure 1: 24-puzzle results

15-Puzzle. Experiment on the 100 problem instances
of Korf (1985). For heuristics, we used Manhattan Distance
and a 3-4-4-4 additive pattern database (Felner, Korf, and
Hanan 2004). As seen in Table 1, when looking at all in-
stances, rAIDA∗ had the lowest runtime, while PEM-BAE∗

had the lowest number of expansions when using either MD
or PDBs. When looking at at the 10 hardest instances, when
using PDBs the trend continued, but in MD PEM-BAE∗ had
the lowest runtime, suggesting that as the problem becomes
harder, PEM and BiHS can provide an advantage.

24-Puzzle. We experimented with the first 20 24-puzzle
problems of the 50 created by Korf and Felner (2002), using
a 6+6+6+6 additive PDB heuristic coupled with its reflec-
tion about the main diagonal. Due to the domain size, we
only compared PEM-BiHS with the AIDA* variants. Fig-
ure 1 illustrates the runtime (left) and the number of ex-
panded nodes (right) for each instance. The instances are
sorted in ascending order of solution length, serving as a
(noisy) indicator of the difficulty level of each problem. The
legends of the plots include the average result of each algo-
rithm across all instances.

In general (with a few exceptions), PEM-BAE∗ performs
the best in both node expansions and runtime. On aver-
age, PEM-BAE∗ expands only 4.4% of the nodes expanded
by AIDA∗ and runs 4.5 times faster. These findings align
with the observed trend in the 15-puzzle, indicating that on
challenging problems, PEM-BAE∗ outperforms UniHS al-

150 175 200 225
Instances Ordered by Solution Length

0

5

10

15

20

25

Ti
m

e 
(T

ho
us

an
d 

 S
ec

on
ds

)

PEM-MM (5.42K)
PEM-rA* (4.79K)
PEM-A* (4.61K)
PEM-BAE* (674)

150 175 200 225
Instances Ordered by Solution Length

0

5

10

15

20

Ex
pa

ns
io

ns
 (B

ill
io

ns
) PEM-MM (4.93B)

PEM-rA* (3.87B)
PEM-A* (3.74B)
PEM-BAE* (295M)

Figure 2: ToH4 16+4 results

gorithms even when equipped with state-of-the-art (or near
state-of-the-art) heuristics.

ToH4. We examined 20 random instances (random start
and goal) with 20 disks, utilizing a 16+4 additive PDB
heuristic. In this domain, numerous cycles exist, posing a
challenge for algorithms that lack duplicate detection, as al-
ready noted by Felner, Korf, and Hanan (2004). This issue is
so severe that neither AIDA∗ nor rAIDA∗ could solve a sin-
gle problem after running for days. Consequently, we only
compared PEM-BAE∗, PEM-A∗, PEM-rA∗, and PEM-MM.

The results, presented in Figure 2, highlight a signifi-
cant performance gap between PEM-BAE∗ and the other
algorithms. On average, PEM-BAE∗ runs 7 times faster
than its UniHS counterparts and expands a factor of 12.9
fewer nodes. Notably, PEMM was approximately 1.17 times
slower than both PEM-A∗ and PEM-rA∗, and it expanded
more nodes than both of them.

Acknowledgments
This work was supported by ISF grant #909/23 awarded
to Shahaf Shperberg and Ariel Felner, by Israel’s MOST
grant #1001706842, awarded to Shahaf Shperberg, and by
United States-Israel Binational Science Foundation (BSF)
grant #2021643 awarded to Ariel Felner. This work was also
partially funded by the Canada CIFAR AI Chairs Program.
We acknowledge the support of the National Sciences and
Engineering Research Council of Canada (NSERC).

References
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive Pattern
Database Heuristics. J. Artif. Intell. Res., 22: 279–318.
Holte, R. C.; Felner, A.; Sharon, G.; Sturtevant, N. R.; and
Chen, J. 2017. MM: A bidirectional search algorithm that
is guaranteed to meet in the middle. Artif. Intell., 252: 232–
266.
Korf, R. E. 1985. Depth-First Iterative-Deepening: An Op-
timal Admissible Tree Search. Artif. Intell., 27(1): 97–109.
Korf, R. E.; and Felner, A. 2002. Disjoint pattern database
heuristics. Artif. Intell., 134(1-2): 9–22.
Reinefeld, A.; and Schnecke, V. 1994. Work-load balancing
in highly parallel depth-first search. In SHPCC, 773–780.
IEEE.
Sadhukhan, S. K. 2013. Bidirectional heuristic search based
on error estimate. CSI Journal of Computing, 2(1-2): S1.
Sturtevant, N. R.; and Chen, J. 2016. External Memory Bidi-
rectional Search. In IJCAI, 676–682. IJCAI/AAAI Press.

284


