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Abstract

Parallelization and External Memory (PEM) techniques sig-
nificantly enhance the capabilities of search algorithms for
solving large-scale problems. While previous research on
PEM has primarily centered on unidirectional algorithms, this
work presents a versatile PEM framework that integrates both
uni- and bi-directional best-first search algorithms.

Introduction
The intersection of parallel and external memory (PEM)
within BiHS has only been explored in the context of the
meet-in-the-middle (MM) algorithm (Holte et al. 2017),
yielding a variant called PEMM (Sturtevant and Chen 2016)
which this work builds upon. However, recent advance-
ments in BiHS algorithms necessitate a framework for con-
verting BiHS algorithms into corresponding PEM variants.
Therefore, we introduce a flexible framework capable of
integrating any UniHS or BiHS algorithm into the PEM
paradigm. Subsequently, we leverage this framework to de-
velop a PEM variant of BAE* (Sadhukhan 2013), resulting
in PEM-BAE*. Empirical evaluation shows that PEM-BAE*
outperforms the PEM variants of A* and the MM algorithm,
as well as a parallel variant of IDA*, in solving challenging
problems with significantly improved efficiency.

The PEM-BiHS Framework
We introduce a high-level framework called Parallel Exter-
nal Memory Bidirectional Heuristic Search (PEM-BiHS).
We give a high-level description of PEM-BiHS together with
the pseudo-code presented in Algorithm 1. PEM-BiHS ini-
tializes an OPEN and CLOSED list for each direction (line 3).
These lists do not explicitly store search nodes; instead, they
maintain references to files (buckets) that contain the corre-
sponding nodes. PEM-BiHS interates through the following
stages:
Halting condition (line 6): During each expansion cycle,
PEM-BiHS evaluates the cost U of the current incumbent
solution in comparison to the calculated lower bound LB,
derived from the nodes within the open lists. If U ≤ LB or
one of the open lists is empty, PEM-BiHS halts and returns
the current solution cost. Otherwise, the search continues.
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Algorithm 1: PEM-BiHS General Framework

1: procedure PEM-BIHS (start, goal)
2: U ←∞, LB ← ComputeLowerBound()
3: OPENF, OPENB, CLOSEDF,CLOSEDB ← ∅
4: Push(start, OPENF) \\ create bucket and record
5: Push(goal, OPENB)
6: while OPENF ̸= ∅ ∧ OPENB ̸= ∅ ∧ U > LB do
7: D← ChooseDirection()
8: b← ChooseNextBucket(OPEND)
9: ParallelReadBucket(b, D) \\

10: RemoveDuplicates(b, CLOSEDD)
11: CheckForSolution(U , b, CLOSEDD)
12: ParallelExpandBucket(b, OPEND)
13: WriteToClosed(b, CLOSEDD)
14: LB ← ComputeLowerBound()
15: return U

Choose direction and bucket (line 7–8): Choosing the
search direction D and a bucket from OPEND to expand.
Retrieving the bucket: Performing a parallel reading of the
file containing the bucket from external memory into the in-
ternal memory (RAM). This stage involves eliminating du-
plicate states within the bucket.
Duplicate Detection (line 10): Eliminate duplicate nodes
with other buckets in CLOSEDD.
Detect Solution (Line 11): Check if a solution was found.
Expansion (Line 12): Nodes from memory are concurrently
expanded, generating children. These children are then writ-
ten to their respective buckets.
Writing to disk (Line 13): Finally, the expanded nodes are
written to disk, creating a new duplicate-free bucket. A ref-
erence to this bucket is inserted into CLOSED.

Experimental Results
We tested the PEM-BiHS instantiations of BAE*, A∗ (start
to goal and the reverse), and MM. In addition, we used
a public implementation of Asynchronous Parallel IDA∗

(AIDA∗), (Reinefeld and Schnecke 1994)). We experi-
mented on 3 domains: 15- and 24-Puzzle, and 4-Peg Towers
of Hanoi (ToH4). All experiments were executed on 2 Intel
Xeon Gold 6248R Processor 24-Core 3.0GHz with 2 threads
each, 192 GB of 3200MHz DDR4 RAM, and 100TB SSD.
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MD PDB
Time Expansions Time Expansions

All instances
AIDA∗ 3.45 451,421,959 0.43 7,762,927
rAIDA∗ 2.44 335,167,556 0.37 6,118,084
PEM-A∗ 102.33 56,542,721 2.01 2,724,974
PEM-rA∗ 84.38 43,451,519 1.85 2,302,668
PEM-MM 16.49 26,771,047 5.2 2,572,780
PEM-BAE∗ 6.11 3,113,271 3.06 626,440
The 10 hard instances: 3, 15, 17, 32, 49, 56, 60, 66, 82, 88
AIDA∗ 22.18 2,943,505,999 2.13 46,314,389
rAIDA∗ 16.67 2,695,821,070 1.93 41,047,358
PEM-A∗ 901.19 350,840,875 7.8 17,124,704
PEM-rA∗ 786.58 308,829,220 6.67 14,371,919
PEM-MM 74.14 165,459,580 13.07 14,989,610
PEM-BAE∗ 13.31 15,749,202 6.05 3,199,891

Table 1: 15-puzzle Results. Time in seconds.
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Figure 1: 24-puzzle results

15-Puzzle. Experiment on the 100 problem instances
of Korf (1985). For heuristics, we used Manhattan Distance
and a 3-4-4-4 additive pattern database (Felner, Korf, and
Hanan 2004). As seen in Table 1, when looking at all in-
stances, rAIDA∗ had the lowest runtime, while PEM-BAE∗

had the lowest number of expansions when using either MD
or PDBs. When looking at at the 10 hardest instances, when
using PDBs the trend continued, but in MD PEM-BAE∗ had
the lowest runtime, suggesting that as the problem becomes
harder, PEM and BiHS can provide an advantage.

24-Puzzle. We experimented with the first 20 24-puzzle
problems of the 50 created by Korf and Felner (2002), using
a 6+6+6+6 additive PDB heuristic coupled with its reflec-
tion about the main diagonal. Due to the domain size, we
only compared PEM-BiHS with the AIDA* variants. Fig-
ure 1 illustrates the runtime (left) and the number of ex-
panded nodes (right) for each instance. The instances are
sorted in ascending order of solution length, serving as a
(noisy) indicator of the difficulty level of each problem. The
legends of the plots include the average result of each algo-
rithm across all instances.

In general (with a few exceptions), PEM-BAE∗ performs
the best in both node expansions and runtime. On aver-
age, PEM-BAE∗ expands only 4.4% of the nodes expanded
by AIDA∗ and runs 4.5 times faster. These findings align
with the observed trend in the 15-puzzle, indicating that on
challenging problems, PEM-BAE∗ outperforms UniHS al-
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Figure 2: ToH4 16+4 results

gorithms even when equipped with state-of-the-art (or near
state-of-the-art) heuristics.

ToH4. We examined 20 random instances (random start
and goal) with 20 disks, utilizing a 16+4 additive PDB
heuristic. In this domain, numerous cycles exist, posing a
challenge for algorithms that lack duplicate detection, as al-
ready noted by Felner, Korf, and Hanan (2004). This issue is
so severe that neither AIDA∗ nor rAIDA∗ could solve a sin-
gle problem after running for days. Consequently, we only
compared PEM-BAE∗, PEM-A∗, PEM-rA∗, and PEM-MM.

The results, presented in Figure 2, highlight a signifi-
cant performance gap between PEM-BAE∗ and the other
algorithms. On average, PEM-BAE∗ runs 7 times faster
than its UniHS counterparts and expands a factor of 12.9
fewer nodes. Notably, PEMM was approximately 1.17 times
slower than both PEM-A∗ and PEM-rA∗, and it expanded
more nodes than both of them.
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