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Introduction

The recent advancements in Multi-Agent Path Finding
(MAPF) have facilitated the implementation of multi-robot
systems that can manage hundreds of robots. While studying
MAPF algorithms, much of the focus has been on develop-
ing novel planners that coordinate the agents smoothly. Typ-
ically, these planners are tested on fixed or human-designed
benchmark maps (Stern et al. 2019). However, such fixed
benchmark maps have several problems. First, these maps
may not cover all the potential failure modes of the plan-
ners, making the benchmarking insufficient. Second, these
maps may favor certain categories of planners, making the
comparison of different planners unfair. Third, despite the
large number of benchmark maps available, researchers are
less pruned to test their planners on all available maps for
intractable computational cost.

Meanwhile, a recent work (Zhang et al. 2023b) has used
a map generation technique based on quality diversity (QD)
algorithms to improve the efficiency of multi-robot systems
by optimizing the layout of the maps. Different from single-
objective optimization algorithms, QD algorithms generate
a collection of high-quality solutions in an archive by op-
timizing a given objective function while diversifying a set
of given diversity measure functions. The archive is a dis-
cretized measure space storing high-quality solutions in each
individual cell. Another work (Zhang et al. 2023a) further
uses neural cellular automata (NCA) to generate maps with
patterns. NCA applies convolutional neural networks (CNN)
to represent the rules of cellular automata and iteratively up-
date each grid cell based on the state of its neighbors. In
this paper, we intend to adapt the same map generation tech-
nique to MAPF algorithms with an alternative goal of au-
tomatically generating diverse and targeted benchmarking
maps for different MAPF planners. Our preliminary results
on EECBS (Li, Ruml, and Koenig 2021), a state-of-the-art
bounded-suboptimal MAPF algorithm, exhibit some inter-
esting results, including the divergence in behavior between
two maps with similar structures and common patterns that
present challenges for EECBS.
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Approach
In our map generation technique, we evenly discretize the
measure space (i.e., the space includes all measure pairs)
into 6,400 cells. For each cell, we aim to find the best map
which maximizes our objective function. We use the QD al-
gorithm CMA-ME (Fontaine et al. 2020) to search for and
update a diverse collection of NCA generators with the ob-
jective and diversity measures computed from EECBS to
generate diverse maps with patterns.

We start by sampling a batch of 100 parameter vectors
from a multivariate Gaussian distribution with mean 0 and
sigma 0.2, which forms 100 NCA generators. Each NCA
generator has 3 convolutional layers with kernel size 3 ×
3 and 1730 parameters. Each NCA generator will generate
one map based on a fixed seed map, leading to 100 maps.
After repairing maps to enforce connectivity using a Mixed-
Integer Linear Programming solver, we evaluate each map
by running EECBS 5 times, each with randomly generated
start and goal locations of 150 agents, a given cutoff time of
5 seconds, and a suboptimality bound of 1.2. We calculate
the average objective, namely CPU runtime, and measures,
namely map entropy (Zhang et al. 2023a) and standard devi-
ation of betweenness connectivity (BC) (Ewing et al. 2022).
To compute the map entropy, we define a tile pattern as an
arbitrary arrangement of a 2×2 grid, count the occurrence of
the same tile patterns in the given map, and then normalize
the counts to form a tile distribution. The map entropy is the
entropy of the tile distribution. To compute the standard de-
viation of BC, we search for the shortest path between each
possible start and goal location in the map and then calculate
the standard deviation among usage of all tiles.

Preliminary Results
Our generated maps (shown in Figure 1) consist of empty
spaces (white) and obstacles (black) with size 32 × 32 and
exactly 20% obstacles. Figure 1 shows six generated maps,
together with the tile-usages (the frequency of each tile be-
ing used in the EECBS solution) of two of them.

The two maps with tile-usage plots on the left ((a) and (b))
reveal the most interesting comparisons. Qualitatively, they
have similar stylistic features in terms of the obstacle distri-
bution, the shape of obstacle components, and the spread of
empty space. Quantitatively, they demonstrate similar map
entropy around 0.5 and similar standard deviation of BC
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Figure 1: An archive of diverse generated maps with color indicating average runtime and axis indicating different values of the
diversity measures along with the tile-usages.

around 0.0003. However, the behaviors of EECBS on these
two maps are drastically different. Upon running EECBS
400 times on two maps, map (a) has a success rate of 43.75%
with an average runtime of 3.2 seconds, while map (b) has a
92.00% success rate with an average runtime of 0.8 seconds.
Moreover, by conducting a two-sample T-test with α = 0.05
and df = 798, we observe a statistically significant differ-
ence in the average runtime of EECBS between map (a) and
map (b) (t > 1.963). From the tile-usage plots of the two
maps, we discover that for map (a), more traffic congestion
is concentrated at the top entry of the long obstacle compo-
nents. However, for map (b), congestion is evenly distributed
around the primary entries of obstacle components. There-
fore, we conjecture that while both maps have multiple cor-
ridors in parallel, shorter corridors in map (b) lead to more
empty space within the interior of the map, causing less con-
gestion and resulting in faster runtime.

Maps (c) and (d) are two maps with high standard devia-
tions of BC and relatively high map entropy (close to or over
0.6). With a higher map entropy, map (d) manifests a more
stochastic pattern of obstacles, leading to increased end-lock
areas which cause much congestion. However, for map (c),
with evenly distributed obstacles, there exists more evenly
distributed empty space for agents to resolve collisions all
over the map, leading to fast runtime for EECBS.

Map (e) is a map with high standard deviation of BC and
relatively low map entropy (below 0.5). Despite its simple
pattern, the presence of numerous one-tile entries and corri-
dors leads to high runtime. The same effect applies to map
(f). Its simple pattern leads to low map entropy. However,
there exists a one-tile entry and a one-tile-wide long corri-
dor which makes it the only map with high runtime among
all maps with low standard deviation of BC and low map en-
tropy. With one-tile entries and corridors, low standard devi-
ation of BC and large portion of empty space cannot be seen
as indications of the difficulty of maps.

Conclusion and Future Work
Experimental Findings. We found that with carefully de-
signed objectives and diversity measures, it is feasible to
combine the QD algorithm and NCA to generate diverse

benchmark maps for MAPF algorithms. In our experiment,
we observe significant divergence in the behavior of EECBS
between two similar structured maps. This potentially indi-
cates the impact of the length of the corridors on EECBS’s
runtime. Also, based on high runtime cases in low entropy
scenarios, we verify that long corridors and one-tile entries
are the main reasons for congestion.
Future Work. Our work serves as the preliminary results of
automatically generating benchmark maps for MAPF, yield-
ing many future directions. Firstly, we aim to generate a set
of diverse benchmark maps that will sufficiently cover the
failure modes of a given MAPF algorithm. Secondly, we
seek to establish unbiased sets of benchmark maps with suit-
able objectives and measures to make fair comparisons be-
tween different MAPF algorithms. Thirdly, we will endeavor
to limit the number of maps in the benchmark set to optimize
the computational cost of benchmarking.
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