
A New Upper Bound for the Makespan of Cost-Optimal
Solutions for Multi-Agent Path Finding (Extended Abstract)

Rodrigo López1, Roberto Ası́n-Achá 2, Jorge A. Baier13

1Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile
2Department of Computer Science, Universidad Tecnica Federico Santa Maria, Santiago, Chile

3Instituto Milenio Fundamentos de los Datos, Chile
rilopez3@uc.cl, roberto.asin@usm.cl, jabaier@ing.puc.cl

Introduction
In Multi-Agent Path Finding (MAPF), we are given a graph
G and a set of k agents, each of which is associated with
an initial vertex and a target vertex; the task is to find,
for each agent, a path connecting its initial and target ver-
tices. In addition, the set of k paths must be non-conflicting.
Finding a cost-optimal solution to a MAPF instance, a so-
lution that minimizes the total number of edges over the
k paths, is an NP-hard task (Surynek 2010). When MAPF
tasks are relatively small and dense, the approaches that
perform best in practice are compilation-based. One suc-
cessful strategy, applicable to SAT-, ASP-, and MIP-based
solvers (Barták and Svancara 2019; Gómez, Hernández, and
Baier 2021; Ası́n Achá et al. 2022), involves two phases:
first, finding a solution Πmin of minimum makespan (i.e.,
minimum time-to-completion), and second, using a theoret-
ical result to compute an upper bound T ∗ for the makespan
of a cost-optimal solution. By encoding the problem for
makespan T ∗, a minimum-cost solution is guaranteed to
be cost-optimal. However, the state-of-the-art theoretical
bound used (Surynek et al. 2016; Barták and Svancara 2019;
Gómez, Hernández, and Baier 2021) may significantly over-
estimate the actual makespan.

Background
A MAPF instance is a tuple P = (G,A, s, t) where G =
(V,E) is a directed graph, A is a set of agents, s : A → V
is such that s(a) is the start vertex a, and t : A → V is such
that t(a) is the target vertex of a. We assume that for every
vertex v ∈ V , there is an edge (v, v) ∈ E, and thus agents
are allowed to “wait” at each node.

A path π = u0, u1, . . . , un in graph G = (V,E) is a
non-empty sequence of vertices in V such that for every i ∈
{1, . . . , n}, (ui−1, ui) ∈ E. A sequence of vertices π is a
path from u to v if π is a path whose first element is u and
whose last element is v. Given a path π = u0, u1, . . . , un,
π[i], with i ≥ 0, denotes the i-th vertex of π; that is, π[i] =
ui. The cost of π = u0u1 . . . un, denoted by C(π), is the
number of edges traversed; therefore, C(π) = n.
Definition 1. A solution to MAPF instance P = (G,A, s, t)
is a function Π whose domain is A such that:

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1. For every a ∈ A, Π(a) is a path in G from s(a) to t(a).
2. For every a ∈ A, Π(a) is not of the form πuu, for some

u ∈ V and some sequence π of vertices in V . This means
that agents do not perform a wait as their last action.

3. Π is conflict-free; specifically, two paths in Π do not have
a vertex or an edge conflict.

Definition 2. A relaxed solution for a MAPF instance P =
(G,A, s, t) is a function Π whose domain is A that (only)
satisfies Conditions 1 and 2 of Definition 1.

The makespan of Π is T (Π) = maxa∈A C(Π(a)), and
the cost of Π is C(Π) =

∑
a∈A C(Π(a)). Solution Π is

makespan-optimal iff Π is a solution of minimum makespan.
Solution Π is cost-optimal iff Π is a solution of minimum
cost. Makespan-optimal and cost-optimal relaxed solutions
are defined analogously. Current approaches (e.g., Gómez,
Hernández, and Baier 2021; Ası́n Achá et al. 2022), use the
following theoretical result to compute T ∗.
Theorem 1. Let P be a MAPF instance. Let Πmin be a
makespan-optimal solution, and let Πrel be a cost-optimal
relaxed solution to P . Then there exists a cost-optimal solu-
tion Π∗ to P such that:

T (Π∗) ≤ T (Πrel) + C(Πmin)− C(Πrel). (1)

A New Upper Bound T ∗

The bound we propose is based on the solution to sub-
instances of the given MAPF instance to obtain a better up-
per bound for the makespan of a cost-optimal solution.
Definition 3. Given a MAPF instance P = (G,A, s, t), and
a subset b of agents in A (b ⊆ A), the sub-instance of P rel-
ative to b, denoted as P |b, is the tuple P |b = (G, b, s|b, t|b).

Now, we present the main theoretical result of the paper,
from which we derive our new upper bound.
Theorem 2. Let P = (G,A, s, t) be a MAPF instance and
let Π∗ be an optimal solution to P . Let amax be an agent
of maximum cost in Π∗; that is, such that C(Π∗(amax)) =
T (Π∗). Let B be a partition of A containing {amax}, and let
Π∗

b be an optimal solution to P |b, for every b ∈ B. Let Πrel

be a cost-optimal relaxed solution to P . Finally, let Πmin be
a makespan-optimal solution for P . Then,

T (Π∗) ≤ T (Πrel(amax))+C(Πmin)−
∑
b∈B

C(Π∗
b). (2)

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

275

A key point to note is that partition B in Theorem 2 must
contain {amax}, where amax is an agent with maximum cost
within the cost-optimal solution, which is still not computed.
This means that to apply our bound, we need to guess amax.
A reliable heuristic we’ve used is to select the agent with the
highest cost in the relaxed solution. Once we compute the
solution, we check if our guess is correct. If it was, the bound
is correct; hence, the solution is cost-optimal (we omit the
proof to this claim in this abstract for lack of space). How-
ever, if our guess is wrong, we cannot ensure the bound’s
accuracy and thus cannot guarantee optimality. We may use
the bound of Theorem 1 to compute a solution in such cases.

Parallelization with ReBo

To guarantee that we always find a solution and to minimize
execution time, our recursive bounding approach – which
we call ReBo – exploits parallel computation. In the first
step, we compute a relaxed solution Πrel, and define ai as
the i-th agent with the highest cost in Πrel. Now we define
A0 = A, and Ai = Ai−1 \ {ai} for every i ∈ {1, . . . , k}.
We run up to m threads (m ≤ k). Thread 0 runs the stan-
dard approach (using Theorem 1 for the upper bound). The
remaining threads exploit different ways in which our bound
can be used. Thread i finds a solution to P |Ai

using the tra-
ditional approach and then uses the returned solution to se-
quentially compute solutions to P |Ai

, . . . , P |A1
, P |A0

using
our bound. We report the solution once one thread finds a so-
lution to P .

Experimental Evaluation

ReBo is applicable to SAT and ASP compilation-based
approaches. To our knowledge, there are no other par-
allel cost-optimal MAPF solvers. Therefore, we compare
our ReBo implementation against ASP-MAPF2 (Ası́n Achá
et al. 2022) due to its superiority over other approaches (i.e.,
MDD-SAT (Surynek et al. 2016), BCP (Lam et al. 2022)) on
the chosen benchmarks. To compare with ASP-MAPF2 fair,
ReBo was restricted to 4 threads, assigning one core to each
thread, and for ASP-MAPF2, we configured the ASP solver
to use 4 cores. We used the benchmarks proposed by Gómez,
Hernández, and Baier (2021) and Ası́n Achá et al. (2022).
That includes 410 grid instances of size 20×20, 1280 grid
instances of size 50×50, and 1200 warehouse-like maps in-
stances of size 18×33 and 30×57; 2890 instances in total.

Table 1 shows the total number of instances solved for
each method at a time limit. We observe that ReBo is com-
petitive and outperforms ASP-MAPF2. Figure 1 compares
the values of the bounds of Theorem 1 and Theorem 2
against the makespan of a cost-optimal solution on the in-
stances of the benchmark sets that are solved for both meth-
ods and the new bound criterion is met, grouped by den-
sity. The values for instances with the same density are av-
eraged. On average, the overestimation of our approach is
7.74%, while the overestimation of the previous bound is
54.93%. We evaluated the accuracy of choosing agent amax

and found such a guess was correct in 91.97% of the cases.

Time limit ReBo ASP2

1 second 49 68
10 seconds 559 506
100 seconds 1415 1329
600 seconds 1926 1838
1200 seconds 2105 2006

Table 1: Number of solved instances by ReBo and ASP-
MAPF2 (ASP2), to a given time limit.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
density (occupied cells / total cells)

20

40

60

80

100

120

140

160

tim
e

st
ep

s

Makespan of the cost-optimal solution
Average previous bound (Thm. 1)
Average new bound (Thm. 2)

Figure 1: Average bound proposed by density (occupied
cells / total cells) for the instances solved for both methods.

Summary and Future Work
We propose a new theoretical bound for the makespan of a
cost-optimal solution to a MAPF instance. The bound we
proposed is correct and at least as tight as the bound that has
been used until now. We also proposed a way to exploit this
new bound in practice which exploits parallelization.

Acknowledgments
This work was funded by the ANID Doctorado Nacional
2020 under Grant 21201864 and National Center for Arti-
ficial Intelligence CENIA FB210017, Basal ANID.

References
Ası́n Achá, R. J.; López, R.; Hagedorn, S.; and Baier, J. A.
2022. Multi-Agent Path Finding: A New Boolean Encoding.
JAIR, 75: 323–350.
Barták, R.; and Svancara, J. 2019. On SAT-Based Ap-
proaches for Multi-Agent Path Finding with the Sum-of-
Costs Objective. In SoCS, 10–17. AAAI Press.
Gómez, R. N.; Hernández, C.; and Baier, J. A. 2021. A Com-
pact Answer Set Programming Encoding of Multi-Agent
Pathfinding. IEEE Access, 9: 26886–26901.
Lam, E.; Bodic, P. L.; Harabor, D.; and Stuckey, P. J.
2022. Branch-and-cut-and-price for multi-agent path find-
ing. Computers & Operations Research, 144: 105809.
Surynek, P. 2010. An Optimization Variant of Multi-Robot
Path Planning Is Intractable. In AAAI, 1261–1263.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016.
Efficient SAT Approach to Multi-Agent Path Finding Under
the Sum of Costs Objective. In ECAI, 810–818. IOS Press.

276

