
Minimizing State Exploration While Searching Graphs with Unknown Obstacles
(Extended Abstract)

Daniel Koyfman1, Shahaf S. Shperberg1, Dor Atzmon2, Ariel Felner1

1Ben-Gurion University, Israel
2Bar-Ilan University, Israel

koyfdan@post.bgu.ac.il, shperbsh@bgu.ac.il, dor.atzmon@biu.ac.il, felner@bgu.ac.il

1 Introduction
The A∗ algorithm (Hart, Nilsson, and Raphael 1968) opti-
mally solves the shortest path problem by executing a best-
first search, guided by a heuristic that estimates the cost
to the goal. In this paper, we focus on finding a shortest
path in a special type of graphs, denoted as graphs with
unknown obstacles (GUO). In GUO, the structure of the
graph is known, but some states might be blocked. For ex-
ample, some junctions in a roadmap might be closed due
to weather conditions, construction, or accidents. Similarly,
some servers/switches/hubs may be unavailable when rout-
ing files over a network. We assume that the status of a state
(blocked/free) remains fixed for the entire duration of the
search and the execution.

Identifying whether a state is free or blocked in a GUO
requires an exploration operation, which may come with
a cost. For instance, exploring a location using sensors in
robotic navigation might be expensive or time-consuming.
Additionally, exploration is costly when privacy needs to be
preserved, i.e., when an adversary can detect exploration op-
erators. We thus differentiate between an exploration, a real-
world, possibly very costly, operation, and an expansion, a
computational operation done in the CPU and only incurs
time overhead. Usually, analysis on A∗ does not differentiate
between exploration and expansion, and treats exploration
as part of the expansion processes (i.e., when a node is ex-
panded, all neighboring states are generated and explored).
Therefore, A∗ aims to speed up the search by minimizing the
number of node expansions. By contrast, this paper aims to
find the shortest path while minimizing the number of explo-
rations, even at the price of increasing the number of node
expansions. Note that when the exploration operator is very
costly (time-consuming) compared to the time of the expan-
sion operator, then reducing the number of explorations is a
better way to minimize the CPU time to find a solution than
reducing the number of expansions (as done by A∗).

In this paper, we introduce Minimize Exploration A∗

(MXA∗), a two-level search algorithm capable of searching
any GUO. The high level of MXA∗ runs A∗ to find an op-
timal path from start to goal. Once it reaches a state for
the first time, it explores it. Thus, information about which

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

states are free and which are blocked is continuously being
collected. The low level calculates a heuristic for the high
level by finding the shortest path to goal on the currently
known graph, bypassing known blocked states while assum-
ing that all states that are yet unexplored are free. The result-
ing heuristic is more informed than classic heuristics, which
assume that all states are free. Our low-level heuristic re-
duces the number of nodes expanded by the high-level A∗

and, as a result, reduces the number of explorations. Natu-
rally, the tradeoff is a large number of low-level expansions.
Experimental results show that MXA∗ reduces the number
of explorations by up to an order of magnitude compared to
plain A∗ on a number of common benchmark domains.

2 Definitions and Background
A graph with unknown obstacles (GUO) G =
(V,E, c,EXP) consists of a set of states V (or ver-
tices), a set of (directed) edges E ⊆ V × V , a cost function
c(e) for traversing an edge e ∈ E (c : E → R+), and an
exploration function EXP : V → {free, blocked}. State
s2 ∈ V is a neighbor of state s1 ∈ V if (s1, s2) ∈ E. A
neighboring function N(s) receives a state s and returns
all its neighbors. Each state in V is either free or blocked,
and we assume that the status of states remains fixed for
the entire duration of the search and the execution. Whether
a state is free or blocked is not given as input. Instead,
the exploration function EXP receives a state and returns
whether it is free or blocked. Naturally, if a state is blocked,
then all its incident edges are also blocked. A state that
EXP has yet been executed on it is referred to as unknown.

The input to a GUO-pathfinding problem consists of a
GUO G = (V,E, c,EXP), a start state start ∈ V , a goal
state goal ∈ V , and a heuristic function h : V → R+. A
valid path between two states s1 and s2 is a sequence of
neighboring free states that starts with s1 and ends with s2.
A path’s cost is the sum of the costs of its edges. d(s1, s2)
denotes the cost of the shortest valid path between s1 and
s2. The heuristic function h(s) estimates d(s, goal) for any
given state s. A solution to the problem is a shortest valid
path between start and goal.The problem we solve in the
paper is the minimize exploration shortest-path problem
(MXSP), where the input is a GUO-pathfinding problem,
and the task is to find a shortest valid path while minimizing
the number of explore operations (i.e., calls to EXP ).

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

273



3 Minimize Exploration A∗ (MXA∗)
MXA∗ is a two-level algorithm. Its high level is similar to
A∗, which activates the EXP operator on the GUO. After a
node n′, corresponding to state s′, is generated, the low-level
search is called to calculate a dynamic heuristic value for s′,
hD(s′), and the f -value of n′ is recalculated with respect
to hD(s′). The low-level search exploits the most updated
knowledge on blocked states and performs a search strictly
in memory to calculate a more informed heuristic. Let n be
a newly created node in the high level. The low level is in-
voked to find the shortest path from n.s to goal that does
not traverse through any state in BLOCKED. The cost of this
path is returned to the high level as hD(s). Thus, the low-
level searches an abstract graph where states that were al-
ready explored are treated as free or as blocked according to
the outcome of their EXP action. Additionally, we make the
free-space assumption (Koenig and Smirnov 1997) and treat
all unknown states as free. The cost of the path returned by
the low level is clearly a lower bound on the shortest valid
path, as the returned path may include blocked states (cur-
rently unknown and treated as free by the low level). Also,
it is clearly more informed than any static heuristic used by
A∗, which assumes that all states are free. As the high-level
search progresses, new states are revealed as blocked and
are inserted into BLOCKED. Therefore, when a node is se-
lected for expansion by the algorithm, its h-value may not be
up-to-date with the BLOCKED list (when its h-value was cal-
culated, BLOCKED contained fewer states). To remedy this,
when a node n is chosen for expansion by the high level, we
perform another low-level search and re-calculate hD(n.s).
If g(n) + hD(n.s) > fmin, we insert n back to OPEN. Im-
portantly, this re-calculation of the heuristic is not relevant
to A∗ as its heuristic is static throughout the search.

When A∗ and MXA∗ expand a node, they immediately
explore all its yet unexplored neighbors and insert nodes into
OPEN only if the states of the nodes are free. However, this
exploration can be delayed. To do so, we first treat the neigh-
boring states of an expanded node as free. Nodes for these
states are immediately inserted into OPEN. Then, when a
node is chosen to be expanded, we execute EXP on its state
and discard it if it turns out to be blocked. We call this ap-
proach Lazy Exploration (LE).

3.1 Experiments: Comparing Explorations
We empirically compared the number of explorations per-
formed by A∗ and MXA∗, with and without lazy expansion
(LE), on two domains: 4-connected grids (with the Man-
hattan Distance heuristic), and 8-connected grids (with the
Octile Distance heuristic). We experimented on five grid do-
mains, representing different topologies, extracted from the
MovingAI repository (Sturtevant 2012): Game, Maze, Ran-
dom, Room, and City. Overall, we generated over 36.5k ran-
dom problem instances across all five domains.

Table 1 presents the average number of explorations for
each approach. The results show that MXA∗ consistently
performed fewer explorations than A∗. Additionally, en-
abling LE yielded a reduction in exploration for both A∗

and MXA∗. Notably, in our experiments, MXA∗+LE ex-

A∗ A∗+LE MXA∗ MXA∗+LE

4

Game 9,094 8,766 4,143 3,602
Maze 17,790 17,727 11,458 10,347

Random 12,355 11,560 4,695 3,330
Room 20,318 19,443 6,516 5,195
City 17,569 16,661 4,133 3,151

8

Game 7,759 7,366 4,128 3,536
Maze 9,023 8,949 6,197 5,616

Random 8,981 8,047 5,585 3,447
Room 13,128 12,509 6,347 5,111
City 20,129 19,033 7,453 6,149

Table 1: Average number of explorations for A∗ and MXA∗,
without and with LE, on 4-connected and 8-connected maps.

Figure 1: Per-instance exploration ratio of A∗ / MXA∗+LE
on 4-connected grids.

plored the fewest states, outperforming A∗ by a substan-
tial margin ranging from 1.7 (mazes) to 5.6 (cities) in 4-
connected grids and from 1.6 (mazes) to 3.3 (cities) in 8-
connected grids. Figure 1 shows per-instance outcomes on
4-connected grids of the same maps and problem instances
used in the above experiment (Table 1). The y-axis, pre-
sented on a logarithmic scale, shows the improvement fac-
tor between the states explored by A∗ and those explored
by MXA∗+LE for each individual instance. The instances
are sorted in increasing order of the improvement factor.
The depicted results highlight that the reduction in state ex-
ploration achieved by MXA∗+LE over A∗ is exponentially
distributed and varies from an improvement factor of close
to 1 up to a staggering factor of up to 278. This variabil-
ity shows that MXA∗+LE can significantly enhance explo-
ration in some scenarios while consistently delivering im-
proved performance across a broad spectrum of instances.

References
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Koenig, S.; and Smirnov, Y. 1997. Sensor-based planning
with the freespace assumption. In ICRA, 3540–3545.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. Computational Intelligence and AI in Games, 4(2):
144–148.

274


