
Lazy Evaluation of Negative Preconditions in Planning Domains
(Extended Abstract)

Santiago Franco1, Jamie O. Roberts2, Sara Bernardini1

1Department of Computer Science, Royal Holloway University of London
2School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh

santiago.francoaixela@rhul.ac.uk, sara.bernardini@rhul.ac.uk, jamie.owen.roberts@gmail.com

Introduction
Fast Downward (FD) (Helmert 2006) is one of the most pop-
ular planners currently in use. FD transforms PDDL2.2 tasks
(Edelkamp and Hoffmann 2004) (hereinafter, PDDL) into
Finite Domain Representation (FDR) tasks (Helmert 2009).
FDR is a grounded representation that uses multi-valued
state variables, i.e. each variable has a finite domain where
each value corresponds to an atom that is mutually exclusive
with the rest of ground atoms in the domain (plus ‘null’).

An FDR state is composed of a finite set of variables with
their corresponding values, which can change as a result of
applying an action. A variable-value assignment indicates
that the value assigned to the variable is true, while all other
ground atoms in the variable’s domain are false. Given a set
of mutually exclusive atoms of size D, the memory cost in
bits of its corresponding FDR variable is ⌈log2(D)⌉. The
equivalent set of binary variables, representing whether a
ground atom is true or false, costs D bits. As such, for those
problems characterized by a large set of mutually exclusive
ground atoms, FDR is the obvious choice.

However, FDR incurs a significant disadvantage when op-
erators present negative preconditions. As FDR does not
have a direct way to represent a ground negative literal, when
negative preconditions are translated into FDR, FD instanti-
ates all possible combinations of positive ground atoms that
are logically equivalent to the negative preconditions and,
then, for each combination, creates a new operator that is
identical to the original operator except for having an extra
precondition corresponding to the combination.

If a domain contains operators with negative precondi-
tions affecting several state variables, an exponential growth
in the number of operators can easily occur. This effectively
excludes entire classes of problems from a scalable formula-
tion in FDR, such as multi-agent navigation problems, which
are vital in many fields. Negative preconditions are needed
to verify the occupancy status of different cells in a grid.

To overcome this limitation, we present a technique that
avoids the multiplication of operators by introducing the no-
tion of negative facts, which are evaluated on the fly during
search when required. We extend FD to incorporate our ap-
proach and show the benefits it offers by presenting a broad

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

evaluation of domains that feature negative preconditions.

Lazy Evaluation of Negative Preconditions
Given a PDDL operator o with m negative preconditions af-
fecting m different state variables and assuming that all of
them have a domain of size n, the number of generated op-
erators is the size of the Cartesian product among them, i.e.
(n− 1)m. Our goal is to avoid this combinatorial explosion
in the number of operators by skipping the multiply-out op-
eration by postponing the evaluation of the operators’ neg-
ative preconditions until the search phase, which is the last
phase taking place after translation and knowledge compi-
lation. We call our evaluation of negative preconditions lazy
because we perform it only when we have verified that all
the positive preconditions hold, which means that the evalu-
ation of negative preconditions cannot be postponed further.

We propose a Three-Phased Precondition approach (TPP-
FD) that allows us to avoid the multiply-out operation and
check negative preconditions on the fly. The first phase of
TPP-FD is implemented within the modified task generation
module. Given a PDDL task Π, an operator o ∈ O and the
synthesized state variables VMFDR, the algorithm translates
o into the modified FDR operator oMFDR. The only differ-
ence with respect to the FD translation is the omission of
the multiply-out method and the creation of negative pre-
conditions for oMFDR. The second phase of TPP-FD creates
the Modified-Successor-Generator data structure. The algo-
rithm functions exactly like FD’s corresponding one, but dis-
regards operators’ negative preconditions in tree construc-
tion. The last phase of TPP-FD is an updated version of A*
where the operators’ negative preconditions are checked on
the fly. Candidate operators are provided by the modified
successor generator but are rejected if any of the negative
preconditions make the grounded operator inapplicable.

Alternative Approaches
TPP-FD is useful in domains where there are operators with
negative preconditions that affect one or more multi-valued
variables, e.g. multi-agent grid-based problems. Most IPC
domains either avoid negative preconditions, use bookmark-
ing predicates or keep the size of the problems small enough
to facilitate grounding. None of the IPC problems present a
3D grid-based representation, despite the fact that grids are
a model frequently used in several areas, e.g. robotics.

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

271



We use a multi-agent grid-based demonstration domain
called Drone, where drones occupy the cells of a Cartesian
3D grid. Each cell is defined by its X , Y and Z coordi-
nates. Since a drone can only occupy one cell in the grid,
the position of each drone can be represented as an FDR
variable v ∈ V whose domain is the size of grid. A random-
ized unique goal position is chosen for each drone in the
problem. All drones start outside the grid and can enter it
by using the ‘lift-off’ action. Each drone can fly to adjacent,
non-diagonal cells as long as it is unoccupied1.

We briefly discuss three approaches to model an unoc-
cupied cell: Bookmarked, Positive Normal Form and TPP-
FD. Bookmarked substitutes negative precondition checks
per (drone, cell) pair by a predicate per cell. The predicate
indicates if a cell is free, e.g (free ?x ?y ?z). PNF would
simply transform each negative check, e.g. (not (at ?Drone
?x ?y ?z)) into a single predicate, e.g. (not-drone ?Drone ?x
?y ?z). PNF is easy to automate but worse than the Book-
marked approach as it requires one predicate per (drone,cell)
pair. No known automated Bookmarking method exists. The
number of normalized grounded fly operators is O = N ×
(6 × (GS3 − GS2) + 1) for both TPP-FD and STRIPS-
FD, where N is the number of drones and GS the length of
a regular 3D grid. Unmodified FDR-FD has exponentially
more operators: O′ = O × (GS3 + 1)N−1. Bookmarked
trades-off the exponential growth of operators as a function
of the number of drones for polynomial growth in mem-
ory usage per state as a function of the number of cells,
AdditionalFactsPerState = GS3. PNF would require
AdditionalFactsPerState = N ∗ GS3. Finally, TPP-FD
trades-off using extra memory for time, by delaying the neg-
ative preconditions checks to FD’s online search phase.

Experiments
We generate 100 randomized problems per grid, using an
Intel Xeon E5-2640 cluster at 2.60GHz, with 6 GB memory
and 1,800 seconds per problem. In the Drone domain, we
employ uniform 3D grids from 5 × 5 × 5 to 17 × 17 × 17,
with the number of drones equal to the grid size (GS).

We compare STRIPS-FD, FDR-FD, and TPP-FD running
A* with iPDB. STRIPS-FD uses binary state variables hence
preventing the negative preconditions’ combinatorial explo-
sion. FDR-FD represents standard FD. Ng and Bm stand for
the Negation and Bookmarked domain variants. Both TPP-
FD and FDR-FD perform equally for Bm.

Table 1 shows the coverage for the Drone domain. TPP-
FD scales up much better when dealing with negative pre-
conditions. FDR-FD runs out of memory while grounding
any of the Ng problems. STRIPS-FD generates thousands
of variables, increasing the complexity of iPDB’s incremen-
tal pattern selection, which in turn deteriorates FD’s perfor-
mance when combined with the high memory usage.

Table 2 shows memory usage per state. TPP-FD and FDR-
FD are equivalent memory-wise. Ng is orders of magnitude
more efficient than using bookmarking predicates. How-
ever, memory reduction would be linear for domains need-

1https://github.com/francos3/DroneVariantsPDDLExamples

TPP-FD STRIPS-FD
GS Ng Bm Ng Bm
5 100 100 3 3
6 100 99 0 0
7 99 97 0 0
8 97 97 0 0
9 94 96 0 0

10 94 95 0 0
11 95 95 0 0
12 87 92 0 0
13 87 22 0 0
14 91 0 0 0
15 84 0 0 0
16 90 0 0 0
17 90 0 0 0

Sum 1308 893 103 99

Table 1: Coverage for Drone Domains.

TPP-FD STRIPS-FD
GS Ng Bm Ng Bm
4 4 12 32 44
5 8 20 80 96
6 8 36 164 328
7 12 52 304 344
8 12 76 516 580
9 12 104 824 916
10 16 140 1,252 1,380

Table 2: Memory usage per state in bytes, Drone domains.

ing bookmarking predicates, e.g. Traveling Salesman Prob-
lems.

Conclusions
This extended abstract presents TPP-FD, a method address-
ing FD’s exponential increase in grounded operators due to
negative preconditions. It bypasses the traditional multiply-
out step in PDDL-to-FDR translation by directly check-
ing negative preconditions during search. We showed that
TPP-FD can significantly outperform existing alternatives,
mainly the domain-specific Bookmarked and automated
PNF approaches. TPP-FD integrates smoothly with current
systems, activating only when FDR variables with negative
preconditions exist. This could extend traditional planning
to complex multi-agent grid-based navigation and logistics
problems. Axioms, heuristics and automated bookmarking
predicate removal (when beneficial) are future work.

References
Edelkamp, S.; and Hoffmann, J. 2004. Pddl 2.2: The lan-
guage for the classical part of the 4th international planning
competition, Albert Ludwigs Universität Institüt fur Infor-
matik. Technical report, Germany, Technical Report.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence, 173(5): 503 –
535. Advances in Automated Plan Generation.

272


