
Exploring Conflict Generating Decisions: Initial Results (Extended Abstract)

Md Solimul Chowdhury1, Martin Müller2, Jia-Huai You2

1Department of Computer Science, Carnegie Mellon University
2Department of Computing Science, University of Alberta

solimul.chowdhury@gmail.com, mmueller@ualberta.ca, you@cs.ualberta.ca

Introduction
Boolean Satisfiability (SAT) is an NP-complete problem,
indicating its inherent computational hardness. However,
Conflict Driven Clause Learning (CDCL) SAT solvers ef-
ficiently tackle large instances from diverse domains. Effi-
cient problem-solving with CDCL relies on rapid conflict
identification, as conflicts leads to the search space pruning
learning of clauses, which encode the underlying causes of
the conflicts they originate from. CDCL decision heuristics
prioritize variables that participated in recent conflicts, an-
ticipating rapid conflict generation and expediting additional
clause learning. In practice, only a fraction of decisions lead
to conflicts, yet some decisions may yield multiple conflicts.

This paper delves into conflict-generating decisions in
CDCL, distinguishing between single-conflict (sc) deci-
sions, which generate only one conflict, and multi-conflict
(mc) decisions, producing two or more conflicts. Our em-
pirical analysis evaluates each decision type based on the
quality of the learned clauses they produce. Our theoreti-
cal analysis suggests that in a mc decision, the learning of
a clause depends on prior clause learning within that deci-
sion. This leads to the hypothesis that learned clauses in mc
decisions share a more common set of literals compared to
those in sc decisions. This hypothesis is empirically con-
firmed with our introduced concept of learning proximity.
Finally, we propose score reduction (sr), a novel decision
strategy that decreases the selection priority of specific vari-
ables from learned clauses in mc decisions. Evaluation of sr
on over 1200 benchmarks demonstrates its effectiveness.

We assume familiarity with the CDCL SAT solving al-
gorithms, and briefly introduce the concepts most relevant
for this paper: (i) The Variable State Independent Decaying
Sum (VSIDS) decision heuristic assigns an activity score
act[v] to each variable v, prioritizing those involved in re-
cent conflicts. It exponentially increases the activity scores
of conflict-involved variables during conflict analysis, pri-
oritizing their selection in subsequent decisions. (ii) The
state-of-the-art metric for measuring the quality of a learned
clause is Literal Block Distance, or LBD, in short. It repre-
sents the count of literal blocks in a learned clause, where
all the literals in a block are assigned at the same decision

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

0 50 100 150 200 250 300

100

101

102

solved instances from sc23

LB
D
Sc
or
e

aLBDsc

aLBDmc

aMinLBDmc

0 50 100 150 200 250 300
10−4

10−3

10−2

10−1

100

solved instances from sc23

le
ar
ni
ng

pr
ox
im
ity

mc decisions
sc decisions

Figure 1: sc vs. mc decisions: Learned clause quality (left
plot); learning proximity (right plot)

level. A lower LBD value indicates higher quality.
We denote a CDCL solver ψ running a SAT instance F

as ψF . We introduce three measures related to LBD scores.
aLBDsc (average LBD for sc clauses) and aLBDmc (av-
erage LBD for mc clauses). For a given mc decision M,
min LBDM denotes the minimum LBD score among its
learned clauses, and aMinLBDmc is the average of minimum
LBD over mc decisions in ψF .

Analysis of sc and mc Decisions
We analyze the frequency and quality of the clauses learned
in sc and mc decisions, along with a comparison on the
degree of commonality between the learned clauses in se-
quences of sc and mc decisions. We utilize sbvaCaDiCaL
(Haberlandt, Green, and Heule 2023), the SAT Competition
2023 main track winner, on sc23, a set of 400 benchmarks
submitted for the same track, with a 5000-second timeout
per run, utilizing the StarExec cluster (Stump, Sutcliffe, and
Tinelli 2012).

Distributions and Learned Clause Quality Recall that
a decision in CDCL can yield 0 or multiple conflicts. This
prompts questions on the percentage of conflict-producing
decisions, and the distribution between sc and mc decisions.
Across the 284 sc23 benchmarks solved by sbvaCaDiCaL
within the timeout, on average, 6% of decisions are sc, and
28% are mc, totaling 34% of decisions resulting in conflicts.
This suggests that, on average, 66% of decisions don’t lead
to conflicts. Notably, 82% of conflict-producing decisions
belong to mc, emphasizing its prevalence over sc in occur-
rence frequency.

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

267

BS Cnt sbvaCaDiCaL sbvaCaDiCaLsr

S U C S U C
parity 29 8 0 8 15 0 15(+7)
crypto 200 114 12 126 120 11 131 (+5)
bitvec 594 161 221 382 165 225 390 (+8)
sc23 400 121 163 284 124 164 288 (+4)

Overall 1223 404 396 800 424 400 824 (+24)

Table 1: Evaluation results for sbvaCaDiCaL and
sbvaCaDiCaLsr solver. BS: Benchmark-Set; Cnt:Total
number of instances; S: # of solved Satisfiable instances; U:
of solved Unsatisfiable instances; C: S+U

Next, we compare the quality of learned clauses in sc and
mc decisions for the same benchmark set. The left plot in
Figure 1 provides per-instance values for three LBD-related
measures: aLBDsc, aLBDmc, and aMinLBDmc. On average,
aMinLBDmc is consistently the lowest among these mea-
sures, followed by aLBDsc, which is lower than aLBDmc.
Recall that the lower the LBD score of a clause, the better
its quality. Hence, on average, mc decisions are learning-
inefficient compared to sc decisions. However, on average,
the best quality learned clause generated in a mc decision
have better quality than the quality of a sc clause.

Learning Proximity over sc and mc Decisions Given a
sequence of n learned clauses L = ⟨L1, . . . , Ln⟩, the learn-
ing proximity lpL between the clauses in L is defined as |CL|

|DL| ,
where CL and DL are the common and distinct sets of literal
blocks in L, respectively. For any two given learned clause
sequences L and L′

with |L| = |L′ |, if lpL > lpL′ , then the
learned clauses in L exhibit a higher degree of commonality
in literal blocks compared to those in L′

.
In a given mc decision that learns x ≥ 2 clauses within a

single decision, we claim that these x learned clauses are lo-
cally connected, meaning that the learning of the jth clause
is necessitated by the learning of the previous j − 1 < x
clauses within that mc decision, forming a chain of learned
clauses. Based on this claim, we hypothesize that on aver-
age, the x > 2 learned clauses which are generated within a
given mc decision, exhibit a higher degree of commonality
in literal blocks compared to the learned clauses generated
in the last x sc decisions.

We empirically validate this hypothesis using sbvaCaD-
iCaL as the solver and sc23 as the benchmark set. When a
mc decision with x ≥ 2 learned clauses occurs, we com-
pute the learning proximity for the following learned clause
sequences: (i) for x learned clauses in that mc decision and
(ii) for learned clauses from the last x sc decisions. The right
plot of Figure 1 confirms that the average learning proxim-
ity for clauses over mc decisions (black line) are higher than
those over sc decisions (red line) for almost all benchmarks.
This confirms our hypothesis that clauses learned over mc
decisions tend to exhibit a higher degree of commonality
in literal blocks compared to conflicts generated in sc deci-

sions. Since learned clauses explicitly encode the root cause
of the conflicts they arise from, the validity of this hypoth-
esis implies that, on average, for x ≥ 2 conflicts reached
within a given mc decision are caused by a more common
set of literal blocks compared to conflicts reached in the x
most recent sc decisions.

The Score Reduction Strategy
In a mc decision, multiple learned clauses are generated. A
poor mc decision is identified when the LBD score of the
best-quality learned clause within that decision surpasses the
moving average LBD of all learned clauses up to that point
in the search. The shared decision variables (sdv) across
multiple learned clauses in a poor mc decision collectively
contribute to the generation of low-quality learned clauses
within that decision. Does the suppression of such sdv for
future decisions help the search achieve better efficiency?

We address this question by designing a decision strategy
named score reduction (sr). If the current decision turns out
to be a poor mc decision with learned clause sequence L,
sr marks all the sdv variables y ∈ CL as poor. While the
sr strategy aims to reduce the score of each marked vari-
able y, it defers the actual score reduction until the back-
jumping operation unassigns y. This delay ensures that the
score reduction for y occurs at the earliest point in time,
when y becomes a free variable and can be considered for
making a new decision. Before unassigning y, the backjump
procedure in sr decreases the activity score of y by a factor
of Q ∈ (0, 1), followed by the unmarking of y. Following
backjumping, the free variable y is then reconsidered for a
decision with its reduced score.

We implemented sr on top of sbvaCaDiCaL, result-
ing in the extended solver sbvaCaDiCaLsr. After an ini-
tial experiment, we set Q to 0.1, reducing the activity score
of a poor sdv by 10%. We evaluate the performance of
both solvers across four benchmark sets1—Minimum Dis-
agreement Parity (parity), Cryptography (crypto), Bitvec-
tor (bitvec), and sc23—comprising 1223 instances, each
with a timeout of 5000 seconds. Table 1 shows the result
of the evaluation. Our extension employing sr demonstrates
performance gains over sbvaCaDiCaL, especially for SAT
instances. sbvaCaDiCaLsr solves 824 instances (424 SAT,
400 UNSAT), outperforming sbvaCaDiCaL solving 800 in-
stances (404 SAT, 396 UNSAT), marking a 24-instance im-
provement with our extension. These results showcase the
achieved efficiency with our proposed approach.

References
Haberlandt, A.; Green, H.; and Heule, M. J. H. 2023. Ef-
fective Auxiliary Variables via Structured Reencoding. In
SAT-2023, 11:1–11:19.
Stump, A.; Sutcliffe, G.; and Tinelli, C. 2012. Introduc-
ing StarExec: a Cross-Community Infrastructure for Logic
Solving. In Proceedings of the 1st International Work-
shop on Comparative Empirical Evaluation of Reasoning
Systems, volume 873 of CEUR Workshop Proceedings, 2.
CEUR-WS.org.

1Available in https://benchmark-database.de/

268

