
Traffic Flow Optimisation for Lifelong Multi-Agent Path Finding
(Extended Abstract)*

Zhe Chen1, Daniel Harabor1, Jiaoyang Li2, Peter J. Stuckey1,3

1Department of Data Science and Artificial Intelligence, Monash University, Melbourne, Australia
2Robotics Institute, Carnegie Mellon University, Pittsburgh, USA

3OPTIMA Australian Research Council ITTC, Melbourne, Australia
{zhe.chen,daniel.harabor,peter.stuckey}@monash.edu, jiaoyangli@cmu.edu

Abstract
Multi-Agent Path Finding (MAPF) is a fundamental problem
in robotics that asks us to compute collision-free paths for
a team of agents, all moving across a shared map. Existing
scalable approaches struggle as the number of agents grows,
as they typically plan free-flow optimal paths, which creates
congestion. To tackle this issue, we propose a new approach
for MAPF where agents are guided to their destination by
following congestion-avoiding paths. Empirically, we report
large improvements in overall throughput for lifelong MAPF
while coordinating more than ten thousand agents.

Introduction
Multi-Agent Path Finding (MAPF) (Stern et al. 2019) is a
fundamental problem navigating a team of agents from their
start locations to goal locations without any collisions. In the
classical, sometimes called one-shot, MAPF problem (Stern
et al. 2019), each agent is assigned a single goal location.
A related setup, known as lifelong MAPF (Li et al. 2021),
continuously assigns new goal locations to agents as they
arrive at their current goal locations.

These problems have been intensely studied, with a va-
riety of substantial advancements reported in the litera-
ture. Leading optimal (Shen et al. 2023) and bounded-
suboptimal (Li, Ruml, and Koenig 2021) MAPF algorithms
now scale to hundreds of agents with solution quality guar-
antees. Yet some real applications require up to thousands
of simultaneous agents, and at this scale, only unbounded
suboptimal approaches are currently applicable.

One leading framework for unbounded suboptimal MAPF
is Priority Inheritance with Back Tracking (PIBT) (Okumura
et al. 2022). PIBT-based approaches use rule-based collision
avoidance to plan paths. They compute paths timestep by
timestep, which is extremely efficient. For this reason, PIBT-
based methods usually scale to substantially large teams of
agents. However, this type of planner guides agents toward
their goals using individually optimal free-flow heuristics
(i.e., considering only travel distance while ignoring other
agents), a strategy known to create high levels of conges-
tion. Moreover, its computed solutions tend to have higher
costs than other approaches.

*Full AAAI-24 paper: https://arxiv.org/abs/2308.11234
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Average throughput (top) and response time in sec-
ond (bottom). Shaded regions show standard deviation.

Methodology
To tackle the drawbacks of PIBT, we propose to compute
congestion-aware time-independent optimal paths. These
paths are called Guide Paths and will be followed by agents
in PIBT. In particular, we update the edge costs of the graph
after the computing of one time-independent shortest path,
so that the edges that appear on that path become more ex-
pensive to traverse. We adapt these general ideas for MAPF
by first defining a model for computing traffic costs and
then applying these costs to compute guide paths and new
congestion-aware move policies for PIBT.

Traffic Costs
Given an undirected graph G = (V,E), we define fv1,v2

as
the flow from vertex v1 to v2 given a set of agents whose
time-independent shortest paths each have the state v1 fol-
lowed by v2. Thus fv1,v2 is the number of agents traverse
the edge (v1, v2) from v1 to v2 direction in the current path
assignment. Note that fv2,v1 indicates traversing through the
same edge but from v2 to v1 direction.

We define the vertex congestion cv of a vertex v ∈ V

as cv = n×(n−1)
2 where n =

∑
v′∈V :(v′,v)∈E fv′,v is the

total number of agents entering vertex v. cv represents the

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

265



Metric ALG 200 400 600 800 1000

Throughput RHCR-PBS 6.0±0.1 11.1±0.1 6.5±0.6 5.2±0.5 3.5±0.3
Guided-PIBT 5.0±0.1 9.1±0.1 11.4±0.3 11.5±0.6 10.2±0.7

Response Time
per Planner Run

RHCR-PBS 0.114±0.002 1.449±0.078 9.985±0.074 10.051±0.028 10.03±0.013
Guided-PIBT 0.008±0.0 0.011±0.001 0.012±0.001 0.012±0.001 0.013±0.001

Table 1: RHCR vs. Guided PIBT on Sortation centre map, with number of agents varies from 200 to 1000. It compares the
Throughput and Response Time per planner run.

least total delay that will occur assuming all agents enter the
vertex at the same time, since in the best case each agent will
have to wait for all the agents preceding it. Apportioning this
congestion to each agent equally leads to a cost per agent of
pv = ⌈ cv

n ⌉ = ⌈n−1
2 ⌉.

Define the contraflow congestion ce of undirected edge
e ≡ (v1, v2) ∈ E as ce = fv1,v2

× fv2,v1
. This formulation

reflects our observation that higher-priority agents move into
a corridor which then forces lower-priority agents, already
inside the corridor, to reverse direction.

Computing Guide Paths
Traversing through each edge e = (v1, v2) is given a two-
part weighted cost (ce, 1 + pv2), where 1 indicates the free-
flow (i.e., zero congestion) cost of using edge e. We then
search for (lexicographically) shortest paths for each agent
using this two-part cost, i.e. first minimising contraflow
costs, and then weighted edge costs.

We begin by initialising flow counts to zero, and then plan
agents one by one and update the flow counts at the same
time. Once all agents have guide paths we call the procedure
PathRefinement, which uses a local search to improve the
computed guide paths.

Guide Heuristics
We then modify PIBT so that each agent tries to follow
a congestion-aware guide path. For each agent ai we thus
compute a guide heuristic hi(v) using backward Breadth
First Search (BFS). Given a vertex v ∈ V we compute a
two-part value hi(v) = (dp, dg), where dp is the shortest
free-flow distance, from v to the guide path. The value dg
meanwhile is the shortest remaining distance to the goal gi,
as reached subsequently by strictly following the guide path.
When computing its move policies, PIBT then prefers the
vertex v with the smallest hi(v).

Empirical Evaluation
We compare Guided-PIBT against the original PIBT and
RHCR (Li et al. 2021) for Lifelong MAPF, where agents
continuously receive new tasks when they finish tasks. Im-
plementations1 are written in C++ and evaluated on a Nec-
tar Cloud VM instance with 32 AMD EPYC-Rome CPUs
and 64 GB RAM. We run large-scale experiments on two
maps: (1) a 500×140 Warehouse map with 3200 simulation
timesteps limit; (2) a 33× 57 Sortation centre map with 450

1https://github.com/nobodyczcz/Guided-PIBT

simulation timesteps limit. For each map and each number
of agents, we evaluate 24 randomly sampled instances.

Figure 1 measures the average throughput and average re-
sponse time, which is the average time the planner returns
actions for all agents at each timestep, and compares against
baseline PIBT. The Guided-PIBT shows a great advan-
tage over PIBT on throughput. We noticed that in lifelong
MAPF there is a peak agent density, beyond which adding
more agents decreases throughput due to increasingly severe
congestion. Compared with PIBT, our methods shifted this
peak to the right on each map, with Guided-PIBT improv-
ing Warehouse by 2000 agents and Sortation by 200 agents.

Table 1 show the throughput and response time per plan-
ner run comparisons against RHCR-PBS (Li et al. 2021), a
leading framework in solving lifelong MAPF problems, on
the Sortation centre map. The planning window is set to 10
and the execution window is 5, which indicates the simulator
calls the MAPF planner every 5 timesteps with the bounded
time horizon set to 10. The time limit for the planner is set
to 10 seconds. The results show that our Guided PIBT easily
scales to a larger team size with higher throughput, and uses
dramatically less computing resources.

References
Li, J.; Ruml, W.; and Koenig, S. 2021. Eecbs: A bounded-
suboptimal search for multi-agent path finding. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, 12353–12362.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. S.; and
Koenig, S. 2021. Lifelong multi-agent path finding in large-
scale warehouses. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, 11272–11281.
Okumura, K.; Machida, M.; Défago, X.; and Tamura, Y.
2022. Priority inheritance with backtracking for itera-
tive multi-agent path finding. Artificial Intelligence, 310:
103752.
Shen, B.; Chen, Z.; Li, J.; Cheema, M. A.; Harabor, D. D.;
and Stuckey, P. J. 2023. Beyond pairwise reasoning in multi-
agent path finding. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 33,
384–392.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. S.;
et al. 2019. Multi-agent pathfinding: Definitions, variants,
and benchmarks. In Proceedings of the Twelfth Annual Sym-
posium on Combinatorial Search, 151–158.

266


