
Taming Discretised PDDL+ through Multiple Discretisations (Extended Abstract)*

Matteo Cardellini1, Marco Maratea2, Francesco Percassi3, Enrico Scala4, Mauro Vallati3

1DIBRIS, Università di Genova, Italy
2DeMaCS, Università della Calabria, Italy

3School of Computing and Engineering, University of Huddersfield, United Kingdom
4Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Italy

matteo.cardellini@edu.unige.it, marco.maratea@unical.it, f.percassi@hud.ac.uk,
enrico.scala@unibs.it, m.vallati@hud.ac.uk

Introduction

PDDL+ is an expressive planning formalism designed to
represent problems involving numeric and temporal aspects
(Fox and Long 2006). Its key feature is the possibility to
model the environment dynamics using events and pro-
cesses. Events dictate instantaneous and discrete changes
when some preconditions hold. Processes specify how the
numeric variables change continuously over time according
to a set of ordinary differential equations. While these mod-
elling capabilities make this language well-suited for repre-
senting realistic and complex scenarios, they also pose sig-
nificant challenges on the reasoning side.

A well-established approach to breaking down this com-
plexity is based on discretisation (Della Penna, Magazzeni,
and Mercorio 2012; Percassi, Scala, and Vallati 2023).
Specifically, the timeline is segmented according to a dis-
cretisation step δ ∈ Q+ (shortened as delta). Actions can
only be executed at timestamps multiples of δ and con-
tinuous changes, expressed as derivatives, are discretised
into finite differences, i.e., ẋ = v becomes x(t + δ) =
x(t) + v(t) · δ. Ideally, δ should be arbitrarily small to en-
sure a good approximation of the dynamics one intends to
represent. However, as δ decreases, the computational inten-
sity of the problem increases significantly. ENHSP mitigates
this drawback by decoupling the execution delta (usually
smaller), denoted by δe, with the planning delta (typically
larger) δp (Scala et al. 2020). Intuitively, in some domains,
an agent may make decisions less frequently than the envi-
ronment’s dynamics, reducing the planning workload.

In this extended abstract, we summarise the work by
Cardellini et al. (2024), which introduces a framework for
handling discretisation more flexibly. Besides supporting
the decoupling between execution and planning delta, the
framework allows using several deltas, one for each agent,
which can also vary over time. Below, we introduce a mo-
tivating example that underscores the need for adopting the
discussed framework, we outline a methodology based on
reformulation to make it operational, followed by an experi-
mental evaluation.

*We report on the work by Cardellini et al. (2024).
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The COOPROVERS Domain
We introduce a new domain called COOPROVERS, where
two agents, referred to as rovers (Red and Green), operate
at different speeds and must coordinate to achieve a common
goal. Figure 1 provides an illustration of the initial state (left)
and the goal condition (right), where the rovers are engaged
in separate experiments (A and B) located at different dis-
tances from their base camp. The rovers need to exchange a
tool at the base camp. To ensure safety, they are restricted to
move only between the base camp and their respective work-
ing zones. Each rover is equipped with a battery and solar
panels for recharging, with the Green rover having a lighter,
more efficient battery due to the greater distance it needs
to cover. The rovers can recharge their batteries while mov-
ing or stationary, with the battery level required to remain
above 20% for emergency operations. The rovers are also
equipped with a container for transporting tools. Despite
moving at the same speed, the differences in distances and
battery discharge rates necessitate modelling and control-
ling their movements with different granularities. To model
the domain using PDDL+, we define actions and events for
rover movements, battery management, tool handling, and
charging. These include actions such as startMoving and
startCharging, processes like moving and discharge, and
events like endMovement.1

Dynamic-Planning Discretised PDDL+
Consider a discrete PDDL+ planning problem extended with
an execution delta δe. Here we qualitatively define the dy-
namic planning-discretised PDDL+ problem, abbreviated as
PDDLδ+ problem. Such a problem is represented as a pair
⟨Π,Kδ = ⟨J,∇⟩⟩, where Π is a discrete PDDL+ problem
and Kδ is the discretisation knowledge. J partitions actions
and events into m classes, defining the discretisation vari-
ables {δ1, ..., δm}. Intuitively, every δj handles a different
aspect of the problem by controlling when actions from the
j-th partition can be executed. For instance, in our motivat-
ing example, J categorises actions and events in m = 2 par-
titions according to the rover they refer to. ∇ controls how
these variables change based on actions and events, mapping
each to a positive rational number, or a special value indicat-
ing the persistence of the current discretisation value.

1Available at https://github.com/matteocarde/ICAPS24-Delta.

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

263



Location ExpA Base Camp Location ExpB

12 12α

Allowed Red Rover Movement

Allowed Green Rover Movement

Initial State

12 12α

Allowed Red Rover Movement

Allowed Green Rover Movement

Goal

Location ExpA Base Camp Location ExpB

Figure 1: A representation of the initial state and goal condition of the COOPROVERS motivating example.

100 101 102 103 104 105

Distance between Base Camp and Location ExpB (α)

0

100

200

300

R
un

T
im

e
(s

)

U −Kδ U − 1δ E − 1δ E − 2δ E −Kδ

Figure 2: Average runtime (CPU-time seconds) achieved by
search approaches implemented in ENHSP (E) and UPMUR-
PHI (U) while relying on different discretisation approaches.

A PDDL+ plan, expressed as πt = ⟨π, te⟩ where π is a
sequence of timestamped actions and te ∈ Q+

0 is the dura-
tion of the plan, is valid for ⟨Π,Kδ⟩ if (i) πt is a valid plan
for Π and (ii) each action is compliant with Kδ , i.e., it is ex-
ecuted in a timestamp compatible to what prescribed by ∇.
We distinguish different levels of control based on how Kδ is
defined. If m = 1, it is termed Unitary, otherwise Multiple.
If, given a partition, its delta is constant, it is termed Flat;
otherwise, Dynamic. Existing PDDL+ planners only support
unitary-static control. We propose a reformulation, FLAT, for
handling all the other cases that, given a ⟨Π,Kδ⟩, produces
an equivalent PDDL+ problem. In essence, the problem Π
is extended with numeric variables representing the vari-
ables {δ1, ...δm} updated consistently with ∇ when an ac-
tion (event) is applied (triggered). These variables restrict
the timestamps at which actions can be executed.

Empirical Evaluation
This analysis aims to evaluate the benefits of translating
PDDLδ+ to PDDL+ in the COOPROVERS domain, and assess
the overall utility of the proposed framework. We consid-
ered UPMURPHI (Della Penna, Magazzeni, and Mercorio
2012) and ENHSP (run with different heuristics, i.e., blind,
hmax, hmrp and haibr, and searches, i.e., GBFS and A⋆), vary-
ing α ∈ {100, ..., 105}, which controls the distance between
the base camp and location B. We also considered differ-
ent types of discretisation control. In the traditional 1δ ap-
proach, both the agent and environment granularity are de-
fined by a single delta, where δe = δp = 1. In the 2δ ap-
proach, the planner natively decouples the environment and

agent, i.e., δe = 1 and δp = 3 (only supported by ENHSP).
Lastly, the Kδ approach employs varying deltas depending
on the agent, which can change over time. For instance,
movement actions for the red rover are assigned a value of
3, while for the green rover, is 3α. Charging actions, how-
ever, maintain the same time scale for both rovers, assigned a
value of 30. This scenario falls within the Multiple-Dynamic
case, as it involves two deltas that can change over time
based on the actions taken. Since no planner supports this
level of discretisation control, Kδ is enforced through the
FLAT reformulation. Figure 2 shows the achieved results as α
varies. For ENHSP, we reported the results of the fastest con-
figuration. A more sophisticated discretisation control en-
ables improved scalability in finding a solution. Regarding
ENHSP, the Kδ approach, which diversifies the granularity
based on executed actions besides the considered rover, is
preferable to 2δ allowing us to find a solution for α = 105.
This analysis demonstrated that the proposed framework of-
fers benefits in PDDL+ problems with complex dynamics,
and that the FLAT reformulation can make it operational.

Acknowledgements
Francesco Percassi and Mauro Vallati were supported
by a UKRI Future Leaders Fellowship [grant number
MR/T041196/1]. Enrico Scala was supported by Climate
Change AI project (No. IG-2023-174), and by H2020377
project AIPlan4EU (No. 101016442). Marco Maratea was
supported by PNRR MUR project PE0000013-FAIR.

References
Cardellini, M.; Maratea, M.; Percassi, F.; Scala, E.; and Val-
lati, M. 2024. Taming Discretised PDDL+ through Multiple
Discretisations. In Proc. of ICAPS.
Della Penna, G.; Magazzeni, D.; and Mercorio, F. 2012. A
universal planning system for hybrid domains. Appl. Intell.,
36(4): 932–959.
Fox, M.; and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. J. Artif. Intell. Res., 27:
235–297.
Percassi, F.; Scala, E.; and Vallati, M. 2023. A Practical
Approach to Discretised PDDL+ Problems by Translation
to Numeric Planning. J. Artif. Intell. Res., 76: 115–162.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramirez, M. 2020.
Subgoaling techniques for satisficing and optimal numeric
planning. J. Artif. Intell. Res., 68: 691–752.

264


