
Finiding All Optimal Solutions in Multi-Agent Path Finding

Shahar Bardugo1, Dor Atzmon2

1Ben-Gurion University
2Bar-Ilan University

bshahar@post.bgu.ac.il, dor.atzmon@biu.ac.il

Introduction and Problem Definition
Multi-Agent Path Finding (MAPF) (Stern et al. 2019) aims
to find conflict-free paths. MAPF is defined by a tuple
⟨G, A, S,G⟩, where G = (V , E) is an undirected graph;
A = (a1, . . . , ak) is a list of k agents; and S = (s1, . . . , sk)
and G = (g1, . . . , gk) are lists of start and goal vertices.
A path πi for agent ai is a list of vertices from si to gi. Let
πi(t) be the t-th vertex in πi. Any two consecutive vertices in
πi must be traversable: ∀t : (πi(t), πi(t+1)) ∈ E . Two paths
πi and πj conflict if the two agents are simultaneously at the
same vertex (∃t : πi(t) = πj(t)) or if the agents simultane-
ously switch vertices (∃t : πi(t) = πj(t+ 1) ∧ πi(t+ 1) =
πj(t)). A plan Π = (π1, . . . , πk) is a list of paths. The cost
C(Π) of plan Π equals the sum of the costs of its paths
(=

∑
πi∈Π C(πi)). A solution is a conflict-free plan (any

two paths do not conflict). An optimal solution has the low-
est cost among all solutions. Consider the problem instance
in Fig. 1(a). One of the two agents must wait to avoid a con-
flict. Therefore, four optimal solutions exist. In this paper,
we aim to find all optimal solutions in MAPF. We discuss the
representation of all optimal solutions, propose algorithms
for finding them, and compare them experimentally.

Representing All Optimal Solutions
We suggest three ways to represent all optimal solutions.

Maintaining All Solutions (MAS ). The simplest way for
this purpose is to maintain a set of all optimal solutions. To
the instance in Fig. 1(a), MAS maintains all four solutions.

Shared state-space MDD (SMDD). An MDD (Sharon
et al. 2015) is a data structure that represents multiple paths.
In a shared state-space of multiple agents, each state con-
tains a vertex for each agent. An MDD in this state-space
(denoted SMDD) represents all optimal MAPF solutions.
Fig. 1(b) presents the SMDD to the problem instance in
Fig. 1(a); every path represents an optimal MAPF solution.

Multiple MDDs (MMDD). MMDD represents all solu-
tions by a set of MDDs . Every MDDsi ∈ MMDD contains
an MDD for each agent. Fig. 1(c) illustrates an MMDD
to the problem instance in Fig. 1(a). For any MDDsi ∈
MMDD , any permutation of paths is an optimal solution.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: (a) Problem instance. (b,c) Solution representation.

A∗-based Approach (A∗
AS )

Adapting A∗ (Hart, Nilsson, and Raphael 1968) to find All
Solutions (A∗

AS ) is straightforward: (1) instead of returning
a single solution, we return a set of solutions; (2) A∗ halts
when the first solution is found, while A∗

AS halts after the
last solution is found; and (3) in the duplicate detection of
A∗

AS , we do not prune nodes with the same cost.
To find all optimal MAPF solutions, we execute A∗

AS in
the state space where any state s contains vertices for all
agents; the start and goal states are the start and goal ver-
tices of the agents; and neighboring state s′ of state s is ev-
ery permutation in which the vertices of each agent ai are
traversable (besides the permutation where all agents wait).
Also, states where agents conflict are pruned.

CBS-based Approach (CBSAS and CBS-MAS )
Conflict-Based Search (CBS) (Sharon et al. 2015) is an opti-
mal MAPF algorithm. A constraint ⟨ai, x, t⟩ prohibits agent
ai from occupying vertex/edge x at timestep t. We propose
CBSAS and CBS-MAS . Both algorithms’ high-level con-
structs a similar CT (presented once, in Alg. 1). The main
difference is the CT leaves they return. We first describe
CBSAS (Alg. 1), which calls its high level in line 2.

Each CT node N contains constraints N.constraints; a
plan N.Π that satisfies N.constraints; the cost N.cost of
plan N.Π; and MDDs for all agents N.MDDs that satisfies
N.constraints. The high level starts by initializing OPEN,
MMDD , UB , and root, and inserting root into OPEN (lines
5-7). The CT node N with the lowest cost is extracted from
OPEN (lines 9). If N.cost exceeds UB , MMDD is returned
(lines 10-11). Otherwise, we check if N is a solution (line

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

259



0

20

40

60

0 6 12 18 24 30

Ti
m

e 
(s

ec
)

Number of agents

0
5

10
15
20
25

0 6 12 18 24 30

Su
cc

es
s r

at
e

Number of agents

0
5

10
15
20
25

0 9 18 27

Su
cc

es
s r

at
e

Number of agents

0

20

40

60

0 9 18 27

Ti
m

e 
(s

ec
)

Number of agents(a) (b) (c) (d)

A𝐴𝑆
∗ CBS𝐴𝑆

∗ CBS-M𝐴𝑆
∗

Figure 2: Success rate and time (sec) for A∗
AS , CBSAS , and CBS-MAS on 8×8 empty grids (a,b) and 32×32 room grids (c,d).

Algorithm 1: CBSAS

1 CBSAS (MAPF problem instance instance)
2 MMDD = HighLevel (instance)
3 return CreateSMDD (MMDD)

4 HighLevel(MAPF problem instance instance)
5 Init OPEN, MMDD , UB = ∞
6 Init root with an initial plan and no constraints
7 Insert root into OPEN
8 while OPEN is not empty do
9 Extract N from OPEN // lowest cost

10 if N.cost > UB then
11 return MMDD

12 if IsSolution(N ) then
13 MMDD = MMDD ∪N.MDDs
14 UB = N.cost
15 continue

16 ⟨ai, aj , x, t⟩ = GetConflict(N )
17 Ni = GenerateChild(N , {⟨ai, x, t⟩})
18 Nj = GenerateChild(N , {⟨aj , x, t⟩})
19 Insert Ni and Nj into OPEN

20 return MMDD

21 GenerateChild (Node N , Constraints C)
22 N ′.constraints = N.constraints ∪ C
23 N ′.Π = N.Π; N ′.MDDs = N.MDDs
24 Update N ′.Π to satisfy N ′.constraints
25 Update N ′.MDDs to satisfy N ′.constraints
26 N ′.cost = C(N.Π)
27 return N ′

28 GetConflict(CT Node N )
29 return Conflict ⟨ai, aj , x, t⟩ in N.Π

30 IsSolution(CT Node N )
31 if N.Π is conflict free then
32 return true

33 return false

Algorithm 2: CBS-MAS

1 CBS-MAS (MAPF problem instance instance)
2 return HighLevel (instance)

3 GetConflict(CT Node N )
4 return Conflict ⟨ai, aj , x, t⟩ in N.MDDs

5 IsSolution(CT Node N )
6 if N.MDDs is conflict free then
7 return true

8 return false

12). In CBSAS , N is a solution if N.Π is conflict-free (lines
31-32). If it is, N ’s MDDs (N.MDDs) is added to MMDD ,
UB is updated, and we continue to the next CT node (lines
13-15). If N is not a solution, a conflict ⟨ai, aj , x, t⟩ is cho-
sen (line 16). In CBSAS , this conflict is found in N.Π (line
29). The conflict is resolved by generating two CT nodes
Ni and Nj , constraining each of the conflicting agents, and
inserting the nodes into OPEN (lines 17-19).

When the high level halts, it returns MMDD . However,
the MDDs may still contain conflicts. Thus, CBSAS merges
the set of all MDDs into an SMDD and returns it (line 3).

CBS-MAS (Alg. 2) resolves a new type of conflict, an
MDDs conflict (line 4). An MDDs conflict ⟨ai, aj , x, t⟩
exists if both MDDi and MDDj contain vertex/edge x at
timestep t. It is resolved similarly to the way a standard con-
flict is resolved. In CBS-MAS , a CT node N is a solution
if it does not contain any MDDs conflict (lines 6-8). CBS-
MAS resolves MDDs conflicts so its MMDD only repre-
sents valid solutions, and can be returned as is (line 2).

Experimental Study
We experimented on 8 × 8 empty grids (empty-8-8) and
32 × 32 room grids (room-32-32-4), publicly available in
the MovingAI repository (Stern et al. 2019). We ran each al-
gorithm on 25 problem instances containing k = {2, 3, . . . }
agents. We set the time limit to one minute and measured
the success rate and average time (in seconds). The results
of this experiment are presented in Fig. 2. As expected, A∗

AS
solved problem instances of the smaller empty grid only
with a small number of agents and, in the room grids, it did
not solve any of the problem instances. In both maps, CBS-
MAS outperformed CBSAS and solved problem instances
with more agents. CBS-MAS achieves the best results, in
terms of runtime, and outperforms both A∗

AS and CBSAS .

References
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Barták, R.; and Boyarski, E. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. In SoCS, 151–159.

260


