
Finding a Small, Diverse Subset of the Pareto Solution Set
in Bi-Objective Search (Extended Abstract)

Pablo Araneda1,2, Carlos Hernández Ulloa2,3, Nicolás Rivera4, Jorge A. Baier1,2,5

1 Pontificia Universidad Católica de Chile, Chile
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Introduction
In bi-objective search, we are given a graph where each arc
is associated with a pair of nonnegative costs. Consequently,
each path also has two costs associated with it. To compare
different paths, a dominance structure is employed. A path
π1 is dominated by path π2 if their costs are different and
both costs of π1 are smaller than or equal to the correspond-
ing costs of π2. This dominance relation only establishes a
partial order, and thus, given a starting node sstart and a goal
node sgoal, it is generally not possible to find a minimum
cost path from sstart to sgoal. Instead, we find the so-called
Pareto solution set, which contains all sstart-to-sgoal paths
that are not dominated by another sstart-to-sgoal path.

Because bi-objective search instances do not have a
unique solution, much of the research in the area focuses
on the computation of Pareto solution sets. However, from
a practical perspective, this approach may be unsatisfactory
since Pareto sets could be quite large—containing several
hundreds of solutions—and navigating through them can be-
come overwhelming for a user. This issue motivates us to
study the problem of finding a small, good-quality subset of
the Pareto solution set. By small we mean that the resulting
set should be small enough to allow a human user to reason
about the solution set with relative ease. By good-quality we
mean that the paths in the returned set correspond to differ-
ent areas of the Pareto solution set.

Bi-Objective A* (BOA*) (Hernández et al. 2020) is
a state-of-the-art bi-objective search algorithm on top of
which we build our approaches for computing small diverse
subsets of Pareto solution sets. It receives a bi-objective
search instance and returns a cost-unique Pareto solution set.

This document presents two main contributions. First, we
provide a simple formalization of good-quality subsets of
a Pareto solution set. For this, we use measure of richness
which has been employed in the study of Population Dy-
namics. Second, we propose Chebyshev BOA*, a variant of
BOA* to compute good-quality subset approximations.

Richness in Bi-Objective Search
Following Magurran and McGill (2010), assume we are
given a sample of organisms each of which belongs to a cer-
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tain unique species. Richness is the number of species for
which at least one organism has been found in the sample.

To compute the richness of a solution set we need to spec-
ify what ‘species’ to map each path to. To do this we di-
vide the Pareto solution set in k numbered buckets, and then
we say that a solution is of species i if it is in the bucket
numbered with i. To define such the buckets we “normal-
ize” the Pareto solution set. Assume solsP is a solution
set with the two extreme solutions: the left-most solution,
πl, is the solution in solsp with minimum fist component
(and maximum second component). The right-most solu-
tion, πr, is the solution in solsp with minimum second com-
ponent (and maximum first component). Let (cmin

1 , cmax
2 )

and (cmax
1 , cmin

2 ) be, respectively, the costs of solutions πl

and πr. If c = (c1, c2) is the cost of a certain solution, then
its normalized form is defined as cnorm = (c1 · (cmax

2 −
cmin
2 ), c2 · (cmax

1 − cmin
1 )).

Let sub be any subset of solsP . To compute richness
for subset sub, we assume we are given a positive integer
k, which defines k solution buckets B1, . . . , Bk. To define
which solutions in sub go to which buckets, we define the
vector which points from the former cost to the latter as
d = cnorm(πr)− cnorm(πl). We define k bucket centroids,
b1, . . . ,bk, where bi = (cmin

1 · i−1
k−1 + cmax

1 · k−i
k−1 , c

max
2 ·

i−1
k−1 + cmin

2 · k−i
k−1 ), for i ∈ {1, . . . , k} . A solution π in

sub is associated with Bi if its closest centroid, with respect
to the Euclidean distance from its normalized cost, is bi; in
other words, we find the i minimizing the distance between
cnorm(bi) and cnorm(π).

Chebyshev BOA*
To compute good-quality subsets of the Pareto solution set,
we propose to use Chebyshev BOA*, a best-first search al-
gorithm that optimizes a rectangle-shaped function. Cheby-
shev BOA* receives the aspect of the rectangle is defined by
its diagonal, represented with the standard y = mx+ n line
notation. The solution it finds corresponds to the path in the
Pareto solution set that intersects the smallest rectangle of
the given aspect. As such it can be configured to ‘target’ any
region of the full solution set.

The Chebyshev transformation (e.g., Miettinen 1998) as-
sumes we are given a bi-objective search instance with cost
function c = (c1, c2), and two real numbers, m and n, and
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state algorithm t (ms) S
New York City BOA* 495 7.40

(NY) Chebyshev BOA* 205 7.18
San Francisco Bay BOA* 262 6.92

(BAY) Chebyshev BOA* 121 6.78
Colorado BOA* 1582 7.14

(COL) Chebyshev BOA* 771 7.00
Florida BOA* 10800 7.54
(FLA) Chebyshev BOA* 4006 7.42

Table 1: Average time (t; in milliseconds) and richness (S)
for each algorithm on each set of problems of a State. For
Chebyshev BOA* we set the k parameter (number of solu-
tions to be found) to 8.

defines the following transformation for the cost function of
a given path π, cm,n(π) = max{c1(π), (c2(π)− n)/m}.

Intuitively cm,n(π) projects the point c(π) horizontally
onto the line y = mx + n, and returns the maximum value
between the X coordinate of such a projection and the orig-
inal X coordinate value, c1(π). As a consequence, all points
that lie in the perimeter of a rectangle whose diagonal is the
line y = mx + n are mapped to the same cost. To break
ties on f, we use f1(π) + f2(π), which guarantees that the
soulution found is not dominated by another path.
Optimality of the Chebyshev transformation Searching
for an optimal Chebyshev path will lead us to find a solu-
tion in the Pareto solution set. This is because, lines with
equal costs are rectangles whose diagonals are a specific
line. Larger rectangles are associated with a larger Cheby-
shev cost, and a Pareto solution set is found when the small-
est rectangle ‘hits’ the Pareto solution set. Unlike the linear
transformation, this approach allows to hit solutions that are
in a concave area of the Pareto solution set.
Finding k − 2 solutions in the Pareto solution set We al-
ready have two solutions from solsP since they result as a
by-product of computing the heuristics to guide the search.
We define how we run k − 2 searches that attempt to find
k − 2 solutions between πl and πr. To this end, we config-
ure m,n so that m is perpendicular to the line that passes
through the normalized costs πr, πl, while n is such as the
line passes through the bucked centroid. In this way, we at-
tempt to find k − 2 solutions which are equally separated
among themselves and from the extremes πl and πr. Note
that each bucket can be searched in parallel.

Empirical Evaluation
The objective of our evaluation was to evaluate the richness
obtained by Chevyshev BOA* comparing against BOA*,
which computes the full Pareto solution set. We also wanted
to see if there was an advantage Chevyshev BOA* versus
BOA* in terms of runtime. Since independent searches of
Chevyshev BOA* can be parallelized, we report the max-
imum runtime among all searches. We evaluated the algo-
rithms on four maps (see Table 1) of the 9th DIMACS Im-
plementation Challenge: Shortest Path1. For average results,

1http://users.diag.uniroma1.it/challenge9/download.shtml

Algorithm 1: Chebyshev BOA*
Input: m,n ∈ R, Search instance (S,E, c, sstart, sgoal)
Returns: A path in solsp
1: for each s ∈ S do
2: gmin

1 (s)←∞
3: gmin

2 (s)←∞
4: x← new node with s(x) = sstart
5: g(x)← (0, 0)
6: parent(x)← null
7: f(x)← h(sstart)
8: Initialize priority queue Open, where the priority of element x

is given by (cm,n(f(x)), f1(x) + f2(x)) and lexicographical
order is used to compare two priorities

9: Insert x to Open
10: while Open ̸= ∅ do
11: Remove a node x from Open with lowest priority
12: if g2(x) ≥ gmin

2 (s(x)) ∧ g1(x) ≥ gmin
1 (s(x)) then

13: continue
14: if g1(x) < gmin

1 (s(x)) then gmin
1 (s(x))← g1(x)

15: if g2(x) < gmin
2 (s(x)) then gmin

2 (s(x))← g2(x)
16: if s(x) = sgoal then return x
17: for each t ∈ Succ(s(x)) do
18: y ← new node with s(y) = t
19: g(y)← g(x) + c(s(x), t)
20: parent(y)← x
21: f(y)← g(y) + h(t)
22: if g2(y) ≥ gmin

2 (t) ∧ g1(y) ≥ gmin
1 (t) then

23: continue
24: Add y to Open
25: return sols

we used 50 random instances of each map. We implement
our algorithm on top of the publicly available implementa-
tion of BOA*. All experiments were run on a 2.00GHz In-
tel(R) Xeon(R) CPU Linux computer with 12GB of RAM.

Conclusion
Chebyshev BOA*, a best-first algorithm we designed to find
solutions lying on a specific region of the Pareto solution set,
obtains small subsets of the solution set in about half of the
time required by BOA* with a comparable solution richness.
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