
Parallelizing Multi-objective A* Search (Extended Abstract)

Saman Ahmadi
School of Engineering, RMIT University, Australia

saman.ahmadi@rmit.ed.au

Abstract

The Multi-objective Shortest Path (MOSP) problem aims to
find all Pareto-optimal paths between two points in a graph
with multiple edge costs. Recent studies on multi-objective
search with A* have demonstrated superior performance in
solving difficult MOSP instances. This paper proposes a
novel parallel multi-objective search framework that can ac-
celerate recent A*-based solutions by several factors.

Introduction
Given a graph G = (S,E) with a finite set of states S and
a set of edges E ⊆ S × S, where each link represents an
array of k ∈ N attributes in the form of nonnegative cost =
(cost1, cost2 , . . . , costk), the Multi-objective Shortest Path
problem (MOSP) aims to find a set of cost-unique Pareto-
optimal paths between a given pair of start ∈ S and goal ∈
S, a set in which every individual solution offers a path that
minimizes the multi-criteria problem in all dimensions.

Salzman et al. (2023) presented an overview of recent
advances in bi-objective and multi-objective search, high-
lighting the significant progress made by heuristic search
in enhancing search efficiency. The EMOA* (Ren et al.
2022) and LTMOA* (Hernández et al. 2023) algorithms are
two state-of-the-art solutions that utilize (heuristic-guided)
multi-objective A* (MOA*) search to solve point-to-point
MOSP more efficiently. The LTMOA* algorithm, in particu-
lar, is shown to perform up to an order of magnitude faster
than EMOA* due to its more efficient dominance checking
rules. Nevertheless, LTMOA*’s performance degrades when
the number of objectives increases, leaving some difficult
MOSP instances unsolved even after a one-hour runtime.

Although MOA* provides a simple yet powerful frame-
work to optimally solve MOSP in large graphs, it is known
that the order of objectives can dramatically affect the exe-
cution time, as discussed in Salzman et al. (2023). For exam-
ple, LTMOA* may exhibit significantly better runtime if its
MOA * is performed in (cost3, cost2 , cost1) rather than in
the conventional lexicographical order for k = 3. Although
a good-performing ordering can be obtained empirically, as
in (Hernández et al. 2023), there is no guarantee that such

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Algorithm 1: Parallel Multi-objective A* Search
Input: A MOSP Problem (G , start , goal , k)
Output: A cost-unique Pareto-optimal solution set

1 h(u)← cost-optimal path from u to goal ∀u ∈ S
2 for i ∈ {1 . . . k} do in parallel
3 Solsi ←MOA* on (G , h, start , goal) guided by cost i

4 return Unique(
∑k

i=1 Solsi)

ordering performs best in all instances. Despite being under-
explored, parallelizing multi-objective search can be seen as
a potential solution to the above shortcoming. For the bi-
objective variant, the bidirectional search of Ahmadi et al.
(2021), known as BOBA*, is an efficient parallel framework
designed to build the Pareto front using both possible objec-
tive orderings. This research leverages the search scheme of
BOBA* and proposes the first parallel framework for MOA*
that can effectively improve its runtime by several factors.

Parallelizing Multi-objective Search
Algorithm 1 presents the high-level description of the pro-
posed parallel MOA*. Similar to BOBA*, parallel searches
are commenced once the heuristic function h is established.
Given a k-dimensional MOSP instance, the algorithm runs
k individual MOA* searches (e.g., LTMOA*), each guided
by one of the costs as the primary objective (line 3). A
possible set of orderings can simply be all cyclic permuta-
tions of the objectives. For example, the second search in a
three-dimensional instance (k = 3) will be conducted on the
(cost2, cost3 , cost1) order, where MOA* is guided by esti-
mated cost2 of paths as the primary objective. Since each
MOA* search is complete, the parallel loop can be exited
as soon as one of the MOA* searches is terminated. Each
search finds a subset (or potentially all) of Pareto-optimal
solutions, so the final task is to merge all solutions (line 4).

Although this technique allows for more than one objec-
tive ordering to be involved in the search, it does not neces-
sarily result in enhancing the overall computation time if the
searches are conducted independently, primarily due to the
significant overhead associated with parallelization. To im-
prove the search efficiency in the parallel setting, we propose
a novel mechanism to shrink the search space by utilizing a
unique upper bounding strategy via shared solutions.

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

253

To reduce the overhead associated with searching the
same space, leading to discovering duplicate solutions, each
individual MOA* search needs to be informed with the op-
timal solutions discovered in the other concurrent searches.
This allows unpromising paths to be removed if they lead
to a start-goal path no better than any discovered opti-
mal solution. The standard MOA* search, however, checks
paths against the solutions obtained in the current search
only. Let Sol contain all cost-unique solutions obtained dur-
ing the k (parallelized) searches. Each individual MOA*
search can now use Sol to prune some unpromising paths,
reducing the search space by forming a larger set of opti-
mal solution paths as global upper bounds. Nonetheless, this
method is not efficient in practice, essential because such
linear-time upper-bound pruning becomes costly in the ab-
sence of a unified objective ordering. To address this short-
coming, this research designs a novel mechanism to inform
each search about the progress made by the other concur-
rent searches. Let (g1, g2, . . . , gk) be the cost of solution x
obtained in the first search guided by cost1. We know that
MOA* prunes paths showing estimated (cost2, . . . , costk)
no smaller than (g2, . . . , gk) due to the first dimension al-
ready being non-decreasing. Also assume that the second
search, guided by cost2, has just discovered the solution
y with cost = (g′2, . . . , g

′
k, g

′
1). With this new solution, the

dimension in the upper-bound pruning of the first search
can be further reduced if we observe g′2 > g2, that is, we
just need to check the estimated (cost3, . . . , costk) of paths
in the first search against (g3, . . . , gk) with the second di-
mension also removed. This pruning is correct, as it basi-
cally means extension of paths showing estimated costs no
smaller than (g3, . . . , gk) – in any dimension – would def-
initely lead to a start-goal path no better than either x or
one of the optimal solutions obtained before y in the second
search. Note that when the second search finds y, it guaran-
tees that all solutions with cost2 smaller than g2 are already
captured. The same strategy can be applied to other concur-
rent searches to potentially reduce the dimension in upper-
bound pruning to one, enabling fast O(1) dominance check
against some (shared) subsets of solutions.

Experimental Results
We implemented our parallel framework based on LTMOA*
with lazy dominance tests in C++. For the benchmark, fol-
lowing the literature, we used the New York map from
the 9th DIMACS Implementation Challenge: Shortest Paths
(http://www.diag.uniroma1.it/ challenge9/download.shtml)
and generated 100 random instances with four edge cost
components, namely: 1) distance 2) time 3) average outde-
gree of link endpoints 4) one (unit cost). We ran our exper-
iment on four cores of an Intel Xeon Gold 5220R processor
running at 2.2 GHz and with 64 GB of RAM , under the
CentOS Linux 7 environment and with a two-hour timeout.

Table 1 compares the performance of our parallelized LT-
MOA* against its standard version, which uses the lexico-
graphical ordering of objectives, in both runtime and mem-
ory aspects. The parallel framework solves more instances
and exhibits better runtime statistics. Our detailed results
over the mutually solved instances show that the parallel

Runtime(s) Mem.

Method |S| Min. MeanA MeanG Max. (GB)

Standard 98 0.38 1347.23 284.10 7200.0 1.05
Parallelized 100 0.27 427.17 93.06 4820.3 2.04

Table 1: Performance of LTMOA* over 100 instances. |S| is
the number of solved cases, MeanA and MeanG are Arith-
metic and Geometric mean, respectively, and Mem. shows
memory usage (in GB) over mutually solved instances. The
runtime of unsolved cases is considered to be two hours.

0 20 40 60 80 100
0.1

1

10

102

103

104

Number of solved instances

R
u
n
ti
m
e
in

se
co

n
d
s
(l
o
g
a
ri
th

m
ic
)

(f1, f2, f3, f4) order

(f2, f3, f4, f1) order

(f4, f1, f2, f3) order

(f3, f4, f1, f2) order

All parallelized (ours)

Figure 1: Cactus plot of LTMOA*’s performance in four dif-
ferent orderings of costs versus our parallelized variant.

framework performs 3.3 times faster than the standard al-
gorithm, whilst consuming almost two times more memory
on average. We also compared in Figure 1 the runtime per-
formance of our parallel framework against LTMOA* guided
with four cyclic permutations of objectives. We observe that
our parallel approach outperforms all four variants of LT-
MOA* by solving more instances in a limited time.

Acknowledgments
Research supported by Australian Government through the
International Clean Innovation Researcher Networks grant.

References
Ahmadi, S.; Tack, G.; Harabor, D.; and Kilby, P. 2021. Bi-
Objective Search with Bi-Directional A*. In ESA, volume
204 of LIPIcs, 3:1–3:15.
Hernández, C.; Yeoh, W.; Baier, J. A.; Felner, A.; Salzman,
O.; Zhang, H.; Chan, S.-H.; and Koenig, S. 2023. Multi-
objective search via lazy and efficient dominance checks. In
IJCAI, 7223–7230.
Ren, Z.; Zhan, R.; Rathinam, S.; Likhachev, M.; and Choset,
H. 2022. Enhanced Multi-Objective A* Using Balanced Bi-
nary Search Trees. In SoCS, 162–170.
Salzman, O.; Felner, A.; Hernández, C.; Zhang, H.; Chan,
S.; and Koenig, S. 2023. Heuristic-Search Approaches for
the Multi-Objective Shortest-Path Problem: Progress and
Research Opportunities. In IJCAI, 6759–6768.

254

