Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

Parallelizing Multi-objective A* Search (Extended Abstract)

Saman Ahmadi

School of Engineering, RMIT University, Australia
saman.ahmadi @rmit.ed.au

Abstract

The Multi-objective Shortest Path (MOSP) problem aims to
find all Pareto-optimal paths between two points in a graph
with multiple edge costs. Recent studies on multi-objective
search with A* have demonstrated superior performance in
solving difficult MOSP instances. This paper proposes a
novel parallel multi-objective search framework that can ac-
celerate recent A*-based solutions by several factors.

Introduction

Given a graph G = (S, E)) with a finite set of states .S and
a set of edges £ C S x .S, where each link represents an
array of £ € N attributes in the form of nonnegative cost =
(costy, costg, . . ., costy), the Multi-objective Shortest Path
problem (MOSP) aims to find a set of cost-unique Pareto-
optimal paths between a given pair of start € S and goal €
S, a set in which every individual solution offers a path that
minimizes the multi-criteria problem in all dimensions.
Salzman et al. (2023) presented an overview of recent
advances in bi-objective and multi-objective search, high-
lighting the significant progress made by heuristic search
in enhancing search efficiency. The EMOA* (Ren et al.
2022) and LTMOA* (Hernandez et al. 2023) algorithms are
two state-of-the-art solutions that utilize (heuristic-guided)
multi-objective A* (MOA*) search to solve point-to-point
MOSP more efficiently. The LTMOA™ algorithm, in particu-
lar, is shown to perform up to an order of magnitude faster
than EMOA* due to its more efficient dominance checking
rules. Nevertheless, LTMOA*’s performance degrades when
the number of objectives increases, leaving some difficult
MOSP instances unsolved even after a one-hour runtime.
Although MOA¥* provides a simple yet powerful frame-
work to optimally solve MOSP in large graphs, it is known
that the order of objectives can dramatically affect the exe-
cution time, as discussed in Salzman et al. (2023). For exam-
ple, LTMOA* may exhibit significantly better runtime if its
MOA * is performed in (costs, costs, cost;) rather than in
the conventional lexicographical order for k£ = 3. Although
a good-performing ordering can be obtained empirically, as
in (Herndndez et al. 2023), there is no guarantee that such

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

253

Algorithm 1: Parallel Multi-objective A* Search

Input: A MOSP Problem (G, start, goal, k)
Output: A cost-unique Pareto-optimal solution set
1 h(u) < cost-optimal path from u to goal Yu € S
2 fori € {1...k} doin parallel
3 L Sols; < MOA* on (G, h, start, goal) guided by cost;

4 return Unique(Zf:1 Sols;)

ordering performs best in all instances. Despite being under-
explored, parallelizing multi-objective search can be seen as
a potential solution to the above shortcoming. For the bi-
objective variant, the bidirectional search of Ahmadi et al.
(2021), known as BOBA*, is an efficient parallel framework
designed to build the Pareto front using both possible objec-
tive orderings. This research leverages the search scheme of
BOBA* and proposes the first parallel framework for MOA*
that can effectively improve its runtime by several factors.

Parallelizing Multi-objective Search

Algorithm 1 presents the high-level description of the pro-
posed parallel MOA*. Similar to BOBA*, parallel searches
are commenced once the heuristic function h is established.
Given a k-dimensional MOSP instance, the algorithm runs
k individual MOA* searches (e.g., LTMOA®), each guided
by one of the costs as the primary objective (line 3). A
possible set of orderings can simply be all cyclic permuta-
tions of the objectives. For example, the second search in a
three-dimensional instance (k = 3) will be conducted on the
(costa, costg, cost;) order, where MOA* is guided by esti-
mated costs of paths as the primary objective. Since each
MOA¥* search is complete, the parallel loop can be exited
as soon as one of the MOA¥* searches is terminated. Each
search finds a subset (or potentially all) of Pareto-optimal
solutions, so the final task is to merge all solutions (line 4).
Although this technique allows for more than one objec-
tive ordering to be involved in the search, it does not neces-
sarily result in enhancing the overall computation time if the
searches are conducted independently, primarily due to the
significant overhead associated with parallelization. To im-
prove the search efficiency in the parallel setting, we propose
a novel mechanism to shrink the search space by utilizing a
unique upper bounding strategy via shared solutions.

To reduce the overhead associated with searching the
same space, leading to discovering duplicate solutions, each
individual MOA* search needs to be informed with the op-
timal solutions discovered in the other concurrent searches.
This allows unpromising paths to be removed if they lead
to a start-goal path no better than any discovered opti-
mal solution. The standard MOA* search, however, checks
paths against the solutions obtained in the current search
only. Let Sol contain all cost-unique solutions obtained dur-
ing the k (parallelized) searches. Each individual MOA*
search can now use Sol to prune some unpromising paths,
reducing the search space by forming a larger set of opti-
mal solution paths as global upper bounds. Nonetheless, this
method is not efficient in practice, essential because such
linear-time upper-bound pruning becomes costly in the ab-
sence of a unified objective ordering. To address this short-
coming, this research designs a novel mechanism to inform
each search about the progress made by the other concur-
rent searches. Let (g1, g2, . . ., gx) be the cost of solution x
obtained in the first search guided by cost;. We know that
MOA* prunes paths showing estimated (costas, ..., costy)
no smaller than (gs, ..., gx) due to the first dimension al-
ready being non-decreasing. Also assume that the second
search, guided by costs, has just discovered the solution
y with cost = (g5, ..., g, g1). With this new solution, the
dimension in the upper-bound pruning of the first search
can be further reduced if we observe g > go, that is, we
just need to check the estimated (costs, . . ., costy) of paths
in the first search against (gs, ..., gr) with the second di-
mension also removed. This pruning is correct, as it basi-
cally means extension of paths showing estimated costs no
smaller than (g3, ..., gx) — in any dimension — would def-
initely lead to a start-goal path no better than either x or
one of the optimal solutions obtained before ¥ in the second
search. Note that when the second search finds y, it guaran-
tees that all solutions with cost, smaller than g, are already
captured. The same strategy can be applied to other concur-
rent searches to potentially reduce the dimension in upper-
bound pruning to one, enabling fast O(1) dominance check
against some (shared) subsets of solutions.

Experimental Results

We implemented our parallel framework based on LTMOA*
with lazy dominance tests in C++. For the benchmark, fol-
lowing the literature, we used the New York map from
the 9th DIMACS Implementation Challenge: Shortest Paths
(http://www.diag.uniromal.it/ challenge9/download.shtml)
and generated 100 random instances with four edge cost
components, namely: 1) distance 2) time 3) average outde-
gree of link endpoints 4) one (unit cost). We ran our exper-
iment on four cores of an Intel Xeon Gold 5220R processor
running at 2.2 GHz and with 64 GB of RAM , under the
CentOS Linux 7 environment and with a two-hour timeout.

Table 1 compares the performance of our parallelized LT-
MOA* against its standard version, which uses the lexico-
graphical ordering of objectives, in both runtime and mem-
ory aspects. The parallel framework solves more instances
and exhibits better runtime statistics. Our detailed results
over the mutually solved instances show that the parallel

254

| | | Runtime(s) | Mem. |

| Method | |S]| Min. Means Meang Max. | (GB) |
Standard 98 | 0.38 1347.23 284.10 7200.0 | 1.05
Parallelized | 100 | 0.27 427.17 93.06 48203 | 2.04

Table 1: Performance of LTMOA* over 100 instances. |S] is
the number of solved cases, Mean, and Meang are Arith-
metic and Geometric mean, respectively, and Mem. shows
memory usage (in GB) over mutually solved instances. The
runtime of unsolved cases is considered to be two hours.

104

103

102

0 xy [(f1, f2, f3, fa) order

""""" (f2. f3, fa, f1) order
(fa, f1, f2, f3) order
=== (f3, fa, f1, f2) order
i All parallelized (ours)

0.1 | I I I
0 20 40 60 80 100

Number of solved instances

Runtime in seconds (logarithmic)
AL L
ol ol v il i

Figure 1: Cactus plot of LTMOA*’s performance in four dif-
ferent orderings of costs versus our parallelized variant.

framework performs 3.3 times faster than the standard al-
gorithm, whilst consuming almost two times more memory
on average. We also compared in Figure 1 the runtime per-
formance of our parallel framework against LTMOA* guided
with four cyclic permutations of objectives. We observe that
our parallel approach outperforms all four variants of LT-
MOA* by solving more instances in a limited time.

Acknowledgments

Research supported by Australian Government through the
International Clean Innovation Researcher Networks grant.

References

Ahmadi, S.; Tack, G.; Harabor, D.; and Kilby, P. 2021. Bi-
Objective Search with Bi-Directional A*. In ESA, volume
204 of LIPIcs, 3:1-3:15.

Hernandez, C.; Yeoh, W.; Baier, J. A.; Felner, A.; Salzman,
O.; Zhang, H.; Chan, S.-H.; and Koenig, S. 2023. Multi-
objective search via lazy and efficient dominance checks. In
1JCAI, 7223-7230.

Ren, Z.; Zhan, R.; Rathinam, S.; Likhachev, M.; and Choset,
H. 2022. Enhanced Multi-Objective A* Using Balanced Bi-
nary Search Trees. In SoCS, 162-170.

Salzman, O.; Felner, A.; Hernandez, C.; Zhang, H.; Chan,
S.; and Koenig, S. 2023. Heuristic-Search Approaches for
the Multi-Objective Shortest-Path Problem: Progress and
Research Opportunities. In IJCAI, 6759-6768.

