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Abstract

The Multi-objective Shortest Path (MOSP) problem aims to
find all Pareto-optimal paths between two points in a graph
with multiple edge costs. Recent studies on multi-objective
search with A* have demonstrated superior performance in
solving difficult MOSP instances. This paper proposes a
novel parallel multi-objective search framework that can ac-
celerate recent A*-based solutions by several factors.

Introduction
Given a graph G = (S,E) with a finite set of states S and
a set of edges E ⊆ S × S, where each link represents an
array of k ∈ N attributes in the form of nonnegative cost =
(cost1, cost2 , . . . , costk ), the Multi-objective Shortest Path
problem (MOSP) aims to find a set of cost-unique Pareto-
optimal paths between a given pair of start ∈ S and goal ∈
S, a set in which every individual solution offers a path that
minimizes the multi-criteria problem in all dimensions.

Salzman et al. (2023) presented an overview of recent
advances in bi-objective and multi-objective search, high-
lighting the significant progress made by heuristic search
in enhancing search efficiency. The EMOA* (Ren et al.
2022) and LTMOA* (Hernández et al. 2023) algorithms are
two state-of-the-art solutions that utilize (heuristic-guided)
multi-objective A* (MOA*) search to solve point-to-point
MOSP more efficiently. The LTMOA* algorithm, in particu-
lar, is shown to perform up to an order of magnitude faster
than EMOA* due to its more efficient dominance checking
rules. Nevertheless, LTMOA*’s performance degrades when
the number of objectives increases, leaving some difficult
MOSP instances unsolved even after a one-hour runtime.

Although MOA* provides a simple yet powerful frame-
work to optimally solve MOSP in large graphs, it is known
that the order of objectives can dramatically affect the exe-
cution time, as discussed in Salzman et al. (2023). For exam-
ple, LTMOA* may exhibit significantly better runtime if its
MOA * is performed in (cost3, cost2 , cost1 ) rather than in
the conventional lexicographical order for k = 3. Although
a good-performing ordering can be obtained empirically, as
in (Hernández et al. 2023), there is no guarantee that such
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Algorithm 1: Parallel Multi-objective A* Search
Input: A MOSP Problem (G , start , goal , k)
Output: A cost-unique Pareto-optimal solution set

1 h(u)← cost-optimal path from u to goal ∀u ∈ S
2 for i ∈ {1 . . . k} do in parallel
3 Solsi ←MOA* on (G , h, start , goal ) guided by cost i

4 return Unique(
∑k

i=1 Solsi)

ordering performs best in all instances. Despite being under-
explored, parallelizing multi-objective search can be seen as
a potential solution to the above shortcoming. For the bi-
objective variant, the bidirectional search of Ahmadi et al.
(2021), known as BOBA*, is an efficient parallel framework
designed to build the Pareto front using both possible objec-
tive orderings. This research leverages the search scheme of
BOBA* and proposes the first parallel framework for MOA*
that can effectively improve its runtime by several factors.

Parallelizing Multi-objective Search
Algorithm 1 presents the high-level description of the pro-
posed parallel MOA*. Similar to BOBA*, parallel searches
are commenced once the heuristic function h is established.
Given a k-dimensional MOSP instance, the algorithm runs
k individual MOA* searches (e.g., LTMOA*), each guided
by one of the costs as the primary objective (line 3). A
possible set of orderings can simply be all cyclic permuta-
tions of the objectives. For example, the second search in a
three-dimensional instance (k = 3) will be conducted on the
(cost2, cost3 , cost1 ) order, where MOA* is guided by esti-
mated cost2 of paths as the primary objective. Since each
MOA* search is complete, the parallel loop can be exited
as soon as one of the MOA* searches is terminated. Each
search finds a subset (or potentially all) of Pareto-optimal
solutions, so the final task is to merge all solutions (line 4).

Although this technique allows for more than one objec-
tive ordering to be involved in the search, it does not neces-
sarily result in enhancing the overall computation time if the
searches are conducted independently, primarily due to the
significant overhead associated with parallelization. To im-
prove the search efficiency in the parallel setting, we propose
a novel mechanism to shrink the search space by utilizing a
unique upper bounding strategy via shared solutions.
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To reduce the overhead associated with searching the
same space, leading to discovering duplicate solutions, each
individual MOA* search needs to be informed with the op-
timal solutions discovered in the other concurrent searches.
This allows unpromising paths to be removed if they lead
to a start-goal path no better than any discovered opti-
mal solution. The standard MOA* search, however, checks
paths against the solutions obtained in the current search
only. Let Sol contain all cost-unique solutions obtained dur-
ing the k (parallelized) searches. Each individual MOA*
search can now use Sol to prune some unpromising paths,
reducing the search space by forming a larger set of opti-
mal solution paths as global upper bounds. Nonetheless, this
method is not efficient in practice, essential because such
linear-time upper-bound pruning becomes costly in the ab-
sence of a unified objective ordering. To address this short-
coming, this research designs a novel mechanism to inform
each search about the progress made by the other concur-
rent searches. Let (g1, g2, . . . , gk) be the cost of solution x
obtained in the first search guided by cost1. We know that
MOA* prunes paths showing estimated (cost2, . . . , costk)
no smaller than (g2, . . . , gk) due to the first dimension al-
ready being non-decreasing. Also assume that the second
search, guided by cost2, has just discovered the solution
y with cost = (g′2, . . . , g

′
k, g

′
1). With this new solution, the

dimension in the upper-bound pruning of the first search
can be further reduced if we observe g′2 > g2, that is, we
just need to check the estimated (cost3, . . . , costk) of paths
in the first search against (g3, . . . , gk) with the second di-
mension also removed. This pruning is correct, as it basi-
cally means extension of paths showing estimated costs no
smaller than (g3, . . . , gk) – in any dimension – would def-
initely lead to a start-goal path no better than either x or
one of the optimal solutions obtained before y in the second
search. Note that when the second search finds y, it guaran-
tees that all solutions with cost2 smaller than g2 are already
captured. The same strategy can be applied to other concur-
rent searches to potentially reduce the dimension in upper-
bound pruning to one, enabling fast O(1) dominance check
against some (shared) subsets of solutions.

Experimental Results
We implemented our parallel framework based on LTMOA*
with lazy dominance tests in C++. For the benchmark, fol-
lowing the literature, we used the New York map from
the 9th DIMACS Implementation Challenge: Shortest Paths
(http://www.diag.uniroma1.it/ challenge9/download.shtml)
and generated 100 random instances with four edge cost
components, namely: 1) distance 2) time 3) average outde-
gree of link endpoints 4) one (unit cost). We ran our exper-
iment on four cores of an Intel Xeon Gold 5220R processor
running at 2.2 GHz and with 64 GB of RAM , under the
CentOS Linux 7 environment and with a two-hour timeout.

Table 1 compares the performance of our parallelized LT-
MOA* against its standard version, which uses the lexico-
graphical ordering of objectives, in both runtime and mem-
ory aspects. The parallel framework solves more instances
and exhibits better runtime statistics. Our detailed results
over the mutually solved instances show that the parallel

Runtime(s) Mem.

Method |S| Min. MeanA MeanG Max. (GB)

Standard 98 0.38 1347.23 284.10 7200.0 1.05
Parallelized 100 0.27 427.17 93.06 4820.3 2.04

Table 1: Performance of LTMOA* over 100 instances. |S| is
the number of solved cases, MeanA and MeanG are Arith-
metic and Geometric mean, respectively, and Mem. shows
memory usage (in GB) over mutually solved instances. The
runtime of unsolved cases is considered to be two hours.
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Figure 1: Cactus plot of LTMOA*’s performance in four dif-
ferent orderings of costs versus our parallelized variant.

framework performs 3.3 times faster than the standard al-
gorithm, whilst consuming almost two times more memory
on average. We also compared in Figure 1 the runtime per-
formance of our parallel framework against LTMOA* guided
with four cyclic permutations of objectives. We observe that
our parallel approach outperforms all four variants of LT-
MOA* by solving more instances in a limited time.
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