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Abstract

Research on multi-agent pathfinding (MAPF) has recently
shifted towards problem variants that are closer to actual ap-
plications. Such variants often include the assignment of mul-
tiple goals to agents. To solve them, researchers have ex-
tended the Conflict Based Search (CBS) algorithm to mul-
tiple goals. This extension might look straightforward at first
sight but it is tricky and this has already led to the develop-
ment of algorithms that despite claiming to be optimal, return
suboptimal solutions for some MAPF instances. In this paper,
we provide a detailed analysis of the issue to raise awareness
among the search community so that this mistake will not be
perpetuated. Furthermore, a first evaluation against an opti-
mal implementation is conducted which shows why this issue
might have been difficult to spot. In only one of the randomly
generated instances, the suboptimal behavior emerged.

Introduction
Multi-agent path finding (MAPF) is a subfield of AI plan-
ning, which has been heavily researched during the last few
years due to its multiple practical applications. Such appli-
cations are, e.g., autonomous vehicles (Okoso et al. 2021),
warehouse management (Hönig et al. 2019) and autonomous
aircraft towing (Morris et al. 2016).

Solving MAPF (Stern et al. 2019) optimally is an NP-
complete problem (Yu and LaValle 2013), where a set of m
agents are dispersed on the vertices of a graph G = (V,E)
and each of them should reach its respective goal position
while avoiding collisions with other agents. There are nu-
merous approaches in the literature that solve MAPF either
optimally (Felner et al. 2017) or suboptimally (Barer et al.
2014) with respect to an objective function. One of the most
common objective functions is the sum-of-costs, which is
the accumulated number of timesteps that the agents need to
reach their goal positions. Alternatively, there is the objec-
tive function of makespan, which is the minimum timestep
that all agents have reached their respective goals.

Lately, the research focus has shifted to variants of the
original MAPF problem which could be used in real-life

*This is a proverb indicating that being in a hurry to act (like
the agents who rush to their subgoals in multi-goal MAPF) without
enough deliberation, can have unexpected consequences.
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applications, where the assumptions of the original MAPF
problem are not sufficient. Some of these variants focused
on cases where the agents have to visit multiple goals, which
can be either already assigned to specific agents but with-
out being ordered (Surynek 2021) or where the goals can be
visited by any agent (or a subgroup of them) (Ren, Rathi-
nam, and Choset 2022). To tackle such problems optimally,
Conflict Based Search (CBS) (Sharon et al. 2015) which is
a state-of-the-art algorithm, was extended to incorporate the
search of different possible goal allocations and sequences
to agents.

CBS was initially developed to solve MAPF instances
where each agent is assigned a single goal. Extending this
algorithm to deal with MAPF variants where the agents are
assigned multiple ordered or unordered goals has some sub-
tleties that can get easily overlooked and in fact, have been
already overlooked twice in the literature. As a result, the
algorithms provided in these papers return suboptimal solu-
tions for some MAPF instances, despite claiming optimality.

In the rest of this paper, we give a detailed analysis of the
caveats of such CBS extensions by providing some minimal
counter-examples for optimality along with some interesting
insights about the reason that those extensions fail to find an
optimal solution. Therefore, this paper has a broad impact
on numerous approaches that extend CBS to tackle different
MAPF variants with multiple goals. Subsequently, we prove
that the cost difference between the suboptimal and optimal
solutions can get arbitrarily large. Finally, we provide a first
evaluation that shows that those CBS extensions will return
an optimal solution, despite being suboptimal, for many ran-
domly generated MAPF instances. This might have been one
of the reasons that this subtle mistake is difficult to spot.

Related Work
The lifelong variant (Ma et al. 2017) of the multi-agent
pathfinding problem, which is known as the multi-agent
pickup and delivery problem (MAPD), was one of the first
variants of MAPF where agents have to visit more than one
goal. This problem deals with real-world scenarios in ware-
houses where there are several pickup and delivery tasks that
the agents should carry out in a reasonable time while avoid-
ing collisions. Two new algorithms, namely, TP and TPTS
were developed, which can efficiently solve any instance in
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a specific subclass of MAPD instances.
Subsequently, a new algorithm called multi-label A*

(MLA*) (Grenouilleau, van Hoeve, and Hooker 2019) was
introduced to improve the TP algorithm. MLA* augments
the state space of the classical A* algorithm and was cou-
pled with TP to compute solutions for lifelong problems in
the pickup and delivery domain. The benchmarks showed
that the use of MLA* improved substantially the solutions
in terms of makespan and service times in comparison to the
original TP algorithm.

Another variant of MAPF, called multi-goal multi-agent
pathfinding (MG-MAPF) (Surynek 2021), assumes that
each agent is assigned a predefined unordered set of goals,
which means that the agents should not only plan their
paths optimally but also search for the optimal goal order-
ing. Two algorithms were developed, namely, HCBS and
SMT-HCBS. HCBS is an extension of the CBS algorithm
and SMT-HCBS is a compilation-based approach.

MSMP (Ren, Rathinam, and Choset 2021) and MCPF
(Ren, Rathinam, and Choset 2022) are two generalizations
of MAPF where the goals are dispersed on the map but are
not allocated to any agent in the beginning. The goal is to
find the optimal allocation of goals to agents, where each
agent can be assigned multiple goals and then conflict-free
joint paths must be computed. Both variants solve the prob-
lem by using techniques from the traveling salesman prob-
lem (Laporte 1992). MSMP combined it with subdimen-
sional expansion, while MCPF used an extension of conflict-
based search.

The aforementioned CBS extensions, namely HCBS and
MCPF, are two algorithms that solve a different MAPF vari-
ant. However, both of them suffer from the same issue that
renders them suboptimal.

Ordered Multi-Goal MAPF
To simplify the analysis, we will first consider a simple vari-
ant of the multi-goal MAPF problem where the multiple
goals are already ordered. Later on, we will show that the
identified problems also arise in more general variants of the
problem.

Definition 1 (OMG-MAPF) Ordered multi-goal multi-
agent pathfinding is a 5-tuple (G,A, s0,g,≺) where
G = (V,E) is an undirected graph, A = (a1, a2, . . . , an)
is a set of n agents, s0 : A → V maps agents to their start-
ing positions, g : A → 2V represents the set of goals for
each agent and≺ is a total order on g(ai) that represents the
precedence constraints between the subgoals of the agents.

In OMG-MAPF, each agent should visit the goals as-
signed to it in their specified order. To achieve that, the
agents perform some actions. These actions are either wait
actions, where the agent waits at its vertex for one timestep,
or move actions, where the agent moves to any of its adja-
cent vertices in the graph. Formally, the actions are defined
as a function α : V → V , such that α(u) = u′ means that an
agent that is located in vertex u and performs action α, will
end up in vertex u′. Furthermore, it is assumed that time is
discretized and all actions have unit costs and are completed
in one timestep.

Agents’ actions can lead to agents’ collisions which are
called conflicts. In OMG-MAPF, we account for two types
of conflicts, the vertex conflicts and the edge conflicts. A
vertex conflict occurs when two agents are located at the
same vertex at the same time and an edge conflict occurs
when two agents cross the same edge in opposing directions
at the same time.

The following definition formalizes the notion of a single-
agent plan (Stern et al. 2019) in OMG-MAPF domains.
Definition 2 (Single-agent plan) Given an agent ai, its
starting position si and a sequence of actions π =
(α1, α2, . . . , αk), we define as πi[t] the location of agent ai
after executing the first t actions of π, beginning from its
starting position s0. Formally:

π[t] = αt(αt−1(. . . α1(s0)))

A single-agent plan for agent ai in OMG-MAPF is a se-
quence of actions π which lead ai to visit all the goals as-
signed to it in their specified order, beginning from its start-
ing position. Formally:

∀(g1, g2, . . . , gk) ∈ g(ai), where g1 ≺ g2 ≺ . . . ≺ gk
∃t1, t2, . . . , tk so that πi[t1] = g1, πi[t2] = g2, . . . ,

πi[tk] = gk and t1 < t2 < . . . < tk

Definition 3 (OMG-MAPF solution) A solution to OMG-
MAPF consists of a set of n single-agent plans, one for each
agent.

Definition 4 (OMG-MAPF valid solution) A valid solu-
tion to OMG-MAPF is a solution where no conflicts occur
while each agent executes its single-agent plan.

Definition 5 (OMG-MAPF optimal solution) An optimal
solution to OMG-MAPF is a valid solution that minimizes
the cost of an objective function.

In an OMG-MAPF instance, there are multiple valid solu-
tions. In the rest of this paper, we will demonstrate an algo-
rithm that finds an optimal solution. It should also be stated
that the waiting actions at the final destination of an agent
still contribute to the sum-of-costs objective function unless
the agent does not need to move again from its destination
location. Finding an optimal solution to OMG-MAPF is an
NP-hard problem since MAPF has been proved to be NP-
hard and is a special case of OMG-MAPF where there is
only one goal per agent.

Ordered Multi-Goal CBS High Level
Often, the go-to approach when solving a new variant of a
problem is to alter or extend the scope of the state-of-the-
art algorithms developed for the original problem. Thus, to
solve OMG-MAPF, we decided to extend CBS to OMG-
CBS, which is able to deal with multiple goals per agent.

OMG-CBS is very similar to CBS. It is a two level search
where the high level is identical to that of CBS and creates a
binary constraint tree (CT). Each node of the CT contains a
set of constraints and a solution along with its cost (sum of
costs). On the high level, each time a new conflict between
agents ai and aj emerges (ai, aj , u, t), the parent node is
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split into two child nodes which inherit the constraints of
their parent. Furthermore, to one of them, the constraint
(ai, u, t) is added to prevent agent ai from visiting vertex
u at timestep t, and to the other one the constraint (aj , u, t)
is added to do the same for agent aj . Consequently, the low
level is called for both nodes, to find a new path for the agent
that the new constraint was imposed on.

Potential Low-Level Algorithms of Ordered
Multi-Goal CBS

Standard CBS employs A* as the low-level algorithm. How-
ever, in the presence of multiple goals, this does not work
any longer. In the rest of this paper, we will describe two
different approaches to implement a low-level algorithm
of OMG-CBS. First, we will present the chaining approach
and present a counter-example exposing its limitations when
coupled with OMG-CBS. Subsequently, we will present the
holistic approach that avoids these issues.

The chaining approach is a straightforward extension of
A* to a sequence of goals. A shortest path through a se-
quence of (sub-)goals is constructed by concatenating short-
est paths between the sub-goals. However, due to the multi-
agent nature of the problem, this approach will not neces-
sarily find optimal solutions. As will be demonstrated in
the next section, there are cases where the chaining low-
level search renders OMG-CBS (and other possible multi-
goal CBS extensions) suboptimal. This chaining approach
is apparently used in some extensions of CBS to deal with
multiple goals (Surynek 2021; Ren, Rathinam, and Choset
2022), which are more general than OMG-CBS, though. As
we will discuss later, both approaches are susceptible to the
problems we have identified.

To address this problem, we will present afterwards the
holistic approach, which employs MLA* in order to guaran-
tee overall optimality.

Interestingly, others have also made similar observations
before us. Li et al. (2021) stated in a footnote in a slightly
different context that what we have called the chaining ap-
proach does not guarantee optimality. Further, they also
pointed out that MLA* can be a solution. However, they nei-
ther provided a detailed analysis nor provided a proof that
MLA* is sufficient.

Chaining Low-Level Approach
The chaining low-level search consists of consecutive aug-
mented space-time A* searches between the ordered goals
of the agent while taking into account its constraints. Let’s
assume for example that the agent’s ai starting position is s0,
its ordered goals are g(ai) = (A,B) and its constraint set is
empty ci = {}. Then, the chaining low-level search will
call initially A*(s0, A, t = 0, ci) to find the optimal path of
agent ai to the first goal, starting from s0(ai), then assuming
that the agent arrives at A at timestep ta, it will call subse-
quently A*(A,B, ta, ci) to compute the optimal path to the
second subgoal. Finally, the paths will get concatenated and
the resulting path will get returned. The pseudocode for the
chaining low-level search is shown in Algorithm 1.

Algorithm 1: chaining low-level search

1: Given (G = (V,E), ai, s0, g, ci)
2: s = s0
3: t = 0
4: path = {}
5: for each goal in ordered g(ai) do
6: subpath = A*(s, goal, ci, t)
7: if no possible subpath then
8: return False
9: else

10: s = goal
11: t = arrival time at goal
12: path = concatenate(path, subpath)
13: end if
14: end for
15: return path

1

2

3
G1a G1b

G3G2

Figure 1: Graph problem instance

Counter-Example
We will prove now, by giving a counter-example, that OMG-
CBS with chaining low-level search does not always return
the optimal solution with respect to either the sum-of-costs
or makespan objective function. In this section, every time
we mention OMG-CBS, it should be assumed that its low-
level search is the chaining low level search.

Let’s assume that we have the OMG-MAPF problem in-
stance depicted in Figure 1. In this instance, agent 1 is as-
signed two goals, namely, G1a and G1b where G1a ≺ G1b.
Whereas, agent 2 and agent 3 are assigned only one goal
each which is G2 and G3 respectively.

Intuition Behind the Counter-Example
First, let us give an intuitive reason behind the failure
of OMG-CBS to return the optimal solution. The plan
of agent 1 in the optimal solution for both sum-of-costs
and makespan objective functions is to initially wait for
4 timesteps at its starting position while the other agents
move to their goals by following their optimal paths. After
timestep 4, agent 1 follows its optimal path to visit both of
its goals. This way, there are no conflicts between the agents
and the sum of costs and makespan of this optimal solution
are equal to 20 and 10 respectively.

The reason that OMG-CBS fails to find the aforemen-
tioned optimal solution lies in its greedy nature. The chain-
ing low-level approach will never search for possible delays
in the first subroute of agent 1 if no conflicts occur there.
Hence, in cases of congestion like the one in our counter-
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G1a

G1b
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Figure 2: Edge conflict at timestep 3

1

2

3
G1a G1b

G3G2

Figure 3: Agents’ paths returned by OMG-CBS with chain-
ing low level

example, the chaining low level will always lead agent 1 as
fast as possible to G1a, having as a result the return of a
suboptimal solution.

Counter-Example Analysis for Sum of Costs
In the beginning, OMG-CBS will create an initial high-level
node with the optimal paths of these agents found by the
chaining low-level search. The sum of costs of this node will
be 16 and the paths of the agents can be seen in Figure 1.

Subsequently, the high-level search will find the edge con-
flict between agent 1 and agent 3 at timestep 3 which is
shown in Figure 2. Since all the possible paths of both agent
1 and agent 3 which lead to their respective goals, include
the vertices G1a and vm, the only way to resolve this con-
flict will be for agent 1 to retreat to its initial position, to let
agent 3 pass through.

The retreat of agent 1 will lead to a vertex conflict with
agent 2 at vm at timestep 3. To resolve this conflict, either of
the two agents will have to wait for 1 timestep at its position
to let the other one pass.

After 2 more trivial conflict resolutions, OMG-CBS will
find its best solution. This occurs when agent 1 waits at
timestep 3 at G1a to let agent 2 pass and the sum of costs
of this solution is 23 which includes the cost of 20 move
actions, 2 wait actions of agent 1 at timesteps 3 and 6 and
1 wait action of agent 3 at timestep 3. The agents’ paths for
the best solution (without showing their wait actions) are de-
picted in Figure 3. The cost of this solution is higher than the
cost of the optimal solution (SoC = 20) presented in the pre-
vious subsection. Therefore, the returned solution of OMG-
CBS is suboptimal with respect to the sum-of-costs objective
function.

Counter-Example Analysis for Makespan
The main conflicts described in the counter-example above
will occur again in case OMG-CBS searches for the optimal

G1 G2G

G

G

Figure 4: Grid counter-example for SoC

G1 G2G

G

Figure 5: Grid counter-example for makespan

solution with respect to the makespan. The previous best
solution for the sum of costs is also the best solution with
respect to the makespan. The makespan of the solution is
equal to the cost of the path of agent 1 which is 12. This is
higher than the optimal solution’s makespan of 10. Hence,
the returned solution of OMG-CBS is also suboptimal with
respect to the objective function of makespan.

Counter-Examples in Grid Environments
The graph counter-examples provided in the two previous
sections cannot be directly translated to grid environments.
Therefore, we also provide a grid counter-example for the
sum-of-costs objective function in Figure 4 and another one
for the objective function of makespan in Figure 5. In both
counter-examples, the brown agent is assigned the goals G1

and G2 where G1 ≺ G2 and the other agents are assigned
only one goal which has their respective color.

In the optimal solution of both counter-examples, the
brown agent waits in its initial position for three timesteps
while the rest of the agents follow their optimal paths to the
goals. At timestep 4, the brown agent starts moving, follow-
ing his optimal path to G1 and then to G2. This way, no con-
flict occurs and the sum of costs of the first counter-example
amounts to 26, while the makespan of the second counter-
example amounts to 9.

However, OMG-CBS with chaining low-level will not re-
turn the optimal solutions, but the suboptimal ones depicted
in the figures. In this case, the SoC of the solution in Figure
4 amounts to 27 and the makespan of the solution in Figure 5
is 10 (the red agent performs a single wait action at timestep
3).

Worst-Case Analysis
In the graph counter-example, the sum-of-cost difference be-
tween the optimal solution and the one that OMG-CBS with
chaining low level returned is only three. So, one question
that one may ask is whether there are examples with larger
differences. The difference can become arbitrarily large, as
will be demonstrated by the family of instances shown in
Figure 6. There are x agents and x corresponding goals per
row. The brown agent C is assigned the goals (Ca, Cb) with
precedence constraint (Ca ≺ Cb), and each of the rest of the
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B1 B2

P1 P2

P3 P4

P5 P6

R1 R2

Ca

Cb

B2

R2R1

P2P1

P4P3

P6P5

B1

x

x

x

x

x

Figure 6: Worst case instance

Wait 1 timestep

C

B1 B2

P1 P2

P3 P4

P5 P6

R1 R2

Cb

B2

R2R1

P2P1

P4P3

P6P5

B1

Figure 7: Case 2

agents is assigned the goal marked with the respective agent
name.

If we don’t account for any conflicts, every agent will fol-
low its optimal path to the goal and the solution cost will be
equal to

9x+ 8x+ 7(3x) + 6.

This is just a lower bound to the true solution cost. OMG-
CBS will search many different possible joint agents’ paths
along its way of resolving conflicts. Since we cannot present
and analyze all of them, we are going to show how the four
most predominant cases scale with respect to the number of
agents.

Case 1: Optimal Solution
The optimal solution is the one in which the brown agent
waits for (x+2) timesteps in its initial position and then fol-
lows its fastest possible path to Ca and Cb. This solution cost
will be equal to

9x+ 8x+ 7(3x) + 6 + (x+ 2) = 39x+ 8.

Case 2: Go to Ca and Cb as Fast as Possible
One other interesting solution is when the brown agent
moves as fast as possible initially to Ca and then to Cb, while
the other agents move towards their goals. As a result, each
of the pink agents will have to wait for 1 timestep which will
add an extra 3x cost to the lowest bound solution cost:

9x+ 8x+ 7(3x) + 6 + 3x = 41x+ 6.

Wait x timesteps

C B1 B2

P1 P2

P3 P4

P5 P6

R1 R2

Cb

B2

R2R1

P2P1

P4P3

P6P5

B1

Figure 8: Case 3

Wait 1 timestepC

B1 B2

P1 P2

P3 P4

P5 P6

R1 R2

Cb

B2

R2R1

P2P1

P4P3

P6P5

B1

Figure 9: Red agents’ waiting actions in case 4

In Figure 7 you can see that in timestep 3, the first row
of pink agents has to wait for 1 timestep, which adds a cost
of x to the lowest bound cost. Each of the other pink agents
will have to wait for 1 timestep too, while the brown agent
moves towards Cb.

Case 3: Go to Ca and Wait
Another possible solution would be for the brown agent to
go to Ca and then wait there till the pink agents pass by. This
will cause the brown agent and each of the x blue agents to
wait for x timesteps. This becomes more clear in Figure 8.
Thus, the solution cost will be

9x+ 8x+ 7(3x) + 6 + (x+ x2) = x2 + 39x+ 6.

Case 4: Go to Ca and Retreat
The last case is when the brown agent visits Ca and then
retreats to the initial position to let the other agents pass by.
In this case, the brown agent needs extra 4 actions in order
to move to the initial position and back to Ca later which
will add an extra cost of 4 to the SoC. Furthermore, each of
the red agents has to wait for 1 timestep as shown in Figure
9 and the brown agent should also wait in the initial position
for x-1 timesteps as shown in Figure 10. Thus, the solution
cost will be

9x+ 8x+ 7(3x) + 6 + (4 + x+ (x− 1)) = 40x+ 9.
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Wait (x-1) timesteps

C

B1 B2

P1 P2

P3 P4

P5 P6

R1 R2

Ca

Cb

B2

R2R1

P2P1

P4P3

P6P5

B1

Figure 10: Brown agent’s waiting actions in case 4

Solution Cost Difference
OMG-CBS with chaining low level will always return the
solution of case 4 when the number of agents per row is
greater or equal to 4. This solution obviously scales worse
than the optimal solution (case 1). More precisely, the cost
difference between these two solutions will increase linearly
with the number of agents per row, and it can get arbitrarily
large.

Holistic Low-Level Approach
To render OMG-CBS optimal, the low-level search should
extend its scope to consider the cost of the whole path of the
agents, beginning from their starting position till their final
goal position. This holistic low level approach can be imple-
mented using an adjusted version of multi-label A* (MLA*)
for multiple goals (Zhong et al. 2022). For the rest of this pa-
per, MLA* for multiple goals will be mentioned as MLA*
since it is just a straightforward extension of the original al-
gorithm which was originally developed for the multi-agent
pickup and delivery problem.

For each low-level node n of MLA* we define the follow-
ing variables:
• gn: The agent’s path cost.
• pn: The current position of the agent.
• ln: The flag that indicates which subgoal the agent ap-

proaches e.g. ln = 1 means that the agent approaches the
first subgoal.

We also define the set d = {d0, d1, d2, . . . , dm} along
with a total order ≺ on d which defines the precedence rela-
tions among its elements. d0 is the agent’s starting position
and d1, d2, . . . , dm are the positions of the agent’s goals. The
fn value is defined as fn = gn + hn where hn is the heuris-
tic value of node n and is defined as follows, where h(x, y)
is the length of the shortest spatial path between the vertices
x and y.

hn = h(pn, dln) +
m∑

i=ln+1

h(di, di+1) (1)

It should be stated that hn could be any other consistent
heuristic. Moreover, the optimal distance cost between any
two vertices could be precomputed and saved in a lookup
table to speed up the MLA* search.

Algorithm 2: MLA*

1: d← {d0, d1, . . . , dm}, where d0 ≺ d1 ≺ . . . ≺ dm
2: n0 ← Node(gn0 = 0, ln0 = 1, fn0 = hn0 , pn0 = d0)
3: Insert(n0, OPEN)
4: while OPEN not EMPTY do
5: n← Node(gn, ln, fn, pn) from OPEN with min fn
6: if pn = dln and pn is not dm then
7: ln = ln + 1
8: end if
9: if pn = dln and pn is dm then

10: Return found path
11: end if
12: Expand n by adding to OPEN, nodes with adja-

cent locations that are not blocked by other agents or
blocked cells in the environment

13: Remove n from OPEN
14: end while
15: Return False

MLA* is actually an A* search in the augmented space-
time-label (u, t, l) state space. The allowed transitions in this
state space are the following:

• (u, t, l)→ (v, t+ 1, l), if (u, v) ∈ E or u = v

• (u, t, l)→ (v, t+ 1, l + 1), if (u, v) ∈ E and v = dl

Furthermore, the state space is reduced by the constraints
of the agent in the same way that the state space is reduced
by constraints in space-time A*. The pseudocode of MLA*
is provided in Algorithm 2.

For an A* search to be optimal, it suffices that the heuris-
tic that guides the search is admissible. Hence, in this case,
we just need to prove that the heuristic of MLA* is admis-
sible. The heuristic computes the shortest distance from the
current position of the agent till the next subgoal and adds
to it the shortest distances between the consecutive subgoals
till the final goal. Since this distance measure gives the lower
bounds for the needed steps, this heuristic will always under-
estimate the cost of reaching the goal. Therefore, the heuris-
tic is admissible, and MLA* is optimal.

Proposition 1 MLA* is optimal.

OMG-CBS Optimality
The CBS’ optimality proof is based on two definitions and
two Lemmas (Sharon et al. 2015). This proof doesn’t hold
in the case of OMG-CBS with chaining low level because
Lemma 1 in the original publication does not hold. To be
more precise, the first definition and the first Lemma state:

Definition 6 For a given node N in a constraint tree, let
CV(N) be the set of all solutions that are: (1) consistent with
the set of constraints of N and (2) are also valid (i.e, without
conflicts).

Lemma 1 The cost of a node N in the CT is a lower bound
on minCost(CV(N)), where minCost(CV(N)) is the minimum
cost over all solutions in CV(N).
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G1 G2

Figure 11: Suboptimal chaining low-level solution

This is not the case when we have a chaining low level.
Let’s see the output of the chaining low level in Figure 11,
where the cells in red color are the vertex constraints at
timestep 3 and the cells in orange are the vertex constraints
at timestep 4. At the goal vertex G1, there is a vertex con-
straint both at timesteps 3 and 4. The chaining low level will
return the solution depicted with the green arrow, which has
a cost of 11. This happens because the chaining low level
will move the agent as fast as possible to G1 and then, due
to congestion, the agent will have to retreat to the left. As
a result, the returned solution has a higher cost than the
optimal one, which is when the brown agent waits for 3
timesteps in its initial position and then follows its fastest
path to the goals (cost = 10). Thus, the cost of the node with
these constraints in the CT won’t be a lower bound on min-
Cost(CV(N)), which renders the Lemma false.

To prove that OMG-CBS with MLA* at the low level
is optimal, we make use of the original proof construction
of conflict-based search (Sharon et al. 2015). This proof
construction always holds because Lemma 1 is true when
MLA* is used as the low level of OMG-CBS. This is the
case because MLA* always finds a lower bound on min-
Cost(CV(N)), as stated in Proposition 1.

Experiments
To test the soundness of our theoretical results, but also to
check the runtime differences and the frequency and size of
the solution cost differences between the chaining and holis-
tic low-level methods, OMG-CBS with chaining and holistic
low level was implemented1 in C++ and a series of experi-
ments were conducted using a quad-core Intel Xeon 2.8G
Hz and 128GB RAM.

Initially, we tested the worst-case scenario with 3-6 agents
per row, since larger instances could not be tackled by OMG-
CBS due to memory constraints. OMG-CBS with a holistic
low level always returned the optimal solution whose cost
followed the formulae provided in case 1 of the worst-case
analysis. OMG-CBS with chaining low level always pro-
vided the solution of case 4 (or a slightly different one)
whose cost also followed the formulae provided for this
case.

Furthermore, a series of experiments were conducted us-
ing 6 maps in total. Two empty maps, namely, empty-8-8 and
empty-16-16 were taken directly from movingai.com.
Subsequently, two maps with dimensions 16x16 and random
obstacles were created, namely, random-16-16-10 with 10%
random obstacles and random-16-16-20 with 20% random
obstacles. Finally, two maze maps with dimensions 16x16

1https://github.com/GrFr/libMultiRobotPlanning

were also created. For the small map (empty-8-8), 20 in-
stances were created per number of agents and number of
goals, where the number of agents varied between 2 and 10
and the number of goals varied between 2 and 5. For the rest
of the maps, the same number of instances per configuration
were created, but the number of agents varied from 2 to 13,
whereas the number of goals per agent remained between 2
and 5. The starting positions of the agents along with their
goal positions were produced randomly and a time limit of
15 minutes was set for each instance.

The results showed that there was only one instance of
one of the maze maps, where OMG-CBS with chaining low
level found a suboptimal solution and its solution cost was
only 1 timestep longer than the optimal one. This was not
surprising since the counter-examples signal that the type of
conflicts, that are responsible for the suboptimality of the
chaining low level, occur mainly in maps with high agent
congestion.

Figure 12 shows that the optimal OMG-CBS is mainly up
to an order of magnitude slower than its suboptimal counter-
part. This was to be expected since MLA* has to generate on
average more nodes than the chaining low-level approach for
the same single agent problem. This becomes clear in Figure
13 that compares the average low-level nodes expanded per
high-level node of every instance for both approaches.
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Figure 12: Runtime comparison between OMG-CBS with
chaining low level (suboptimal) and OMG-CBS with MLA*
as low level (optimal) for each problem instance

MAPF Variants with Unordered or
Unassigned Goals

So far, we have only considered CBS with ordered goals
(OMG-CBS). However, as mentioned in the beginning, there
are also scenarios, when the goals are unordered and one
has to find the best goal ordering (Surynek 2021), which
has been called MG-MAPF. A CBS extension dealing with
this scenario, which can be called MG-CBS, faces the same
problems as OMG-CBS. In particular, the counter-example
presented in Figure 1 is also a counter-example to the op-
timality of MG-CBS with a chaining low-level algorithm.
The reason is that each solution with a goal order that re-
verses G1a and G1b is obviously longer than the one we
considered. In other words, in this case, it is enough to con-
sider the goal ordering we analyzed. In the specific paper

249



100 101 102 103 104

Suboptimal OMG-CBS

100

101

102

103

104

105

O
pt

im
al

 O
M

G
-C

BS

1x
10x

Figure 13: Comparison of the average low-level nodes ex-
panded per high-level node between OMG-CBS with chain-
ing low level (suboptimal) and OMG-CBS with MLA* as
low level (optimal) for each problem instance

of MG-MAPF, an algorithm called HCBS was developed to
tackle the problem. HCBS should find the best goal order-
ing (along with the agents’ paths) which minimizes the SoC
objective function. Though, it is clear from the pseudocode
that the chaining approach is used. In lines 32-33, the algo-
rithm calls A* for each goal that is yet unvisited (starting
from the current vertex of the agent) and finds the shortest
path to it, then the paths get concatenated (line 41). Thus, the
agents are guided as fast as possible to the next goal with the
aforementioned consequences.

There exist even more general MAPF variants, where the
potential goals have to be assigned to the agents, a setting
which has been called MCPF (Ren, Rathinam, and Choset
2022). One can extend CBS to deal with this setting by ex-
tending the high-level search to a forest search (Hönig et al.
2018) where there is a root node for every possible assign-
ment and sequence of the goals to agents, which can then
be solved by OMG-CBS. Since the optimality of this for-
est search is based on the optimality of each tree search, the
chaining approach on the low level is not sufficient for opti-
mality. In the specific MCPF paper, a two-level forest search
algorithm called CBSS was developed. In the analysis of
CBSS’ low level, it is not stated explicitly that a chaining
approach is used. However, since the repository of the im-
plementation is provided, we checked it out and found out
that the chaining approach is indeed used. Finally, we trans-
formed our counter examples to the problem formulation of
the paper (since their approach solves a very similar prob-
lem) and their algorithm indeed returned the anticipated sub-
optimal solutions.

Conclusion & Discussion
We have presented an analysis of possible extensions to the
CBS algorithm dealing with multiple goals. We considered
two low-level search approaches, namely, the chaining and
the holistic one. For the first approach, we presented an
example demonstrating non-optimality. In addition, it was
shown that the solution cost difference between the two low-
level approaches can get arbitrarily large. We then proved

that a holistic low-level approach employing MLA* is guar-
anteed to find an optimal solution to the problem. However,
the experimental evaluation showed that OMG-CBS with
chaining low level almost always finds an optimal solution.
This can be attributed to the rare occurrence of the types of
conflicts, which render OMG-CBS with chaining low level
suboptimal, in environments with low congestion.

An alternative approach to MLA* which could poten-
tially speed up the low level search of OMG-CBS would
be to use an extension of safe interval path planning (SIPP)
(Phillips and Likhachev 2011) similar to the one used in
the continuous-time CBS with disjoint splitting (CCBS-DS)
(Andreychuk et al. 2021). SIPP in CCBS-DS searches all the
SIPP nodes that could reach a milestone and then uses all
these nodes as root nodes to start the next search to find all
nodes that reach the next milestone. A milestone in CCBS-
DS is a time interval on a location, therefore SIPP could be
extended to tackle multiple ordered goals optimally in an
OMG-MAPF setting.

We hope that the insights provided in this paper will help
fellow researchers to understand better the possible caveats
regarding CBS’ extensions for multiple goals, which might
lead to further improvements in future algorithms.
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