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Abstract

With the advent of machine learning, there have been several
recent attempts to learn effective and generalizable heuris-
tics. Local Heuristic A* (LoHA*) is one recent method that
instead of learning the entire heuristic estimate, learns a “lo-
cal” residual heuristic that estimates the cost to escape a re-
gion. LoHA*, like other supervised learning methods, col-
lects a dataset of target values by querying an oracle on many
planning problems (in this case, local planning problems).
This data collection process can become slow as the size of
the local region increases or if the domain requires expen-
sive collision checks. Our main insight is that when an A*
search solves a start-goal planning problem it inherently ends
up solving multiple local planning problems. We exploit this
observation to propose an efficient data collection framework
that does <1/10th the amount of work (measured by expan-
sions) to collect the same amount of data in comparison to
baselines. This idea also enables us to run LoHA* in an on-
line manner where we can iteratively collect data and im-
prove our model while solving relevant start-goal tasks. We
demonstrate the performance of our data collection and on-
line framework on a 4D (x, y, θ, v) navigation domain.

1 Introduction
Search-based planning approaches are widely used in var-
ious robotics domains from navigation to manipulation.
However, their runtime performance is highly dependant on
the heuristics employed. A vast majority of search-based
planning methods rely on hand-designed heuristics which
are usually geometry-based (e.g. Euclidean distances) or
solve a lower-dimensional projection of the problem (ignor-
ing some robot/environment constraints). Since these heuris-
tics are simple and manually defined, they can guide search
into deep minima (Korf 1990; Aine et al. 2014).

Recently, several works have proposed using machine
learning to obtain better heuristics (or priorities) to speed
up search. We focus on methods using supervised learning
which requires collecting a training dataset of optimal so-
lutions generated by an oracle search method. For example,
Kim and An (2020) uses A* to generate a training dataset of
optimal solution values while Takahashi et al. (2021) uses a
backward Dijkstra. Kaur, Chatterjee, and Likhachev (2021)

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

learns an “expansion delay” heuristic (a proxy measure for
the size of local minima) and gathers training data by us-
ing an oracle A* on problems and recording the expansion
number for each state on the optimal path. SAIL (Bhardwaj,
Choudhury, and Scherer 2017) learns a priority function by
utilizing optimal cost-to-go values collected via a backward
Dijkstra oracle deployed solely for data collection.

Local Heuristic A* (LoHA*) (Veerapaneni, Saleem, and
Likhachev 2023) is a recent promising work that learns a
residual “local” heuristic. In contrast to a global heuristic
which estimates the cost to reach the goal from a state, a
residual local heuristic estimates the additional cost required
to reach the border of a local region surrounding that state.
As local heuristics require reasoning only about small re-
gions, they are much easier to learn and generalize better.

However, similar to other supervised learning approaches,
LoHA* requires creating a dataset of ground-truth local
heuristic residuals. These residuals are computed by defin-
ing a local region around a state and running a multi-goal
A* from it (details in Section 3.1). Thus to collect their
dataset, similar to other works, they require running multiple
(thousands) of oracle A* calls for training their model. We
make the key observation that when an A* search solves a
“global” start-goal planning problem, the inherent best-first
ordering associated with the state expansions enables a sin-
gle A* query to automatically solve multiple local heuristic
problems without the need to explicitly query a local search.
Thus during the global A* call, we design backtracking logic
that verifies if a state being expanded is a solution to a local
planning problem and adds it to a training dataset if so. This
allows us to create a significantly more efficient data collec-
tion framework wherein solving a handful of global planning
problems allows us to amass sufficient training data.

An important byproduct of this data collection mechanism
is that we no longer need a separate data collection phase
and can collect data when running LoHA*. Since LoHA*
runs a search method during test time, we can collect local
heuristic data online while using LoHA* itself. This enables
us to rapidly learn from our experiences in a way not possi-
ble with other data collection techniques.

Thus overall, our main technical contribution is Data Ef-
ficient Local Heuristic A* (DE-LoHA*), our efficient back-
tracking technique for collecting local heuristic data which

See https://arxiv.org/abs/2404.06728 for appendix.
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Figure 1: Figure borrowed from LoHA* (Veerapaneni,
Saleem, and Likhachev 2023). Instead of estimating the en-
tire cost-to-go from state s (red diamond) to the goal (orange
in left), LoHA* computes the residual cost for s to reach
a border region (red box in left, zoomed in on right). This
avoids local minima when used during search.

also enables online learning. We show how this improves
data collection efficiency by 10x and how our online method
can learn from experiences in under 100 planning calls on a
4D (x, y, θ, v) navigation domain.

2 Preliminaries
Given a planning domain and a simple hand-designed
heuristic (like Euclidean distance), which we will call a
“global” heuristic hg , LoHA* proposes to learn a local
heuristic residual hk. Formally, given a state s = (x, y,Ω)
with position x, y and other state parameters Ω (e.g. heading,
velocity), a local region LR(s) contains the states within a
window of K, i.e. LR(s) = {s′ | K ≥ |s.x − s′.x|,K ≥
|s.y − s′.y|}. Let LRB(s) be the border of this region, i.e.
{s′ | K = |s.x− s′.x| ∨K = |s.y − s′.y|}. Any path from
s to sg must contain a state in LRB(s), or directly reach
the goal in the local region LR(s) (we assume for simplic-
ity unit actions, but this logic can be generalized to non-unit
as well). If neither is possible from s, then s cannot leave
LR(s) and should have an infinite heuristic value. Let,

hgk(s) = min
s′


c(s, s′) + hg(s

′) s′ ∈ LRB(s)

c(s, s′) + 0, s′ = sg ∈ LR(s)

∞, otherwise
(1)

Then, the local heuristic residual hk(s) is defined as hk(s) =
hgk(s) − hg(s). hgk is a more informed heuristic as it ac-
curately accounts for the cost to reach a border state from
the current state s. Conceptually, the defined local heuristic
residual captures the mismatch in the estimate by hg of the
cost to reach LRB(s) and the actual cost it takes.

Computing hk(s) requires identifying the best border
state s′ ∈ LRB(s) that minimizes hgk(s). This is achieved
by running a local (multi-goal) A* search from s using all
the border states as goals with hg as the heuristic (hg es-
timates the cost to sg and not the border states). In the
most common case, where the goal is not located within
LR(s), the search terminates upon expanding the first state
in LRB(s). This heuristic residual is effective but slow to
compute, so LoHA* approximates it with a neural network.

This network takes in observations in the local region
LR(s), namely a local image of the obstacle map and hg

values to predict hk(s). They collect a dataset offline and

regress their network to predict ground truth hk(s) values.
This model when used with Focal Search (Pearl and Kim
1982) has been shown to substantially reduce the number of
nodes expanded compared to using just hg while maintain-
ing suboptimality guarantees.

3 Data Efficient Local Heuristic
To train the neural network for LoHA*, a dataset of ground
truth local heuristic residuals is collected by running the
above-described local search on hundreds of thousands of
relevant states. This is extremely inefficient and can become
prohibitively slow for some domains that require expensive
collision checks or large local regions. Our main observation
is that the inherent best-first ordering associated with A* ex-
pansions enables a single global A* call to solve multiple
local heuristic problems. We specifically design backtrack-
ing logic that attempts to gather a data point at every single
A* expansion (without the need for running a local A*), en-
abling us to reuse prior search efforts and collect data at a
significantly faster rate.

3.1 Collecting Data by Looking Back
Our method is built upon a crucial observation regarding
the correlation between the order in which nodes are pri-
oritised/expanded in a global search and a local multi-goal
A*. Upon expanding a node s in a global search, the rela-
tive ordering in which the nodes in LR(s) (originating from
s) are expanded in the global search is identical to the or-
der in which the nodes would be expanded in a local search
from s. Here, nodes originating from s refer to nodes that
have s as a direct parent or ancestor. If this observation can
be proven to be true, then the first node in LRB(s) (and
originating from s) expanded by the global search will cor-
respond to the best border child of s and can be used to com-
pute the local residual for s. For notational convenience, let
b(s, s′) = c(s, s′) + hg(s

′).
Theorem 1 (Global-Local Ordering Consistency). A local
A* using priority b(s, s′) and a global A* using b(sstart, s

′)
will sort states originating from s in LR(s) identically.

Proof. Once s is expanded in the global A*, all suc-
cessor states s′ (direct children and onwards) are priori-
tized by b(sstart, s

′) = c(sstart, s) + c(s, s′) + hg(s
′) =

c(sstart, s) + b(s, s′). Since c(sstart, s) is a constant, we
can remove this term without changing the sorted order to
get that the children are sorted by b(s, s′). This is identical
to the local A* search ordering rooted at s.

Thus now, instead of running a local search rooted at
different states, we can simply verify if the node s′ being
expanded by the global search is the first in the LRB for
some previously expanded node s. We achieve this by sim-
ply backtracking from s′ to each of its ancestors s and check-
ing if s′ ∈ LRB(s) and if any node in LRB(s) has pre-
viously been expanded. If not, we are guaranteed that s′

is the best border state for s and hk(s), the local heuris-
tic residual for s is computed and included in the dataset.
This verification process is extremely fast and has negligible
overhead as it requires no collision checking or queue opera-
tions allowing the global search to operate unhindered. This
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Collecting Local Heuristic Data from a Single A* Search

Figure 2: A simplified example of global A* collecting data for local regions with K = 3, i.e. for s = (x, y) we want to reach a
state (x′, y′) with x′ or y′ 3 away. Each (i) depicts the ith state expanded with successor→ parent denoted. Expanding (2), (3)
leads to incomplete data Dic for s1, s2 as we made some progress but did not reach a LRB yet. Expanding s4 and backtracking
reveals that s4 ∈ LRB(s1); we have found LH(s1) and add it to our complete dataset Dc. We continue to expand a node
(purple), backtrack (blue arrows) to update values of ancestors (blue) whose LH(s′) have not been computed. Bottom right:
After 10 expansions, we collect 4 complete (green) and 2 partial (blue) LH values, and cannot collect data for leaf nodes (red).

idea is similarly motivated as Hindsight Experience Replay
(Andrychowicz et al. 2017) but is a more nuanced idea lever-
aging best-first search’s intermediate expansion process.

Figure 2 shows this process occurring over expansions
in a global search. When expanding state s′ (purple), we
backtrack (blue arrows) ancestor states s and check if
s′ ∈ LRB(s). We see this first occurs when s4 satisfies
LRB(s1), denoted by the green arrow. Since s1 has found
its best border state, we do not include it in future checks (as
seen when expanding s5 we do not backtrack to s1). Repeat-
ing this logic, after 10 expansions we collect 4 data points.

3.2 Collecting Partial Data
Although this logic works, the amount of data collected per
iteration of global search was lower than expected. This was
due to many nodes s in the global search never having an
s′ ∈ LRB(s) expanded. Instead, many nodes had made par-
tial progress, i.e. nodes in the local region but not in the bor-
der were expanded. In Figure 2 this corresponds to s6 and
s7 which both have partial progress (via s10) but don’t have
a node in the LRB expanded. Instead of completely ignor-
ing these data points, we developed a mechanism to extract
useful approximations on hk(s) and include it in the dataset.

We know that in A* the priority (bstart, s
′) of expanded

states s′ increases monotonically until the goal is reached.
Hence, at any point during an A* search the priority of an
expanded s′ is a lower bound on the optimal solution cost.
In our case the priority of the state s′ ∈ LR(s)\LRB(s)
ends up defining a lower bound on hgk(s). Thus, each time
we expand s′, we update the hgk(s) ← c(s, s′) + hg(s

′) of
each ancestor of s whose LRB(s) has not been reach yet.
Upon the global search terminating, we can use these lower
bound values which leads to dramatically more datapoints.

One drawback of including this “incomplete” data is that
our dataset gets skewed as these points are more numerous

than complete data. We handled this issue by downweight-
ing their contribution to the loss function. Concretely, let
s′ correspond to the last expanded node in the local region
of state s. s′ was used for computing the lower bound on
hgk(s). Let d(s, s′) = max(|s.x− s′.y|, |s.y− s′.y|) be the
distance from s′ to s. Since s′ ∈ LR(s)\LRB(s), we have
d(s, s′) < K. We can interpret α(s, s′) = d(s, s′)/K < 1
as the progress towards reaching the border of s. Thus when
training and regressing onto LH(s), we weigh our loss
by α(s, s′). Intuitively, this downweighs “incomplete” data
points by their progress but does not ignore them entirely.

Closed List as an Obstacle Astute readers may have no-
ticed a possible issue with Theorem 1; although the states
are sorted identically, we ignored the effect of the closed
list of previously expanded states in the global A*. These
states ∈ LR(s) would not be re-expanded when explored
through s in the global search and we can thus view states in
the closed list as obstacles. Note this observation has been
exploited in previous heuristic search work on grid worlds
(Felner, Shperberg, and Buzhish 2021). Interestingly, we
found that incorporating the closed list led to no meaning-
ful performance difference so we ignore it.

4 Experimental Results
In this section, we provide empirical evidence demonstrating
the benefits of using the proposed data collection framework
with LoHA* and the performance of De-LoHA* as an on-
line algorithm. The neural network utilized by all variants
and baselines are identical to that described in Veerapaneni,
Saleem, and Likhachev (2023).

We evaluate our framework on ten 1024x1024 maps
with 30% random obstacles, minimizing travel time be-
tween start-goal pairs. Identical to LoHA*, we model a
car with state (x, y, θ, v). The positions are discretized
x, y by 0.5, heading θ by 30 degrees, and velocity v ∈

225



# Expansions Per Sample
K = 2 4 8 12 16

Local A* 11 74.4 247 458 616
Complete 16.5 27.1 34.9 37.6 38.9

Incomplete 5.0 5.0 5.0 5.0 5.0

(a) Amount of work (# expansions) required to
collect a single data point as K increases. Local
A* uses an oracle A* to produce individual data
points while Complete and Incomplete gather
data across global start-goal problems using our
backtracking methodology.
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(c) Online performance of DE-LoHA*

Figure 3: (a) compares collecting data via a ground truth oracle (Local A*) against our “Complete” and “Incomplete” collection
methods. (b) plots the “Speed-up” (as measured in nodes expanded) of LoHA* trained on datasets gathered from Local A*
calls (true oracle) or our incomplete data gathered from running a global A* on start-goal problems. (c) We run DE-LoHA* by
solving start-goal problems (and collecting data while doing so), and retraining every 5 problems. We see that DE-LoHA* can
improve performance from just solving start-goal problems without needing an external oracle after the initial 5 problems.

{−1, 0, 1, 2, 3}. The car has unit-cost actions that follow
Ackermann constraints, ∆v ∈ {−1, 0, 1} and ∆ steering
angle ∈ {−60,−30, 0, 30, 60}. The global heuristic used
for this domain is a scaled variant of the Euclidean distance
hg = L2(s, sgoal)/3 (as the max velocity is 3). Unless spec-
ified, the results are reported for a small local region size of
K = 4 as this was found to be effective in LoHA*.

Data Efficiency Table 3a shows how many nodes ex-
panded are required to collect a single training data point as
a function of K. We see that running local searches scales
poorly and requires 100s of expansions for a single data
point for K > 4. We observe that as K increases, the
work for gathering “Complete” via backtracking increases
but then saturates as when K is sufficiently high, the global
A* mainly adds data points on states on the solution path
and few else (as the search rarely fully explores a local min-
ima not on the path). On the flip side, incomplete remains
constant regardless of K as all states with any successor ex-
panded becomes a data point (as we have partial data about
its LH(s) value), including states that are in local minima.

One concern with using incomplete data by backtracking
is that it is approximate and noisy in comparison to the ac-
curate residuals computed by local A*. In order to under-
stand the impact of this quality difference, in Fig 3b we plot
the performance of LoHA* when using the incomplete data
and as a function of the amount of nodes expanded to col-
lect each dataset. The y-axis “Speed-up” is the multiplica-
tive reduction of nodes expanded to find paths across 100
problems between weighted LoHA* and weighted A* with
w = 4 (e.g. 3 represents LoHA* expanding 1/3 the nodes).
We see that even though incomplete data contains approx-
imations, we can still effectively use it to learn a heuristic
that leads to performance gain in substantially less data. Us-
ing a local A* requires a magnitude more work to get similar
performance. We ran an ablation removing downweighing
(i.e. not weighting by α(s, s′)) and found that this reduced
performance from 3.9x to 2.4x. Note that although LoHA*
expands fewer nodes, the model inference introduces a large
overhead which results in it taking roughly 2.3 seconds per
problem compared to the baseline which takes 0.1 seconds.

Online Performance We evaluate how using our data-

efficient framework DE-LoHA* enables learning local
heuristics online. We initially start with a small dataset
collected by solving 5 start-goal planning problems using
global A* and the backtracking logic. This small dataset
is used to train an initial local heuristic model. The learnt
model is then used with DE-LoHA* to solve another 5 start-
goal problems. The data accumulated while solving these
problems is accumulated and then used to retrain and im-
prove the model further (the model is retrained after solv-
ing every 5 problems). We evaluate online DE-LoHA* run
with different w with the corresponding weighted A* base-
line. We plot the performance on 50 problems (plotting on
just the 5 problems encountered is too noisy). Within 20 en-
countered start-goal problems (3 iterations of retraining DE-
LoHA*), we start to get a non-trivial performance increase.
As we continue solving problems and gathering data, im-
provement increases (w = 16) or saturates (w = 4, 8). This
highlights how DE-LoHA* can perform well from just solv-
ing start-goal problems.

5 Conclusion
We have demonstrated how we can collect data more effi-
ciently by reasoning about intermediate steps of the ground
truth oracle when applied to LoHA*. Additionally, we have
shown how this can enable online data collection and per-
formance improvement, all while solely starting start-goal
tasks without any explicit data collection phase.

Extensions Our data efficient technique can be applied
with no or small modifications to other learning methods
which require an oracle search method. When learning a
cost-to-go heuristic h(s, s′), existing work just uses states on
the solution path with the oracle’s optimal c(s, sgoal) (Jab-
bari Arfaee, Zilles, and Holte 2011; Kim and An 2020). We
observe how any state si and an ancestor s′i in the oracle’s
search tree results in a valid optimal c(s′i, si) data point that
can be used as well. We can thus backtrack from si to ances-
tors to collect data. Similarly for learning an expansion delay
(Kaur, Chatterjee, and Likhachev 2021), the delays between
states s′i, si can be used. We hope future work builds on our
data efficient framework to decrease computational burden
and enable online learning.
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