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Abstract

In the multi-objective shortest-path problem (MOSP) we
are interested in finding paths between two vertices of a
graph while considering multiple objectives. A key proce-
dure, which dominates the running time of many state-of-
the-art (SOTA) algorithms for MOSP is set dominance checks
(SDC). In SDC, we are given a set X of N -dimensional tu-
ples and a new N -dimensional tuple p and we need to deter-
mine whether there exists a tuple q ∈ X such that q dom-
inates p (i.e., if every element in q is lower or equal than
the corresponding element in p). In this work, we offer a
simple-yet-effective approach to perform SDC in a parallel
manner, an approach that can be seamlessly integrated with
most SOTA MOSP algorithms. Specifically, by storing states
in memory dimension-wise and not state-wise, we can exploit
vectorized operations offered by “Single Instruction/Multi-
ple Data” (SIMD) instructions to efficiently perform SDC
on ubiquitous consumer CPUs. Integrating our approach for
SDC allows to dramatically improve the runtime of existing
MOSP algorithms.

1 Introduction
The multi-objective shortest-path problem (MOSP) is a vari-
ation of the classical shortest-path problem where the goal is
to find paths between two points in a graph while consider-
ing multiple objectives instead of a single objective (Ulungu
and Teghem 1991; Salzman et al. 2023). Applications of
MOSP range from route planning for power lines consid-
ering economic and ecological impacts (Bachmann et al.
2018), transporting hazardous materials considering travel
distance and risk (Bronfman et al. 2015), and inspecting a re-
gion of interest using cameras placed on-board robotic plat-
forms (Fu et al. 2019; Fu, Salzman, and Alterovitz 2021).

In contrast to the single-objective setting where we are
typically interested in computing a shortest path between
two vertices on a graph G = (S,E), in MOSP we wish
to compute the set of Pareto-optimal solutions Π∗ between
two given vertices. Intuitively, Π∗ contains all “interest-
ing” paths—the set of solutions for which no other solution
can improve one objective without worsening at least one
other objective. However, computing Π∗ is NP-hard (Ser-
afini 1987) and the cardinality of Π∗ may be exponential
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in |S| (Hansen 1980; Ehrgott 2005; Breugem, Dollevoet, and
van den Heuvel 2017).

A key operation in MOSP search algorithms is set dom-
inance checks (SDC) which often governs the algorithm’s
running time (Salzman et al. 2023). Here, we are given a
set X of N -dimensional tuples (with N ≥ 2) and a new N -
dimensional tuple p and we are interested in testing whether
there exists a tuple q ∈ X such that every element in q is
smaller or equal to the corresponding element in p.

To reduce the computational overhead incurred by SDC,
existing algorithms employ algorithmic techniques such di-
mensionality reduction (Pulido, Mandow, and De la Cruz
2015; Hernández et al. 2023) and lazy computation (Her-
nandez et al. 2023). While successfully reducing the com-
putational cost of SDC, it still remains a key computational
bottleneck, especially when the number of objectives grows.

In this work, we offer a complementary approach wherein
we perform SDC in a parallel manner, an approach that
can be seamlessly integrated with most state-of-the-art
MOSP algorithm. Specifically, by storing states in mem-
ory dimension-wise and not state-wise, we can exploit
vectorized operations offered by “Single Instruction/Multi-
ple Data” (SIMD) instructions to perform SDC with high
throughput and low latency on ubiquitous consumer CPUs,
accelerating almost any MOSP algorithm. These insights al-
low us to obtain speedups of up to 8× on challenging plan-
ning instances.

2 Preliminaries
A multi-objective search graph is a tuple (S,E, c), where S
is the finite set of states, E ⊆ S × S is the finite set of
edges, and c : E → (R≥0)

N is a cost function that asso-
ciates an N -tuple of non-negative real costs with each edge,
where N is the number of components (also referred to as
the dimensionality of the problem). Succ(s) = {s′ ∈ S |
(s, s′) ∈ E} denotes the successors of state s. A path π
from s1 to sm is a sequence of states s1, s2, . . . , sm such
that (si, si+1) ∈ E for all i ∈ {1, . . . ,m− 1}.

Boldface font is used to represent N -tuples. We assume
an N -tuple p has the form p = (p1, p2, . . . , pN ), thus
pi denotes the ith component of an N -tuple. The addition
of two N -tuples p and q is defined as p + q = (p1 +

q1, . . . , pN + qN ). c(π) =
∑m−1

i=1 c(si, si+1) is the cost of
path π = s1, . . . , sm.
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Given two N -tuples p and q, we say that p weakly dom-
inates q, denoted as p ⪯ q, if pi ≤ qi for every i ∈
{1, . . . , N}. We denote by p ̸≺ q if it does not hold that
p ⪯ q and say that p and q are mutually undominated if
both p ̸≺ q and q ̸≺ p. Finally, we say that path π weakly
dominates path π′, denoted as π ⪯ π′ if c(π) ⪯ c(π′).

A search instance is defined as a tuple P =
(S,E, c, sstart, sgoal), where (S,E, c) is a search graph and
sstart, sgoal ∈ S are the start and goal states, respectively.
Given a search instance P , a Pareto-optimal solution set
to sgoal from sstart, denoted as sols(sgoal), contains every
path π from sstart to sgoal with the property that, for ev-
ery other path π′ from sstart to sgoal, π′ ̸≺ π holds; that
is, sols(sgoal) contains all non-dominated paths from sstart
to sgoal. In this paper, we aim to find any maximal subset of
the Pareto-optimal solution set such that their costs are mu-
tually undominated. We refer to this subset as a cost-unique
Pareto-optimal solution set.

Checking for weak dominance is a key operation in
MOSP algorithms. In these algorithms, this operation takes
a very specific form which we call set dominance check.

Problem 1 (Set Dominance Check (SDC)). Given a set X
of N -dimensional tuples (with N ≥ 2) and a new N -
dimensional tuple p, the SDC problem calls to verify
whether there exists a vector q ∈ X such that q ⪯ p.

3 Related Work
In early work, Guerriero and Musmanno (2001) state that
“parallel computing [. . . ] represents the main goal for fu-
ture developments [in multi-objective search algorithms]”.
However, there is little work on parallel MOSP algorithms.

Sanders and Mandow (2013) introduce a parallel vari-
ant of one of the early algorithms for the bi-objective
setting (Martins 1984). Their work focuses on theoretical
asymptotic running time and heap operations as the pri-
mary source of parallelism. Though promising, their work
lacks experimental validation. Erb, Kobitzsch, and Sanders
(2014) subsequently present a parallel bi-objective shortest-
path algorithm utilizing weight-balanced B-trees with bulk
updates. Their empirical evaluation demonstrates significant
speedups, building upon the seemingly impractical work
by Sanders and Mandow (2013).

Medrano and Church (2015) propose another parallel ap-
proach for computing the set of extreme solutions in the bi-
objective setting, showing applicability using personal ma-
chines and shared memory supercomputers. Ahmadi et al.
(2021) suggest a bi-objective bi-directional search algorithm
where one search runs from the source and another from the
target. Despite parallel execution, no substantial empirical
improvement is reported. de las Casas et al. later adopt a
similar approach for both bi-objective (de las Casas et al.
2021) and multi-objective (de las Casas, Sedeño-Noda, and
Borndörfer 2021) algorithms.

In summary, the parallelization of multi-objective search
remains a somewhat under-explored and challenging do-
main, despite being identified as a goal over twenty years
ago. In this work we offer the first method to test for weak
dominance via instruction-level parallelism. Our approach is

p0 p1 p2 p3 q0 q1 q2 q3 r0 r1 r2 r3︸ ︷︷ ︸
Vector p

︸ ︷︷ ︸
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Array of Structs
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Struct of Arrays
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Figure 1: Array of Structs vs. Struct of Arrays. Adapted
from (Thomason, Kingston, and Kavraki 2023).

simple-yet-effective and allows to obtain dramatic speedup
using parallelism at the instruction level by processing mul-
tiple data elements with a single instruction.

4 Algorithmic Background
4.1 Vectorized Operations
Vectorized operations refer to performing operations on en-
tire arrays or vectors of data at once, without explicit loop-
ing over individual elements. This approach is often imple-
mented using the Single Instruction, Multiple Data (SIMD)
paradigm. In SIMD, the same operation is applied to mul-
tiple data elements simultaneously, exploiting parallelism at
the instruction level This is particularly useful in scenarios
where the same operation needs to be performed on a large
set of data elements, such as mathematical operations on ar-
rays or pixels in image processing (Zhou and Ross 2002).

Programming languages and compilers often provide sup-
port for SIMD instructions, allowing developers to seam-
lessly write vectorized operations. Moreover, most modern
CPUs support such instructions allowing SIMD-based code
to run on any modern computer.1

Importantly, while vectorized operations can provide sig-
nificant performance benefits, it requires careful considera-
tion of data alignment which often corresponds to changing
data representation from AoS to SoA (Intel 2019): AoS (Ar-
ray of Structures) and SoA (Structure of Arrays) refer to dif-
ferent memory layout strategies for organizing data in com-
puter programs, especially in the context of parallel com-
puting and vectorization. The key difference lies in how the
elements of a collection (such as an array or a structure) are
stored in memory. In AoS, elements of a structure are stored
contiguously in memory, and an array is used to store multi-
ple instances of the structure. In contrast, in SoA, each com-
ponent of a structure is stored in a separate array. Multiple
arrays are then used to store the corresponding components
of different structures. For a visualization, see Fig. 1.

4.2 Linear Time MOA* (LTMOA*)
In this section we describe Linear Time MOA*

(LTMOA*)2 with pseudo-code provided in Alg. 1. Similar

1Our implementation is based on the AVX512 architecture
which allows to process 512 bits simultaneously (Intel 2023).

2We describe a simplified version of LTMOA* where we do not
perform dimensionality reduction (DR). DR reduces the number
of dimensions considered when performing SDC by one. Our ap-
proach for SDC using instruction-level parallelism are immediately
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Algorithm 1: LTMOA*
Input: A search problem (S,E, c, sstart, sgoal) and
. a consistent heuristic function h
Output: A cost-unique Pareto-optimal solution set

1: sols← ∅
2: for all s ∈ S do
3: Gcl(s)← ∅
4: n← new node with vertex sstart
5: g(n)← 0; f(n)← h(sstart);
6: Initialize OPEN and add n to it

7: while OPEN ̸= ∅ do
8: n← OPEN.pop() // lex. min f-value
9: if IsDominated(g(n),Gcl(s(n)) or

IsDominated(f(n),Gcl(sgoal) then
10: continue
11: RemoveDominated(g(n),Gcl(s(n))
12: Add g(n) to Gcl(s(n))

13: if s(n) = sgoal then
14: Add n to sols
15: continue

16: for all s′ ∈ Succ(s(n)) do
17: n′ ← new node with vertex s′ and parent n
18: g(n′)← g(n) + c(s(n), s(n′))
19: f(n′)← g(n′) + h(s(n′))
20: if IsDominated(g(n′),Gcl(s(n)) or

IsDominated(f(n′),Gcl(sgoal) then
21: continue
22: Add n′ to OPEN
23: return sols

to other MOS algorithms, LTMOA* runs an A*-like best-
first search using a priority list called OPEN containing the
frontier of the search tree (i.e., the generated but not-yet-
expanded nodes) and a set of solutions sols. Here, a node n
is associated with a state s(n) ∈ S, a g-value g(x) and a
parent node. We also define f(x) = g(x)+h(s(x)) as the f -
value of x. Conceptually, n corresponds to a path from sstart
to s(n) with cost g(n). The path can be constructed by back-
tracking along the parent nodes.

The search maintains Gcl(s), a set of non-dominated
g-values for each state s.3 Every iteration, LTMOA* ex-
tracts the node n with the smallest lexicographic order and
tests if its g-value is weakly dominated by any element
in Gcl(s) or if its f -value is weakly dominated by any ele-
ment in Gcl(sgoal) (Line 9). If one of this conditions holds, n
is discarded. If n is not discarded, LTMOA* removes all g-
values dominated by g(n) from Gcl(s(n)) (Line 11) and in-
serts g(n) to Gcl(s(n)) (Line 12). It also checks if s(n) is a
goal state in which case it adds n to the set of solutions.

LTMOA* then expands n by generating a new node n′ for
every successor of s(n). Similar to when extracting a node
from OPEN, the algorithms tests if n′’s g-value is weakly
dominated by any element in Gcl(s) or if f -value is weakly

applicable to the setting where DR is used.
3Here ‘cl’ stands for “closed list”.

Algorithm 2: IsDominated
Input: A vector p and a set of vectors X
Output: true or false

1: for all q ∈ X do
2: if p ⪯ q then
3: return true
4: return false
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Figure 2: Example of performing vectorized SDC. (a) Clas-
sical data representation of a vector p and a set X of k vec-
tors for N = 4 dimensions. (b) Vectorized data of X using
an SOA representation. (c) Vectorized SDC.

dominated by any element in Gcl(sgoal) and if so, discards n′

(Lines 20). If not, n′ is added to OPEN.
Critical to our work is how LTMOA* (and other MOSP

algorithms) implements SDC operations (Prob. 1 an Lines 9
and 20). This is done by iterating over all elements q ∈ X
and for each one testing if it dominates p. See Alg. 2.

5 MOSP using Vectorized SDC
5.1 Vectorized Set Dominance Checks
In this section we describe an alternative approach to im-
plementing SDC using vectorized operations. Before de-
scribing our approach we denote nvec to be the number of
elements that can be stored in each vectorized operation4

and |X| = k to be the number of elements in X. To simplify
the exposition, we assume that nvec = k but in practice we
typically have that nvec ≪ k and the following approach is
repeated ⌈nvec/k⌉ times.

Data representation Key to our approach is changing the
way our data (X and p in Prob. 1) is represented. We store X
as an SoA and not as an AoS (Fig. 1). Specifically, X will
now contain N elements d0, . . .dN, such that dji := qij .
Additionally (and with a slight abuse of notation), p is now
stored as N elements p0, . . .pN such that pj contains nvec

copies of the j’th element of p. Namely, ∀j pji := pj .
To demonstrate this change in data representation, con-

sider Fig. 2a and 2b. In classical AoS representation qi =
(4, 2, 6, 1), the i’th tuple in X (red cells) is stored sequen-
tially. In our SoA representation, recall that qi

j, the j’th el-
ement in qi is stored in dji . For example, here, d2i = 6.
Similarly, in classical data representation, our query p =
(5, 3, 7, 1) (grey cells), is stored sequentially. In our setting,
recall that p is now stored as N elements p0, . . .pN. For
example, here, p1 = (3, . . . , 3).

4In typical systems, nvec ∈ {8, 16, 32}.
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tmean tmax tmin tmedian

NY 3 Objectives
|sols|(mean, max, min) = (7,893, 49,870, 403)

LTMOA*-C 136.7 556.3 1.6 18.2
LTMOA*-V 38.0 164.9 0.7 5.5

NY 4 Objectives
|sols|(mean, max, min) = (22,650, 75,653, 360)

LTMOA*-C 1,386.0 14,768.9 0.2 119.4
LTMOA*-V 268.0 2,710.3 0.2 25.1

(a)

tmean tmax tmin tmedian

NY 3 Objectives
|sols|(mean, max, min) = (7,893, 49,870, 403)

LTMOA*-C+DR 113.9 465.4 1.2 14.5
LTMOA*-V+DR 29.4 129.4 0.6 3.8

NY 4 Objectives
|sols|(mean, max, min) = (22,650, 75,653, 360)

LTMOA*-C+DR 1,098.9 11,867.0 0.2 104.0
LTMOA*-V+DR 191.5 1,998.0 0.18 19.0

(b)
Table 1: Running time in seconds without (a) and with (b) dimensionality reduction.

Algorithm 3: IsDominated (Vectorized)

Input: Vectors p0 . . .pN−1 and vectors d0 . . .dN−1

Output: true or false
1: for all j ∈ {1, . . . , N − 1} do

2: cmpj ← dj

?︷︸︸︷
≤ pj vector of T’s and F’s

3: if
(∧N

j=0 cmpj
)

contains T then
4: return true
5: return false

Set Dominance Checks To perform SDC, we test if each
element in dj is smaller or equal than pj to obtain cmpj, a
vector of T’s and F’s corresponding to a positive and nega-
tive answer, respectively. This is done in a single operation
(Line 2 of Alg. 3). Subsequently, a logical and is performed
over all these results (Lines 3-4 of Alg. 3) and if there exists
a T in the result, the answers is positive.

Returning to our example where qi = (4, 2, 6, 1) and
p = (5, 3, 7, 1) we have that pi ⪯ q. Thus, the i’th value
in cmpj is set to T for every j. Consequently, the i’th value

in
(∧N

j=0 cmpj
)

contains T (light green cell in Fig. 2c).

5.2 Incorporating Vectorized SDC in LTMOA*

LTMOA* uses SPC when a node is popped from OPEN and
when it is created. This corresponds to Lines 9 and 20 in
Alg. 1, respectively. Importantly, if a node n is not weakly
dominated after being popped from OPEN, LTMOA* re-
moves all nodes in Gcl(s(n)) that are dominated by g(n).
As we store Gcl(s(n)) as an SoA, this may be a time-
consuming operation. To this end, we remove this step
(Line 11 in Alg. 1). This means that when using vector-
ized SDC, Gcl(s(n)) may contain dominated nodes. This
does not affect the correctness but may cause the algorithm
to compute unnecessary dominance checks. As we demon-
strate empirically, even this simplified approach allows to
obtain speed ups when compared to existing implementa-
tions. We leave the problem of removing elements from an
SoA data representation of Gcl(s(n)) for future work.

6 Empirical Evaluation
Our code is based on the original C implementation of LT-
MOA* provided by the authors and is publicly available.5
We use the same three and four objectives as reported in their
empirical evaluations and compare vectorized and classical
implementations of SPC6 referring to these as LTMOA*-
V and LTMOA*-C, respectively. We also incorporated di-
mensionality reduction (DR) and refer to these versions
as LTMOA*-V+DR and LTMOA*-C+DR, respectively. We
used a 2.80GHz Intel(R) Core(TM) i7-1165G7 CPU Linux
laptop with 64GB of RAM. We use the NY map of the 9th
DIMACS Implementation Challenge: Shortest Path7.

In our implementation, we use int to represent each
cost value which allows storing 16 tuples in each vector.
While the fastest implementations of LTMOA* pre-allocates
a fixed memory block for each Gcl set, this is not straight-
forward to implement when using SIMD instructions and
requires care. Thus, we only pre-allocate a fixed memory
block for Gcl(sgoal) and leave more efficient implementa-
tions for future work.

We report in Table 1 the average, maximal minimal and
median running times of results taken over 25 different ran-
dom instances of the NY data set. We also report in Fig. 3 the
runtime of individual instances for three and four objectives
with DR. As we can see, using vectorized operations allows
to dramatically speed up the running time of LTMOA*. In
particular for the harder instances, the speedup in runtime is
between 6× and 8×.

101 102
LTMOA * -C+DR

101

102

LT
M
O
A
*-
V+
D
R

1x
3x
7x

101 103
LTMOA * -C+DR

101

103

LT
M
O
A
*-
V+
D
R

1x3x7x

Figure 3: Runtime (in seconds) on individual instances com-
paring LTMOA*-V+DR and LTMOA*-C+DR on three (left)
and four (right) objectives. Diagonal dashed lines denote dif-
ferent speed-ups.

5https://github.com/carlos-hu70/moavectorizated.
6We chose not to compare to alternative methods that employ

paralelization for multi-objective search as they cannot be seam-
lessly integrated into state-of-the-art MOS algorithms and their
code is not publicly available.

7http://users.diag.uniroma1.it/challenge9/download.shtml
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