
Hitting Set Heuristics for Overlapping Landmarks in Satisficing Planning

Clemens Büchner, Remo Christen, Salomé Eriksson, Thomas Keller
University of Basel, Switzerland

{clemens.buechner, remo.christen, salome.eriksson, tho.keller}@unibas.ch

Abstract

Landmarks are a core component of LAMA, a state-of-the-
art satisficing planning system based on heuristic search. It
uses landmarks to estimate the goal distance by summing up
the costs of their cheapest achievers. This procedure ignores
synergies between different landmarks: The cost of an ac-
tion is counted multiple times if it is the cheapest achiever
of several landmarks. Common admissible landmark heuris-
tics tackle this problem by underapproximating the cost of a
minimum hitting set of the landmark achievers. We suggest
to overapproximate it by computing suboptimal hitting sets
instead if admissibility is not a requirement. As our heuristics
consider synergies between landmarks, we further propose
to relax certain restrictions LAMA imposes on the number
of landmarks and synergies between them. Our experimen-
tal evaluation shows a reasonable increase in the number of
landmarks that leads to better guidance when used with our
new heuristics.

Introduction
Classical planning aims to find a sequence of actions lead-
ing from an initial state to a goal state in a deterministic
transition system (Ghallab, Nau, and Traverso 2004). To this
day, LAMA (Richter and Westphal 2010) is a competitive ap-
proach to finding suboptimal solutions for classical planning
problems. This was recently demonstrated at the Interna-
tional Planning Competition (IPC) 2023, where LAMA was
used as a baseline; it beat all competitors in the agile track
(finding any solution quickly) and almost made the podium
in the satisficing track (finding cheap solutions).

LAMA approaches planning as a series of explicit heuris-
tic searches, guided by the hFF and hsum heuristics. The for-
mer sums up the costs of best achievers of relevant atoms
in the delete-relaxation to estimate the goal distance (Hoff-
mann and Nebel 2001), the latter sums up the costs of
the cheapest achiever of each landmark (Richter and West-
phal 2010). The landmarks considered by LAMA are sets of
atoms such that one atom from each set must hold in some
state along all plans. Since an action may achieve multiple
landmarks, adding up the costs of each individual cheapest
achiever may overestimate the true cost to satisfy all land-
marks. Common admissible landmark heuristics for optimal

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

planning avoid this overcounting by underapproximating the
cost of a minimum hitting set (Bonet and Helmert 2010;
Pommerening et al. 2014; Büchner, Keller, and Helmert
2021), since an exact computation is NP-complete (Karp
1972). We instead study two approaches that overapproxi-
mate this cost by finding suboptimal hitting sets computable
in polynomial time in the number of landmarks, and use their
cost as an inadmissible heuristic for satisficing planning. Our
first approach fixes one cheapest achiever for each landmark,
making the set of these fixed achievers a hitting set. The sec-
ond uses a known greedy approximation.

Beyond proposing new landmark heuristics, we also
revisit the algorithm LAMA employs to find landmarks.
LAMA’s landmark generation restricts landmarks to be dis-
joint sets of atoms with cardinality 4 or less (Richter,
Helmert, and Westphal 2008). These restrictions ensure that
the landmark generation algorithm is polynomial in the task
representation. However, limiting the number of landmarks
also limits the informedness of the heuristic. We thus re-
lax both restrictions. Firstly, we remove the requirement for
disjointedness, since our heuristics are designed to consider
interactions between landmarks. Secondly, we increase the
maximal cardinality. These changes still guarantee a poly-
nomial bound, albeit with a larger factor.

Finally, we compare our heuristics and generation
changes against LAMA in two contexts: a single search fo-
cusing on the landmark side of LAMA, and a fully fledged
LAMA-style planning system. While our first approach
achieves higher coverage in the single search setting, it can
also lead to higher plan costs. The second approach on the
other hand takes longer to compute but finds better plans, re-
sulting in the best IPC score in the full planner comparison.

Background
We consider classical planning in the SAS+ formalism
(Bäckström and Nebel 1995). A planning task is a 4-tuple
Π = ⟨V,A, I,G⟩ where V is a finite set of finite-domain
state variables; A is a finite set of actions (or operators);
I is a state; and G is a partial state. Each variable v ∈ V
has an associated finite domain dom(v). An atom (or fact)
v 7→ d is an assignment mapping a variable v ∈ V to a
value in its domain dom(v). A partial state s is a set of
atoms, each over a different variable. With vars(s) = {v |
v 7→ d ∈ s for some d} we denote the variables defined by

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

198



s, and s(v) denotes the value d of v in s. A partial state is
called a state if vars(s) = V . Each action a ∈ A is a triple
⟨pre(a), eff(a), cost(a)⟩ where precondition pre(a) and ef-
fect eff(a) are partial states, and cost(a) ∈ R+

0 .
An action a ∈ A is applicable in state s if pre(a) ⊆ s. Ap-

plying an applicable action a in s leads to the successor state
s′ = sJaK where s′(v) = d if v 7→ d ∈ eff(a) and s′(v) =
s(v) otherwise. An action sequence π = ⟨a1, . . . , an⟩ is ap-
plicable in s if a1 is applicable in s, a2 is applicable in sJa1K
and so forth, and we denote the resulting state by sJπK. If
sJπK ⊇ G, then π is called an s-plan. The cost of π is de-
fined as cost(π) =

∑n
i=1 ai. The aim of classical planning

is to find an I-plan (also just called plan).
A disjunctive action landmarks (or landmark) for a state s

of planning task Π = ⟨V,A, I,G⟩ is a set of actions lA ⊆ A
such that for all s-plans π = ⟨a1, . . . , an⟩ it holds that
{a1, . . . , an} ∩ lA ̸= ∅. Some of the literature we dis-
cuss instead considers disjunctive fact landmarks, which are
sets of atoms lF such that all s-plans visit a state contain-
ing some atom in lF . More formally, there exists an s′ ∈
{sJ⟨a1, . . . , ai⟩K | 0 ≤ i ≤ n} such that s′ ∩ lF ̸= ∅. These
landmarks can be translated into disjunctive action land-
marks, for example with the set of actions that contain an
atom in lF as an effect, i.e., lA = {a ∈ A | eff(a)∩ lF ̸= ∅}.
We call the actions in lA the achievers of lF and lA.

Hitting Set Heuristics
Given state s and an associated set of landmarks L, hsum

sums up the cheapest landmark achiever costs: hsum(s) =∑
l∈L mina∈l cost(a). While fast to compute, it ignores the

possibility that landmarks overlap, meaning that one ac-
tion may achieve several landmarks. For example, given
L = {{a1, a2}, {a1, a3}}with cost(a1) = 1 and cost(a2) =
cost(a3) = 2, we get hsum(s) = cost(a1) + cost(a1) = 2
even though a single application of a1 with a cost of 1 satis-
fies both landmarks. Considering an alternative cost function
cost′ = cost except cost′(a1) = 3, hsum(s) = cost′(a2) +
cost′(a3) = 4, even though applying only a1 again achieves
both landmarks with only a cost of 3.

To account for overlapping landmarks, we aim to find a
set of actions that achieves all landmarks. This can be mod-
eled as a weighted hitting set problem: Given a universe of
elements U and a set S consisting of sets of elements from
U , along with a cost function cost : U → R, a hitting set is a
set H ⊆ U that “hits” each element of S , that is H ∩ S ̸= ∅
for all S ∈ S . The cost of H is the sum of all its elements,
i.e., cost(H) =

∑
u∈H cost(u). By setting U = A, S = L,

and cost as the action cost function, finding a set of actions
that achieves all landmarks means finding a hitting set for L.
The cost of the hitting set can then be used in the heuristic.

Starting from hsum, a straightforward way to calculate a
hitting set while maintaining computational efficiency is to
start with the collection of actions that hsum would sum over,
and then remove all duplicates. The resulting collection is
a set because there are no duplicates, and it hits all land-
marks because only duplicate actions are removed. We de-
note the resulting heuristic “hitting sum”, or hhs. Since hsum

may have multiple cheapest achievers, we pick the first min-

Algorithm 1: Greedy Hitting Set Heuristic hghs

Input: set of landmarks L
1: hghs ← 0
2: while L ̸= ∅ do
3: select a ∈ A with minimal cost(a)

|{l∈L|a∈l}|
4: hghs ← hghs + cost(a)
5: L ← {l ∈ L | a /∈ l}
6: return hghs

imal cost action according to a fixed ordering.
While this approach avoids the problem of counting

the same action multiple times (illustrated by the exam-
ple with cost function cost) the problem of summing mul-
tiple cheaper actions instead of a single expensive action
(illustrated by the example with cost function cost′) still
persists. To also address this second issue, we instead use
a well-known greedy approximation of small hitting sets,
originally described for the equivalent set cover problem
(Chvátal 1979; Ausiello, D’Atri, and Protasi 1980). Algo-
rithm 1 is an adaption written in the hitting set perspective
and computes our greedy hitting set heuristic hghs. It iter-
atively selects actions such that the ratio between the cost
of the action and the number of newly covered landmarks
is minimal, until all landmarks are covered. In the example
with cost function cost′, this approach selects a1 in line 3
during the first iteration already because it appears in two
landmarks, rendering its ratio lower than for a2 and a3.

Preferred Operators LAMA performs heuristic search
with multiple queues, where some queues only contain states
reached by preferred operators (Helmert 2006). A heuristic
can flag certain actions as preferred, indicating that it deems
them important for advancing towards the goal. While hFF

provides preferred operators as a side product of the heuris-
tic computation, hsum performs an extra step on top of its
heuristic computation to flag applicable actions that achieve
landmarks. In contrast, the hitting sets computed by our new
heuristics are exactly the set of actions the heuristic deems
important, and we instead flag those actions as preferred op-
erators without imposing any additional effort.

Landmark Generation
Planners using landmark heuristics also need a way to gen-
erate landmarks. While this topic is orthogonal to how the
heuristic uses landmarks, the properties of the generated
landmark set can influence the performance of the heuristic,
as the example with overlapping landmarks and hsum shows.
We investigate the generator used in LAMA to identify pos-
sible changes that might improve our hitting set heuristics.

The LAMA landmark generator finds disjunctive fact
landmarks in a backwards fashion. It first creates a fact land-
mark for each goal atom, and then iteratively finds new land-
marks: Given landmark l it tries to find a (small) set of atoms
that contains at least one precondition of all actions achiev-
ing l. The number of landmarks is limited to be polynomial
in the task representation through several mechanisms. Most
importantly for us, the generator disallows overlap between

199



the disjunctive fact landmarks, that is, every atom appears
in at most one landmark. Note that the implied disjunctive
action landmarks can still overlap, since one action may
achieve several atoms. Furthermore, LAMA limits the dis-
junction size of landmarks to 4, with the intuitive motiva-
tion that smaller disjunctions are harder to satisfy. Smaller
landmarks also block fewer atoms from being used in other
landmarks, potentially leading to more landmarks overall.

Since our new heuristics account for overlap between
landmarks, we propose to allow overlapping disjunctive fact
landmarks. While this change primarily targets our new
heuristics, we remark that overlapping landmarks can con-
tain valuable information in general. Consider for exam-
ple a problem with atoms x, y, z and the landmarks {x, y},
{x, z}, and {y, z}. Since every landmark overlaps with the
other two, LAMA considers at most one of them, assuming
it is sufficient to achieve one of the atoms when we need to
achieve at least two.

To ensure landmarks do not overlap, LAMA discards a
newly generated landmark lnew if it overlaps with a previ-
ously found landmark lold. The one exception to this rule is
if |lnew| = 1, in which case it discards lold instead. Consider
the example above with the additional landmark {x} and
initially L = {{x, y}}. Assume the algorithm now finds the
new landmark {y, z} and discards it since it overlaps with
{x, y}. Next it finds {x}, which replaces {x, y} in L. At
this point, {y, z} does not overlap with any landmark in L,
but the generator no longer knows about it and returns fewer
landmarks than it could.

When allowing overlap, we add all landmarks in both ex-
amples. To keep the overall number of landmarks tractable,
we still enforce a maximum size limit but increase the con-
stant since the disadvantage of large landmarks blocking
atoms no longer applies. In order to avoid redundant infor-
mation (e.g., {x, y} is always satisfied when {x} is), we add
a post-processing step that removes all landmarks l ∈ L for
which a landmark l′ ⊂ l exists in L.

Experimental Evaluation
We implemented our approach on top of Fast Downward
version 23.06 (Helmert 2006), which also contains a mod-
ernized implementation of LAMA. LAMA is an anytime
planner aiming to find some plan fast and repeatedly restarts
the search with different parameters to find cheaper plans
while time permits. In order to analyze our hitting set heuris-
tics and changes to the landmark generation in isolation,
we first run a simplified version of LAMA’s first iteration,
removing the hFF heuristic and the use of preferred opera-
tors. In a second step we test them as fully fledged planning
systems. Our experiments were conducted on AMD EPYC
7742 2.25GHz processors, using a time limit of 30 minutes
and memory limit of 3.5 GiB. The results were evaluated
with Downward Lab (Seipp et al. 2017). Our benchmark
suite consists of 2882 planning tasks from the satisficing
track of the IPCs 1998–2023. All code, benchmarks and ex-
perimental data are publicly available (Büchner et al. 2024).

Fast Downward utilizes a formalism where computing
the achievers of a disjunctive fact landmark is not always
straightforward. In particular, if a disjunctive fact landmark

all domains no derived variables

hsum hhs hghs hsum hhs hghs

4 1984 1982 1959 1647 1705 1681
1956 1969 1954 1619 1692 1676

10 1995 2004 1975 1666 1728 1697
1976 2004 1986 1647 1728 1708

Table 1: Coverage results between hsum, hhs, and hghs. The
left-most column indicates the maximal landmark size and
the following column whether overlapping is allowed ( )
or not ( ). The right side restricts from all 90 domains to
those 81 without derived variables.

contains derived variables (Edelkamp and Hoffmann 2004),
it uses the set of all actions as a trivial overapproximation.
For hhs and hghs this results in all such landmarks being cov-
ered by one single action, rendering them significantly less
informed compared to hsum. We thus also report results re-
stricted to domains with no derived variables.

Simplified First Iteration
To analyze the impact of our proposed landmark generation
changes, we separately controlled disjunction size and over-
lap. For the disjunction size we tried values from 4 to 14
in increments of 2. When not allowing overlap, the number
of landmarks across all tasks only increased slightly (from
≈ 484 000 for 4 to ≈ 511 000 for 14), but with overlap we
observed two larger jumps from 6 to 8 (≈+90 000) and from
10 to 12 (≈+85 000). Table 1 reports the coverage results
for 4 (baseline) and 10 (best overall performance).

Disjunction size The configurations using the larger dis-
junction size dominate across all used heuristics. We find
that hsum solves the fewest additional tasks and hhs the most,
and that configurations with overlap generally benefit more.
The increase in the number of landmarks stays reasonable;
using both increased landmark size and overlap yields 42%
more landmarks compared to using neither. The time re-
quired compared to the original landmark generation is usu-
ally less than doubled, staying below 10 seconds for the ma-
jority of problems.

Overlap While allowing larger disjunctions is generally
beneficial, not all configurations benefit from overlapping
landmarks. The hsum heuristic consistently performs worse
with overlap, confirming that it is undesirable to consider
overlapping landmarks independently. Our new heuristics
perform worse with overlap and the default disjunction size,
while for disjunction size 10 overlap has no influence for
hhs and a positive influence for hghs. We assume that over-
lap introduces some degree of inaccuracy for all considered
heuristics. This results in a trade-off between the usefulness
of the additional landmark information and the inaccuracies
from the overlap. As we progress from hsum over hhs to
hghs the heuristics become better equipped to handle over-
lap. Similarly, as we progress to larger disjunction sizes, the
overlap between landmarks becomes more likely to be small
relative to the landmark size, harming the heuristic less.

200



100 101 102 103 104

0.5

1

2

failed

hsum

h
hsum

h = hhs

h = hghs

Figure 1: Relative cost of plans found by hsum compared
against those found by hhs and hghs. Parcprinter has plan
costs in the order 106 and is excluded to improve clarity.

Heuristics Finally, we compare the heuristics against each
other by considering their respective best performing ver-
sions, namely size 10 without overlap for hsum, and size 10
with overlap for both hhs and hghs. Taking hsum as a baseline,
hhs improves coverage, solving more tasks in 17 domains
and fewer in 17. Coverage drops for hghs on the other hand,
which solves more tasks in 16 domains compared to hsum,
and fewer in 20. On domains without derived variables, both
hhs and hghs achieve significantly higher coverage than hsum.

We also studied the costs of plans found. Figure 1 com-
pares the cost of hsum to that of hhs and hghs, respectively.
While hhs often finds worse plans than hsum, especially as
costs for hsum get higher, hghs generally finds better plans,
suggesting that the heuristic offers better guidance. How-
ever, this comes at the expense of higher computation time,
leading to fewer solved problems. This can also be seen in
the reasons for failure: While hsum and hhs time out in 5
tasks, hghs does so in up to 194 tasks, depending on the con-
figuration.

Comparison against LAMA

For a full planner comparison we introduce LAMA-hhs and
LAMA-hghs. They are identical to LAMA except for the
heuristic used and changes to disjunction size and overlap.
Since hsum improved with disjunction size 10, we further in-
clude LAMA-10 that differs only in the disjunction size.

The top part of Table 2 shows the IPC quality score and
coverage of each planner using the standard LAMA settings.
The IPC quality score is the best plan cost1 divided by the
found plan cost. We see that the coverage improvement for
hsum with larger disjunction size and hhs do not carry over,
most likely because hFF compensates in domains where hsum

is weaker. We also again see the negative impact of hhs in
terms of cost, as its IPC quality score is significantly worse.
However, LAMA-hghs is much closer to LAMA in terms of

1The minimum of all found plan’s costs and the upper bound
from planning.domains (Muise 2016, accessed on April 5, 2024).

pref.
op.

all domains no derived var.

score cov. score cov.

FF

LAMA 2359.58 2457 1959.78 2055
LAMA-10 2352.82 2455 1952.54 2052
LAMA-hhs 2325.73 2425 1954.07 2052
LAMA-hghs 2348.65 2428 1976.03 2054

FF
+

LM

LAMA 2331.20 2438 1930.84 2036
LAMA-10 2323.94 2432 1925.88 2032
LAMA-hhs 2304.81 2403 1934.98 2032
LAMA-hghs 2364.48 2444 1989.87 2068

Table 2: IPC quality score and coverage of LAMA-like plan-
ners.

IPC quality score, compensating its comparatively low cov-
erage with better plans.

The default configuration of LAMA only considers pre-
ferred operators from the hFF heuristic, because the compu-
tation of hsum preferred operators is too expensive. Since the
hitting set heuristics compute preferred operators as a side
product, we tested the impact of taking the preferred oper-
ators from landmark heuristics into account. The results are
shown in the bottom part of Table 2. They confirm that pre-
ferred operators from hsum are harmful for standard LAMA.
Similarly they negatively affect LAMA-hhs, presumably be-
cause the found hitting set is not a good approximation. For
LAMA-hghs we however see a significant improvement, re-
sulting in the highest IPC quality score despite lower cov-
erage. This indicates that the hitting sets found by hghs are
a good representation of which actions should be applied.
When only considering domains without derived variables,
LAMA-hghs with additional preferred operators from hghs

achieves both the highest coverage and highest IPC quality
score among all configurations.

Conclusion
The landmark heuristic used in LAMA can be inaccurate due
to ignoring synergies between landmarks. We propose two
hitting-set-based heuristics that take synergies into account:
hhs creates a hitting set by fixing one action as the achiever
for each landmark, while hghs uses a greedy hitting set al-
gorithm that is more expensive to compute but yields higher
quality hitting sets. Together with allowing overlaps in the
disjunctive fact landmarks, increasing the maximal disjunc-
tion size, and utilizing the hitting set as a source for preferred
operators, trading computation cost for better guidance pays
off for hghs: Its LAMA-like planner is on par with LAMA,
and surpasses it on domains without derived variables.

An important open question is how to improve our heuris-
tics on domains with derived variables. Furthermore, inves-
tigating sophisticated tie-breaking criteria for hhs may im-
prove its guidance. Finally, we believe LAMA can be further
improved by using different heuristics at different stages,
e.g. using the evaluation speed of hhs or hsum in the first iter-
ation to find a solution fast and using the improved guidance
of hghs afterwards to find cheaper plans.

201



Acknowledgments
This research was supported by TAILOR, a project funded
by the EU Horizon 2020 research and innovation pro-
gramme (grant agreement no. 952215) and by the Swiss
National Science Foundation (SNSF) as part of the project
“Lifted and Generalized Representations for Classical Plan-
ning” (LGR). A special thanks goes to Malte Helmert who
supported this work with helpful recommendations and dis-
cussions.

References
Ausiello, G.; D’Atri, A.; and Protasi, M. 1980. Structure
Preserving Reductions among Convex Optimization Prob-
lems. Journal of Computer and System Sciences, 21(1):
136–153.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Bonet, B.; and Helmert, M. 2010. Strengthening Landmark
Heuristics via Hitting Sets. In Coelho, H.; Studer, R.; and
Wooldridge, M., eds., Proceedings of the 19th European
Conference on Artificial Intelligence (ECAI 2010), 329–334.
IOS Press.
Büchner, C.; Christen, R.; Eriksson, S.; and Keller, T. 2024.
Code, Benchmarks and Experiment Data for the SoCS 2024
Paper “Hitting Set Heuristics for Overlapping Landmarks”.
https://doi.org/10.5281/zenodo.10948623.
Büchner, C.; Keller, T.; and Helmert, M. 2021. Exploiting
Cyclic Dependencies in Landmark Heuristics. In Goldman,
R. P.; Biundo, S.; and Katz, M., eds., Proceedings of the
Thirty-First International Conference on Automated Plan-
ning and Scheduling (ICAPS 2021), 65–73. AAAI Press.
Chvátal, V. 1979. A Greedy Heuristic for the Set-Covering
Problem. Mathematics of Operations Research, 4(3): 233–
235.
Edelkamp, S.; and Hoffmann, J. 2004. PDDL2.2: The Lan-
guage for the Classical Part of the 4th International Planning
Competition. Technical Report 195, University of Freiburg,
Department of Computer Science.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Karp, R. M. 1972. Reducibility among combinatorial prob-
lems. In Miller, R. E.; and Thatcher, J. W., eds., Complexity
of Computer Computations, 85–103. Plenum Press.
Muise, C. 2016. Planning.Domains. In ICAPS 2016 System
Demonstrations and Exhibits.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based Heuristics for Cost-optimal Planning. In
Chien, S.; Fern, A.; Ruml, W.; and Do, M., eds., Proceed-
ings of the Twenty-Fourth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2014), 226–234.
AAAI Press.

Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks Revisited. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI 2008), 975–982.
AAAI Press.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research, 39: 127–177.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.

202


