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Abstract

Recent work on diverse planning has focused on a two-step
setting where the first step consists of generating a large num-
ber of plans, and the second step consists of selecting a sub-
set of plans that maximizes diversity. For the second step,
previous work has focused on solving a combinatorial opti-
mization problem for diverse subset selection that can be ap-
proximated using greedy search. In this work, we propose a
flexible, bi-criteria framework for diverse plan selection. Our
framework consists of optimizing both quality and diversity,
generalizing previous work and providing flexibility to pri-
oritize one objective over the other. We consider two qual-
ity and two diversity measures and show that greedy search
guarantees an approximation with a constant ratio for certain
configurations based on established results in the literature.
To allow users to trade off additional computation for bet-
ter solutions, we introduce a beam search approximation that
generalizes the greedy search, and we provide approxima-
tion guarantees on the obtained solutions. Finally, we con-
duct extensive experiments that show that: (1) our flexible
bi-criteria framework allows us to obtain solutions of better
quality while still maintaining a high degree of diversity; (2)
our beam search approximation obtains significant improve-
ment in performance over greedy search and, for a large num-
ber of instances, is able to generate solutions that are equal to
or better than those obtained by an exact MIP solver with a
significantly higher runtime limit.

1 Introduction
Due to the expressive modelling capabilities inherent in
automated planning, planners have become viable tools in
various real-world applications, including robotics (Barrios
et al. 2011; Karpas and Magazzeni 2020), logistics (Sousa
and Tavares 2013; Pedersen and Krüger 2015), healthcare
(Fuentetaja et al. 2020; Lindsay et al. 2022) and much more.
Traditionally, the primary focus of planners has been on
generating a single optimal or high-quality satisficing plan.
However, applications in areas such as malware detection
(Boddy et al. 2005), systems with unknown or partially
known user preferences (Nguyen et al. 2012), automated
analysis of streaming data (Riabov et al. 2015), and risk
management (Sohrabi et al. 2018) underscore the necessity
for a diverse set of plans. More broadly, many real-world
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scenarios can benefit from having a diverse set of plans. In
dynamic and complex environments, a diverse set of plans
enhances system robustness by offering alternative courses
of action and increases the chance that one of the plans is
acceptable to the user (Bloem 2015).

Recent work on diverse planning (Vadlamudi and Kamb-
hampati 2016), including the state-of-the-art diverse plan-
ner proposed by Katz and Sohrabi (2020), focuses on a two-
stage approach where a candidate set of satisficing plans is
generated in the first step, and a diverse subset of k plans
is selected in the second step. In this work, we focus on the
second step of diverse plan selection. We extend existing ap-
proaches by providing a more flexible framework for defin-
ing objectives that consider both diversity and quality and
by providing a more flexible approximation algorithm that
allows users to trade off additional computation for better
solutions. We make the following contributions:

• We propose a bi-criteria framework for diverse plan se-
lection in two-stage diverse planning that considers both
the diversity and the quality of solutions and generalizes
previous work. By making the connection to previous
work on diverse subset selection, we highlight key con-
figurations of our approach for which a greedy search en-
joys theoretical guarantees w.r.t. solution quality.

• To allow a flexible trade-off between solution quality
and computational cost, we propose a beam search-based
approximation for optimizing our bi-criteria framework,
and we provide approximation guarantees on the ob-
tained solutions.

• We present extensive experiments that show that: (i) our
bi-criteria framework provides finer-grained control over
the trade-off between diversity and quality and, in par-
ticular settings, can even provide gains in one criterion
with little to no loss on the other; (ii) our beam search
approximation is able to find better solutions compared
to greedy search and can often obtain solutions that are
equal to or better than those obtained by a MIP solver
with a significantly higher runtime limit.

2 Background
In this work, we mostly follow the notations used by Katz
and Sohrabi (2020). A SAS+ planning task (Bäckström and
Nebel 1995) is characterized by a tuple ⟨V ,A, s0, s∗⟩, where
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V = {v1, ..., vm} is a set of state variables. A state is a com-
plete assignment of values to the state variables, and a par-
tial state can feature state variables with undefined value u∗.
We write s[v] to denote the value of the state variable v in a
state s. A partial state p is said to be consistent with a state
s if and only if for all v ∈ V , p[v] = s[v] unless p[v] = u∗.
A = {a1, ..., an} is a finite set of actions, where each action
a is a pair ⟨pre(a), eff(a)⟩ of partial states called precondi-
tions and effects. An action a is applicable in a state s ∈ S if
and only if pre(a) is consistent with s. Applying a changes
the value of v to eff(a)[v], for all v defined in eff(a). The cost
if an action a is an assignment defined by a mapping from
action setA to the non-negative real numbers C : A → R+

0 .
The cost of an action sequence π, denoted by C(π), is the
sum of the costs of the action in it. s0 is the initial state and
s∗ is the goal state. An action sequence π = ⟨a1, ..., aj⟩ is
applicable in s if there exist states s0, · · · , sj such that (i)
s0 = s, and (ii) for each 1 ≤ i ≤ j, ai is applicable in si−1

and si = si−1JaiK; we also say sj is consistent with s0JπK.
π is a satisficing plan if and only if π is applicable in s0 and
s∗ is consistent with s0JπK.

2.1 Diverse Planning
A planner can be used for diverse planning if it can gener-
ate a diverse set of satisficing plans of a certain cardinality
k, and several approaches were proposed to solve this prob-
lem. An early line of work (Coman and Munoz-Avila 2011;
Nguyen et al. 2012; Roberts, Howe, and Ray 2014; Bloem
2015) has utilized a greedy strategy, similar to what was pro-
posed in Hebrard et al. (2005), in the context of diverse plan-
ning. This strategy involves a process of generating a candi-
date plan, adding this plan to a solution set, and providing
feedback to the planner so that it tries to find new plans that
are distant from the current solution set. Following this pro-
cess, subsequent candidates are then iteratively generated,
but are only added to the solution set if the diversity criterion
is satisfied. Vadlamudi and Kambhampati (2016) proposed
a complete two-stage optimization approach where a large
number of satisficing plans (that are of bounded quality) are
generated in the first step as candidates and all k-sized com-
binations of these plans are explored in the second step.

Katz and Sohrabi (2020) adopted this two-stage optimiza-
tion approach and proposed the forbid iterative (FI) planner
that was shown to be empirically superior to many of the ex-
isting diverse planners in terms of coverage, solution quality,
and diversity. The FI planner, in essence, iteratively reformu-
lates the task once a plan is generated to forbid all previously
generated plans from being generated again. This is proven
to be a powerful approach to diverse planning as FI has ob-
tained state-of-the-art performance. The second stage of the
two-stage approach, which we call the diverse plan selection
problem, involves selecting a subset of plans subject to a car-
dinality constraint k that maximizes diversity (Vadlamudi
and Kambhampati 2016). Katz and Sohrabi (2020) tested
and later proposed using mixed-integer programming (MIP)
to obtain the set with optimal minimum pairwise diver-
sity (Katz, Sohrabi, and Udrea 2022). However, solving the
MIPs can be quite expensive as their MIP formulation fea-
tures pairwise linear constraints which grow quadratically

with the number of plans n in the candidate set. To provide
a faster alternative, Katz and Sohrabi (2020) also proposed
to use greedy search, a low-order polynomial-time search al-
gorithm, for its simplicity and efficiency. Greedy search has
shown surprisingly strong performance in terms of solution
quality. In particular, experiments show that greedy search
is able to achieve optimality around 60% of the time (Katz,
Sohrabi, and Udrea 2022). The greedy search for diverse
planning introduced by Katz and Sohrabi (2020) is provided
in Algorithm 1.

Algorithm 1: Greedy Search for Diverse Plan Selection
Input: A set of generated plans Π, a set function modelling
diversity f(·)
Parameter: Cardinality constraint k
Output: G ⊂ Π where |G| = k

1: Π← sort(Π, C(·), ascending)
2: G← argmax{πi,πj}∈Πf({πi, πj})
3: for i = 3, ..., k do
4: π ← argmaxπ∈Π\Gf(G ∪ {π})
5: G← G ∪ π
6: end for
7: return G

To evaluate the diversity of a set of plans, we first need
a measure of similarity (or dissimilarity) between plans.
In the context of diverse planning, several similarity mea-
sures have been utilized. These similarity measures in-
clude the stability, state, and the uniqueness (Katz and
Sohrabi 2020). Uniqueness similarity (Roberts, Howe, and
Ray 2014) measures whether a plan is a permutation or a
subset of another plan that is already selected. It is defined
as simuniqueness(Π) =

∑
πn,πm∈Π,πn ̸=πm

u(πn, πm) where
Π is a set of plans, and

u(πn, πm) =


0, πn ⊂ πm

0, πn \ πm = ∅
1, otherwise

The stability similarity (Fox et al. 2006; Coman and Munoz-
Avila 2011) measures the ratio of actions that are shared
between two plans. It is defined as simstability(π, π

′) =
|A(π)∩A(π′)|
|A(π)∪A(π′)| , where A(π) denotes the set of actions in π.

Suppose (s0, s1, s2, ..., sn) and (s′0, s
′
1, s

′
2, ..., s

′
n′) are the

sequences of states corresponding to plan π and plan π′. As-
suming n′ ≤ n, the state similarity (Nguyen et al. 2012)
is defined as simstate(π, π

′) = 1
n

∑n′

i=1 ∆(si, s
′
i), where

∆(si, s
′
i) =

|si∩s′i|
|si∪s′i|

is the similarity between two states.
We note that the original formulation for the stability sim-

ilarity has been under an action set (Fox et al. 2006; Coman
and Munoz-Avila 2011; Katz and Sohrabi 2020), but Katz,
Sohrabi, and Udrea (2022) proposed it should be defined for
action multi-sets. It follows the same definition except that
A(π) now denotes the multi-set of actions, allowing for rep-
etitions. In this work, we mainly focus on the original defi-
nition for its computational efficiency.
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2.2 Beam Search
Greedy search, which always selects the locally optimal de-
cision, can often lead to sub-optimal solutions (Cohen and
Beck 2019). In contrast, beam search is a generalization of
greedy search that has been widely used in different tasks,
most notably in neural sequence decoding (Cohen and Beck
2019, 2021), to mitigate the limitations of greedy search and
find better solutions. At every step, beam search keeps a set
of the most promising candidates (partial) solutions, with the
cardinality of this set called beam width (or, alternatively,
beam size). As a result, the beam search algorithm enables
a trade-off between solution quality and extra computation
that grows linearly with beam width. By keeping a larger
number of candidate solutions at each step, the beam search
explores a larger portion of the search space compared to
greedy search, and consequently tends to yield superior so-
lutions. Consider a beam search with a beam width of m. At
every iteration, the beam search generates the successors for
all partial solutions in the beam and selects the top-scoring
m successors as the new beam for the next iteration. Let Bt

denote the set of m partial solutions in the beam at iteration
t, Bt = {B1

t , B
2
t , ..., B

m
t }, where the beam is sorted base on

a scoring function f(·) in descending order, i.e., Bi
t ≥ Bi+1

t .
Let B′

t denote the set of all successors of the beam of itera-
tion t− 1, B′

t = {Bi
t−1 ∪ {π}, π ∈ Π \Bt−1}. The beam at

iteration t is a then selected from B′
t as follows:

Bt = argmax
B1

t ,...,B
m
t ∈B′

t

m∑
i=1

f(Bi
t). (1)

Note that beam search generalizes greedy search, as setting
the beam width m = 1 will result in a greedy search.

3 Bi-Criteria Framework for Diverse and
High-Quality Plan Selection

In this section, we present a framework for diverse plan se-
lection that considers both the diversity of the selected set
of plans, as well as their quality (represented by cost). Pre-
vious work on diverse plan selection has only considered
plan costs in the first stage of generating plans, by enforc-
ing bounded suboptimality on the generated plans (Katz,
Sohrabi, and Udrea 2022). However, in such approaches,
using strong bounds can limit the ability to generate a suf-
ficiently diverse set of plans in the first stage. In contrast,
using loose bounds can limit our ability to select a high-
quality subset of plans in the second stage. Instead, we pro-
pose a bi-criteria optimization framework for plan selection
that consists of a linear combination of quality and diver-
sity measures, inspired by previous work on diverse subset
selections (Borodin, Lee, and Ye 2012; Dasgupta, Kumar,
and Ravi 2013). For a given set of plans S, we consider the
following bi-criteria objective:

f(S) = αg(S) + βh(S) s.t. |S| = k (2)

where g(·) is a quality measure, h(·) is a diversity measure,
and the constraint |S| = k is a cardinality constraint on the
number of plans. We can control the trade-off between qual-
ity and diversity by tweaking α

β . In particular, Eq. (2) gen-
eralizes previous work that focuses solely on diversity in the

plan selection, which can be obtained by setting α = 0. To
our knowledge, this is the first work to consider a bi-criteria
optimization framework for diverse plan selection.

By using a bi-criteria framework for diverse plan selec-
tion, we can relax the quality bound during the plan genera-
tion stage (although we note that our framework is useful in
the presence of such bounds). In addition, as sets of longer
plans can often lead to increased diversity but have lower
quality, optimizing for both diversity and quality can help
mitigate this problem.

3.1 Diversity Functions
We consider two well-known functions for measuring the
diversity of a selected subset of items, based on a pairwise
distance measure between plans, d(·, ·). In the context of di-
verse planning, stability similarity has a corresponding dis-
tance function computed by d(πi, πj) = 1 − sim(πi, πj)
with sim representing the stability similarity.

Previous work on diverse plan selection has utilized these
distance measures to select a diverse subset of plans S of
cardinality k, by maximizing the minimum distance between
each pair of plans in the subset, denoted by hmin:

hmin(S) = min
πi,πj∈S

d(πi, πj)

This diversity function ensures all plans in the selected sub-
set S are sufficiently diverse as hmin(S) is a lower bound
on their pairwise dissimilarities. In this work, we also con-
sider another diversity function, the sum of pairwise dis-
tances hsum (Borodin, Lee, and Ye 2012), defined as:

hsum(S) =
∑

πi,πj∈S

d(πi, πj).

Given the cardinality constraint, a solution that is optimal
w.r.t. hsum is also optimal w.r.t. the average pairwise dis-
tance (Nguyen et al. 2012) between plans.

For our theoretical guarantees (Section 4), we require that
d(·, ·) is a metric, i.e., it is symmetric, non-negative, and
satisfies the triangle inequality. Upon closer inspection, we
observe that the stability distance is, in fact, a metric as it
is a special case of Jaccard Distance (Markov and Larose
2007).1

3.2 Quality Functions
Our quality functions are based on the cost of the selected
plans. In particular, we consider gmin, the min plan cost of
a selected set of plans S:

gmin(S) = min
π∈S

c(π),

where c(π) is the cost of plan π. In addition, we consider
gsum, the sum of plan costs:

gsum(S) =
∑
π∈S

c(π).

1The distance measure that arises from the multi-set definition
is also known as the generalized Jaccard distance, which also sat-
isfies the triangle inequality (Kosub 2019). The non-negativity and
symmetry are trivial; this implies the plan distance based on the
multi-set definition is also a metric distance function.
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Similar to diversity, we scale the cost of plans between
0 and 1 by using min-max scaling. As we are maximizing
the bi-criteria objective, we compute the complement to one
such that the lowest-cost plans get the highest score of 1:

c(π) = 1− C(π)−minπ∈Π(C(π))

maxπ∈Π(C(π))−minπ∈Π(C(π))

where Π is the set of plans generated in the first stage of
diverse planning. In this way, we can maximize the quality
function to optimize plan costs. It should be noted that gsum
is modular, and therefore also submodular, as well as mono-
tonic. For a set function l : 2Π → R defined on a finite set
Π, submodularity refers to a diminishing return, which can
be defined as: l(S ∪ {π})− l(S) ≥ l(S′ ∪ {π})− l(S′), for
all S ⊂ S′ ⊂ Π and π ∈ Π \ S′ (Buchbinder and Feldman
2018). A set function is modular when equality appears in
place of the inequality (Wu, Zhang, and Du 2019). Mono-
tonicity, on the other hand, implies a set function is non-
decreasing (Krause and Golovin 2014).

4 Efficient Approximation Algorithms
We now discuss efficient approximations for the proposed
bi-criteria optimization framework in Eq. (2). In Section 4.1,
we review existing approximation guarantees on the perfor-
mance of greedy search for select combinations of diversity
and quality measures in the proposed framework. In Section
4.2, we propose a beam search algorithm for the bi-criteria
framework that generalizes the greedy search and offers a
more flexible trade-off between computational cost and opti-
mization performance. Then, in Section 4.3, we provide ap-
proximation guarantees for the proposed beam search. The
existing and the new theoretical results for the greedy search
and beam search approximations are summarized in Table 1.

4.1 Greedy Search for Diverse Plan Selection
Previous work on diverse subset selection has found that for
some combinations of diversity and quality functions, a so-
lution produced by a greedy search enjoys theoretical guar-
antees w.r.t. its objective value. In particular, Borodin, Lee,
and Ye (2012) showed that optimizing hsum, either on its
own or in conjunction with a nonnegative monotone sub-
modular quality function, using greedy search achieves a 1

2 -
approximation of the optimal solution. Further, Dasgupta,
Kumar, and Ravi (2013) showed that optimizing hmin via
greedy search leads to a 1

2 -approximation, while optimiz-
ing hmin in conjunction with a nonnegative monotone sub-
modular quality function via greedy search leads to a 1

4 -
approximation.

While previous work on diverse plan selection (Katz and
Sohrabi 2020; Katz, Sohrabi, and Udrea 2022) has consid-
ered using a greedy search to approximate hmin, it was not
established that such approximation, when using pairwise
distances based on stability similarity, provides theoretical
guarantees following Dasgupta, Kumar, and Ravi (2013).

4.2 Beam Search for Diverse Plan Selection
While greedy search enjoys theoretical guarantees, it can,
and often does, lead to suboptimal solutions. Further, greedy

search does not provide any mechanism for trading off addi-
tional computation time for better solutions. Instead, we pro-
pose to use beam search, a generalization of greedy that of-
fers much more flexibility: by controlling the beam width m,
a user can trade off additional computation (that grows lin-
early with m) for better solutions. In practice, beam search
was found to outperform greedy search in a range of tasks
(Yang, Huang, and Ma 2018; Meister, Vieira, and Cotterell
2020; Cohen and Beck 2021). However, previous work has
not investigated the use of beam search for the proposed op-
timization framework in Eq. (2). In particular, it is not known
if beam search also enjoys theoretical guarantees and how it
compares to greedy search when used to optimize Eq. (2).

Algorithm 2 describes the beam search procedure for op-
timizing Eq. (2). In adapting the standard beam search al-
gorithm for diverse plan selection, several adjustments are
needed to align it with the unique characteristics of this set-
ting. Specifically, when the objective functions depend on
the pairwise diversity, it is imperative to initialize the algo-
rithm with a pair of plans. This step addresses the ambiguity
that arises from selecting a singular plan at the outset. More-
over, we found that the diversity and quality functions for
diverse plan selection often lead to multiple solutions with
similar objectives. To avoid bias towards specific structures,
we employ a random tie-breaking mechanism.

Algorithm 2: Beam Search for Diverse Plan Selection
Input: A set of generated plans Π, a set-based bi-criteria
objective function f(·)
Parameter: Cardinality constraint k, Beam width m
Output: S′ ⊂ Π, |S′| = k

1: B ← argmaxb1,...,bm∈Π,|bi|=2

∑m
i=1 f(bi)

2: for i = 3, ..., k do
3: B′ = successors(B)
4: B ← argmaxb1,...,bm∈B′

∑m
i=1 f(bi).

{Break ties randomly.}
5: end for
6: S′ ← argmaxb∈Bf(b)
7: return S′

4.3 Approximation Guarantees for Beam Search
In this section, we establish approximation guarantees2 on
beam search for diverse plan selection, as summarized in
Table 1. In particular, we extend the approximation guar-
antees on greedy search from Borodin, Lee, and Ye (2012)
and Dasgupta, Kumar, and Ravi (2013) to the beam search
setting and introduce additional results for criteria involving
gmin. All approximation ratios are shown for k ≥ 2 as it is
trivial that beam search can optimize any f for k = 1 due to
the search space being equal to the solution space.

We note that the approximation guarantees for greedy
search do not trivially extend to beam search. Although
beam search tends to outperform greedy search, the solu-
tions produced by beam search are not guaranteed to dom-

2All proofs appear in the supplementary material (Zhong, Shati,
and Cohen 2024).
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Criteria Quality Diversity BoundsG BoundsB OriginG OriginB
(1) gsum ∅ 1.000 1.000 Proposition 1
(2) gmin ∅ 1.000 1.000 Proposition 1
(3) ∅ hmin 0.500 0.500 (Dasgupta, Kumar, and Ravi 2013) Theorem 1
(4) ∅ hsum 0.500 0.500 (Borodin, Lee, and Ye 2012) Theorem 2
(5) gsum hmin 0.250 0.250 (Dasgupta, Kumar, and Ravi 2013) Corollary 1
(6) gsum hsum 0.500 0.500 (Borodin, Lee, and Ye 2012) Theorem 2
(7) gmin hmin 0.250 0.250 Corollary 1
(8) gmin hsum 0.250 0.250 Corollary 1

Table 1: The approximation ratios of different combinations of quality and diversity functions for both greedy search (G) and
beam search (B).

inate solutions produced by greedy search. To demonstrate
this, Examples 1 and Example 2 in the supplementary mate-
rial (Zhong, Shati, and Cohen 2024) show that beam search
may end up with worse solutions than greedy search.

To prove the approximation guarantees of beam search
on different diverse plan selection objectives, we present
Lemma 1.
Lemma 1. The top solution in each iteration of the beam
search procedure, has an equal or higher objective value
compared to the best expansion of the top solution from last
iteration.

f(B1
t ) ≥ f(B1

t−1 ∪ {π}), ∀π ∈ Π \Bt−1.

For criteria (1) and (2) in Table 1 that are based solely on
a quality function, namely f(S) = gmin(S) and f(S) =
gsum(S), it follows from Proposition 1 that we can find
at least one optimal solution with beam search optimizing
f(S) = gsum(S).
Proposition 1. Beam search that operates on the objective
function f(S) = gsum(S) finds the optimal solution in both
gsum(S) =

∑
πi∈S c(πi) and gmin(S) = minπi∈S c(πi).

For criteria (3) in Table 1 that consists solely of the diver-
sity function hmin, i.e., f(S) = hmin(S), it follows from
Theorem 1 that we achieve an approximation ratio of 1/2
to the optimum with one run of beam search optimizing the
diversity function.
Theorem 1. For a diverse plan selection task of size k
from the set Π, beam search obtains a 1/2-approximation
to objective function f(S) = hmin(S), where hmin(S) =
minπi,πj∈S d(πi, πj) and d is a metric distance function.

For a bi-criteria optimization involving the diversity func-
tion hsum and a submodular, monotonic, and non-negative
quality function, such as gsum (criteria (6) in Table 1), it
follows from Theorem 2 that an approximation ratio of 1/2
can be achieved by optimizing a proxy objective f(S) =
α
2 g(S) + βhsum(S). Further, solely optimizing hsum (cri-
teria (4) in Table 1) is a special case of Theorem 2 where
αg(S) = 0, hence retaining the 1/2 approximation ratio.
Theorem 2. For a diverse plan selection task of size k from
the set Π, beam search obtains a 1/2-approximation to the
function f(S) = αg(S) + βhsum(S) for all monotone,

submodular, and non-negative g(S) and α, β ∈ R where
hsum(S) =

∑
πi,πj∈S d(πi, πj) and d is a metric distance

function.

For any bi-criteria objective f(S) = αgmin(S) + βh(S)
where h ∈ {hmin, hsum} (criteria (7) and (8) in Table 1),
since gmin is not monotone, we can no longer apply The-
orem 2 to obtain a 1/2 approximation ratio. Similarly for a
bi-criteria objective with h = hmin (criteria (5) and (7) in
Table 1), Theorem 1 does not apply. It instead follows from
Corollary 1 that we can obtain a weaker approximation of
1/4 with 2 runs of beam search, each optimizing one of the
quality and diversity criteria separately. In practice, the per-
formance can be further improved by a third run of beam
search that directly optimizes the objective f(·) and selects
solutions with the highest objective, retaining the approxi-
mation guarantees.
Corollary 1. The best solution from two beam search runs,
one optimizing g(s) and the other optimizing h(s), both
guaranteeing an approximation ratio of at least 1/2, is guar-
anteed to obtain a 1/4-approximation to the objective func-
tion f(S) = αg(S) + βh(S) with α, β ∈ R.

5 Experimental Results
In this section, we perform experimental evaluation on the
effectiveness of the proposed bi-criteria optimization frame-
work and the approximation quality of beam search.

5.1 Experimental Setup
Our experiments are conducted on a 16-core Intel i7-
13700K CPU clocked at 3.40GHz. The benchmark set uti-
lized for our experiments is from the International Planning
Competition (IPC). We utilized the sym-k loopless planner
(von Tschammer, Mattmüller, and Speck 2022) to generate
plans for these instances with a time and memory limit of
30 minutes and 4GB, respectively. The limit on the number
of generated plans in stage 1 was set to 10,000 in the gen-
eration process. Out of the 1,797 instances, the planner was
able to generate at least 1,000 plans for 1,025 instances. As a
result, the benchmark set consists of these 1,025 tasks. Then,
to counteract some of the scalability issues of the MIP, we
randomly sample 1,000 plans from the plan pool of every
instance with more than 1,000 plans. We also set k = 5.
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Figure 1: Plots demonstrating the beam search (m = 128) performance of optimizing for hmin vs. optimizing for αgmin+βhmin

with α
β = 1

3 .

Figure 2: Plots demonstrating the beam search (m = 128) performance of optimizing for hmin vs. optimizing for αgmin+βhmin

with α
β = 1.

The search algorithms are implemented in Python, and we
calculate the pairwise distances lazily to improve memory
efficiency. The MIP models are implemented in Gurobi Op-
timizer v10.0.3 through its Python interface.3 The MIP ex-
periments are performed with a time and memory limit of 30
minutes and 4GB, respectively. As we employ random tie-
breaking in our beam search, we run our experiments five
times across different random seeds.

5.2 Results on the Bi-Criteria Framework

In Figure 1, we compare two settings: (1) optimizing solely
for diversity using hmin; (2) bi-criteria optimization of hmin

and gmin with a preference for diversity (α/β = 1/3). In
both cases, we use a beam search with a beam width of 128.
Each point in the graphs represents the obtained solutions
for one problem by directly optimizing for diversity (x-axis)
and by optimizing for both diversity and quality (y-axis).
We present results for one of the random seeds, however we
observed similar trends across the different seeds.

3The MIP models are provided in the supplementary material
(Zhong, Shati, and Cohen 2024).

In Figure 1 (left), we analyze the hmin value of the ob-
tained solutions by the two approaches. Naturally, optimiz-
ing solely for hmin leads to better hmin values; however, the
gain is only about 8%: a mean hmin of 0.435 compared to
0.403 with the bi-criteria framework. In fact, in only 294 out
of the 1025 instances, we observed improved hmin when
solely optimizing hmin. In Figure 1 (center), we compare
the gmin values of the obtained solutions. As expected, the
bi-criteria approach is able to obtain better gmin values. Out
of the 1025 instances, 497 instances saw an improvement
in gmin and 528 instances saw ties (of them, 501 had al-
ready obtained an optimal gmin, so there was no room for
improvement). On average, the solutions from the bi-criteria
framework have a gmin of 0.867, whereas optimizing for
diversity leads to an average gmin of 0.601. Finally, in Fig-
ure 1 (right), the combination of marginally worse diversity
and much higher quality resulted in a higher sum, indicating
the effectiveness of the bi-criteria framework. In particular,
optimizing for the bi-criteria framework leads to an 8.92%
improvement on average for gmin+3hmin (2.076 vs. 1.906).

Next, we perform a similar analysis with a different
weighting scheme of quality and diversity. In Figure 2, we
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Alg.
hmin hsum gmin + 3hmin gsum + 3hsum

Obj. ≥MIP Time Obj. ≥MIP Time Obj. ≥MIP Time Obj. ≥MIP Time
G 0.953 584 0.13 0.997 440 0.13 0.963 576 0.55 0.988 380 0.58
B2 0.956 592 0.25 0.999 473 0.24 0.971 632 1.64 0.990 437 0.70
B4 0.963 621 0.43 1.001 527 0.42 0.974 657 2.03 0.991 490 0.88
B8 0.967 660 0.79 1.003 566 0.76 0.979 682 2.85 0.992 509 1.25
B16 0.972 680 1.54 1.004 626 1.47 0.983 714 4.57 0.993 563 2.00
B32 0.975 691 3.09 1.005 659 2.97 0.985 736 8.20 0.994 591 3.58
B64 0.980 729 6.47 1.006 688 6.23 0.989 768 16.38 0.994 616 7.06
B128 0.982 741 14.41 1.007 709 13.92 0.991 795 36.57 0.995 631 15.27
MIP 1.000 1025 186.46 1.000 1025 395.16 1.000 1025 440.57 1.000 1025 591.26

Table 2: Results for the beam search approximation across different beam widths, objectives, and five random seeds. Objective
values are averaged over five random seeds and normalized relative to MIP. The reported runtime is also averaged over five
random seeds and measured in seconds.

compare the outcomes of directly optimizing diversity using
hmin against the bi-criteria optimization of gmin and hmin

(α/β = 1). Figure 2 (left) shows, as expected, a greater
decline in diversity under the bi-criteria framework with an
average difference of approximately 15% (0.369 vs. 0.435).
Figure 2 (center) shows the bi-criteria framework improved
the gmin values of the solutions to a larger extent due to in-
creasing the weight assigned to the quality function. Specif-
ically, we observe an improvement of more than 55% (0.936
vs. 0.601) in average gmin. Finally, Figure 2 (right) shows
the difference in the combined gmin + hmin where the bi-
criteria optimization resulted in an approximate 26% aver-
age increase in the combined metric (1.305 vs 1.036). Over-
all, we observe this weighting scheme (α/β = 1) resulted in
a set of less diverse plans with higher quality, on average.

We also analyzed the effectiveness of breaking ties in fa-
vor of lower-costed plans when optimizing solely for diver-
sity using hmin with a beam width of 128. In this setting, we
observe marginally better gsum of 3.330 (random) compared
to 3.346 (cost). For gmin, we observe a smaller improvement
from 0.601 (random) to 0.603 (cost). However, the average
hmin value actually degrades slightly from 0.435 (random)
to 0.431 (cost). This indicates that breaking ties based on
cost when optimizing solely for diversity has a limited im-
pact compared to our bi-criteria framework that optimizes
for both diversity and quality.

Finally, we also ran similar experiments for bi-criteria op-
timization of gsum and hsum with (α/β = 1/3, 1) We report
these results in the supplementary material (Zhong, Shati,
and Cohen 2024).

These experimental results demonstrate the flexibility of
the bi-criteria framework; by including quality measures in
the optimization and selecting the weighting scheme, users
can explore the potential trade-offs between diversity and
quality that lead to a better combination.

5.3 Results on Beam Search Approximation
In this section, we evaluate the performance of our beam
search approximation and its ability to provide a flexible
trade-off between solution quality and computation. To do

so, we analyze the performance of beam search with beam
widths ranging from 2 to 128 and compare the results to
a greedy search, as well as to exact MIP. Table 2 shows
the empirical performance of the different algorithms on the
benchmark set, with G and Bi representing greedy search
and beam search with beam width i, respectively. Specif-
ically, we present mean relative performance compared to
MIP (i.e., by dividing the average objective obtained for
each instance by the objective obtained by MIP), the num-
ber of instances for which each approximation obtained so-
lutions equal or better compared to MIP, and the mean run-
time of each approach (excluding the time spent to construct
the MIP). It should be noted that many MIPs (e.g., for hmin)
ran out of memory (709 out of 1025), some ran out of time
(36 out of 1025), and only a small portion of the instances
was solved to optimality (280 out of 1025). We observe that
beam search consistently improves its performance as the
beam width grows and outperforms greedy search in all con-
figurations starting with a beam width of 2. For example,
when optimizing hmin, beam search with a width of 128
finds equal or better solutions compared to MIP in 741 out
of the 1025 instances. In contrast, greedy search does so only
584 out of the 1025 instances, which is consistent with Katz,
Sohrabi, and Udrea’s (2022) reported results. In addition, the
mean objective value for solutions obtained by beam search
with a beam width of 128 was 98.2% of the mean objec-
tive value for MIP. Similar trends are observed for the addi-
tional three objectives we analyzed, hsum, gmin+3hmin and
gsum + 3hsum. We note that these objectives that are based
on our framework in Section 3 were not studied before in the
context of diverse plan selection.

Table 2 also reports the average runtime for each ap-
proach. We note that, as expected, the average runtime of
beam search grows approximately linearly with beam width.
For example, beam search with a beam width of 128 re-
quired between 2.58%-8.30% of MIP runtime, while beam
width of 32 required between 0.06%-1.86% of MIP runtime.

To better understand the gains of beam search for differ-
ent beam widths, we focus on the 441 instances where the
greedy search (i.e., beam search with a beam width of 1) fails
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Figure 3: Relative improvement for different beam widths
compared to greedy search.

to find equivalent solutions to MIP on the hmin objective.
Figure 3 shows the empirical distribution, across problem in-
stances, of relative solution objective value for beam search
with different beam widths normalized by solution objective
value from greedy search. We can see that, on average (the
red line), beam search improves over greedy search, from a
1.23% improvement for a beam width of 2 up to a 6.28%
improvement with a beam width of 128. In fact, for beam
widths of 8 to 128, we observe improvements in objective
values on more than 50% of the instances as indicated by
the median (the orange lines). Moreover, for beam widths
of 64 and 128, we observe improvements in more than 75%
of the instances. For some instances, we observe improve-
ments as large as 50%-80% (note that the y-axis is only pre-
sented in the range of -10% to 50% for clarity). However, we
observe that for some problems beam search obtains worse
solutions compared to greedy search, with up to 9.10% -
13.07% lower objective values. This is consistent with our
examples, confirming that beam search is not guaranteed to
outperform greedy search. We can also observe the gains in
average objective value are diminishing as the beam widths
are on an exponential scale. On average, beam search with a
beam width of 128 gets around a 6.28% improvement over
greedy search, whereas a beam width of 32 would have al-
ready given us a 4.86% improvement. This indicates a solid
incentive to balance search effort (controlled by beam width)
and performance.

The experimental results show that our beam search ap-
proximation provides a useful way of trading off additional
computation for better solutions, while maintaining theoret-
ical guarantees on the obtained solutions.

6 Discussions and Future Work
The results of the experiments demonstrate the flexibility
provided by our bi-criteria framework in trading off diver-
sity and quality in the selected subset of plans. They also
demonstrate the flexibility provided by our beam search ap-
proximation in trading off additional computation for bet-

ter solutions. We note that, to our knowledge, this is the
first work to consider beam search for the criteria in Table
1 and provide approximation guarantees on the obtained so-
lution. We expect that our beam search approximation can
be adopted in additional tasks where bi-criteria optimization
of diverse subset selection is used and has so far been opti-
mized using greedy search.

Our work raises several interesting directions for fu-
ture work. Further investigation can identify or propose
additional quality and diversity functions that can be effi-
ciently optimized by beam search, to extend our optimiza-
tion framework. In addition, it remains an open question
whether the theoretical results regarding our beam search
approximation can be further improved by obtaining tighter
bounds. Investigating techniques to efficiently parallelize
beam search can allow us to utilize larger beam widths (thus
obtaining better solutions) without incurring linear growth
in runtime. In addition, beam search can used as an any-
time algorithm (Zhang 1998; Cohen and Beck 2021) by iter-
atively restarting the search with a higher beam width, pro-
viding improved solutions over time. Finally, investigating
exact optimization approaches, including novel MIP, Con-
straint Programming, or MaxSAT formulations, for the pro-
posed optimization framework is an interesting direction for
future work.

7 Conclusion
In this work, we focus on the problem of diverse plan se-
lection, as part of the two-stage paradigm for diverse plan-
ning that underlies the recent state-of-the-art approaches. We
introduce a bi-criteria optimization framework, that takes
into account both diversity and quality, providing the user
with a higher degree of flexibility and generalizing previ-
ous work that focused solely on diversity. In addition, we
present a beam search approximation that allows the user
to trade off additional computation for solution quality and
present new approximation guarantees on the obtained so-
lutions. Our experiments establish the main benefits of our
framework: our flexible bi-criteria framework enables us to
obtain better quality solutions with little to no loss on diver-
sity, and our beam search approximation enables us to obtain
significantly better solutions compared to greedy search by
using a higher beam width.
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