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Abstract

In the multi-objective search problem, a typical task is to
compute the Pareto frontier, i.e., the set of all undominated
solutions. However, computing the entire Pareto frontier can
be very time-consuming, and in practice, we often have lim-
ited deliberation time. Therefore, this paper focuses on solv-
ing the multi-objective search problem with anytime algo-
rithms, which compute an initial approximate frontier quickly
and then work to find more solutions until eventually find-
ing the entire Pareto frontier. Existing work has investigated
such anytime algorithms for problem instances with only two
objectives. In this paper, we propose Anytime A*pex (A-
A*pex), which works with any number of objectives. In each
iteration of A-A*pex, it runs A*pex, a state-of-the-art approx-
imate multi-objective search algorithm, to compute more so-
lutions. From one iteration to the next, A-A*pex can either
reuse its previous search effort or restart from scratch. Our
experimental results show that an A-A*pex variant that mixes
reusing its search effort and restarting from scratch yields the
best runtime performance. We also show that A-A*pex often
computes solutions that collectively approximate the Pareto
frontier much better than the solutions found by state-of-the-
art multi-objective search algorithms for short deliberation
times.

1 Introduction
In multi-objective search, we are given a graph, a start state,
and a goal state. The cost of each edge in the graph is a
vector. Each component of the vector corresponds to a cost
metric to minimize, such as travel time, travel distance, or
risk. Multi-objective search is important for many real-world
applications, including route planning for trucks, robots, and
power lines (Bachmann et al. 2018) as well as inspecting
regions of interest with robots (Fu et al. 2019; Fu, Salzman,
and Alterovitz 2021). For example, transporting hazardous
material requires one to trade-off between multiple costs for
each street, such as its length and the number of residents
that would be exposed to the hazardous material in case of a
traffic accident (Bronfman et al. 2015).

In multi-objective search, the cost of a path is the
component-wise sum of its edge costs. A path π dominates
a path π′ iff π is not worse than π′ on any cost metric
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and is better than π′ on at least one cost metric. A solu-
tion is a path from the start state to the goal state. A typical
task of multi-objective search is to find the Pareto frontier,
that is, all undominated solutions. Unfortunately, the size
of the Pareto frontier can be exponential in the size of the
graph being searched (Ehrgott 2005; Breugem, Dollevoet,
and van den Heuvel 2017), which often makes computing
the entire Pareto frontier time-consuming. Researchers have
therefore proposed to find an approximate frontier instead
(Tsaggouris and Zaroliagis 2009; Warburton 1987; Goldin
and Salzman 2021; Zhang et al. 2022a; Perny and Spanjaard
2008), that is, a set of solutions such that any solution in
the Pareto frontier is ε-dominated by some solution in the
approximate frontier, where ε is a user-provided approxima-
tion factor. A path π ε-dominates a path π′ for some ε ≥ 0 if
each cost component of c(π) is no larger than (1 + ε) times
the corresponding cost component of c(π′). The sizes of ap-
proximate frontiers are typically much smaller than those
of the Pareto frontier (even for small approximation factors)
and hence can be computed efficiently.

However, it remains unclear how to specify an approxi-
mation factor with which a search algorithm makes the best
use of limited deliberation time. Therefore, in this paper,
we investigate anytime approximate multi-objective search
algorithms, which compute an initial approximate frontier
quickly and then work to find better approximate frontiers
until eventually finding the entire Pareto frontier. Existing
works on anytime multi-objective search algorithms focus
on problem instances with only two objectives. A-BOA*-
ε (Zhang et al. 2022b) builds upon BOA*-ε, an approximate
bi-objective search algorithm. It iteratively invokes BOA*-ε
with decreasing approximation factors to compute new so-
lutions. Additionally, each run of BOA*-ε reuses previous
search effort by initializing BOA*-ε with nodes that were
pruned in the previous run.

In this paper, we propose Anytime A*pex (A-A*pex),
which builds upon A*pex and works with any number of
objectives. A*pex is a state-of-the-art approximate multi-
objective search algorithm that speeds up the search by
merging similar search nodes. Zhang et al. (2022a) showed
that A*pex outperforms PP-A* (Goldin and Salzman 2021),
another approximate bi-objective search algorithm that has
been shown to outperform BOA*-ε by up to an order of mag-
nitude with respect to runtime . Different from PP-A* and
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BOA*-ε, A*pex works with any number of objectives.
From one iteration to the next, A-A*pex can either reuse

its previous search effort or restart the search from scratch.
We propose a technique for reusing previous search effort
by resuming the search from paths that were pruned in the
previous iteration. Additionally, we propose a hybrid variant
of A-A*pex which first restarts the search from scratch for
each iteration and then starts to reuse its search effort in later
iterations. Existing work on anytime single-objective search
has investigated reusing search effort (Likhachev, Gordon,
and Thrun 2003) or restarting from scratch (Richter, Thayer,
and Ruml 2010). In this paper, we show how to reuse the
search effort of A*pex despite its unique merge operations.

In our experimental results, we evaluate different variants
of A-A*pex and show that reusing search effort in later it-
erations significantly reduces the runtime of A-A*pex. We
also show that A-A*pex often computes solutions that col-
lectively approximate the Pareto frontier much better than
the solutions found by state-of-the-art multi-objective search
algorithms for short deliberation times.

2 Terminology and Problem Definition
We use boldface font to denote vectors and vi to denote the
i-th component of a vector v. The addition of two vectors v
and v′ of the same length N is defined as v + v′ = [v1 +
v′1, v2 + v′2 . . . vN + v′N ]. We say that v weakly dominates
v′, denoted as v ⪯ v′, iff vi ≤ v′i for all i = 1, 2 . . . N .
We say that v dominates v′, denoted as v ≺ v′, iff v ⪯ v′

and there exists an i ∈ {1, 2 . . . N} with vi < v′i. For an
approximation factor ε ≥ 0, we say that v ε-dominates v′,
denoted as v ⪯ε v

′, iff vi ≤ (1+ ε)v′i for all i = 1, 2 . . . N .
The truncated vector of a vector v, denoted as Tr(v), is v
with its first component deleted, i.e., [v2, v3 . . . vN ].

A (multi-objective search) graph is a tuple G = ⟨S,E, c⟩,
where S is a finite set of states and E ⊆ S × S is a finite
set of edges. outEdges(s) = {⟨s, s′⟩ : ⟨s, s′⟩ ∈ E} denotes
the out-edges of a state s. Cost function c : E → RN

>0 maps
an edge to its cost, which is a vector with N non-negative
components. A (multi-objective search) problem instance is
a tuple P = ⟨G, sstart, sgoal⟩, where G is a graph, sstart ∈ S is
the start state, and sgoal ∈ S is the goal state.

A path from state s1 to state sl is a sequence of states
π = [s1, s2 . . . sl] with ⟨si, si+1⟩ ∈ E for all i =
1, 2 . . . l−1. s1 = sstart unless mentioned otherwise. c(π) =∑l−1

i=1 c(⟨si, si+1⟩) denotes the cost of path π. Path π can
be extended with an edge ⟨sl, sl+1⟩ to obtain a new path
[s1, s2 . . . sl, sl+1]. Path π dominates (resp. weakly domi-
nates and ε-dominates) another path π′ iff c(π) ≺ c(π′)
(resp. c(π) ⪯ c(π′) and c(π) ⪯ε c(π′)). A solution is a
path from sstart to sgoal. A Pareto-optimal solution is a solu-
tion that is not dominated by any other solution.

A (cost-unique) Pareto frontier is a maximal subset of all
Pareto-optimal solutions such that any two solutions in the
subset do not have the same cost. An ε-approximate frontier
is a set of solutions Πε such that, for any Pareto-optimal
solution π′, there exists a solution π ∈ Πε with π ⪯ε π′.
The Pareto frontier is an ε-approximate frontier for any ε-
value but not necessarily vice versa.

We define the dominance factor of a solution π over an-
other solution π′ as

DF(π, π′) = max

(
max

i=1,2...N

{
ci(π)

ci(π′)
− 1

}
, 0

)
,

which measures how “good” π approximates π′. DF(π, π′)
is the smallest ε-value that satisfies π ⪯ε π′. For a set of
solutions Π, we define the approximation error of Π over a
solution π′ as

e(Π, π′) = min
π∈Π

DF(π, π′).

Roughly speaking, we find a path π in Π that approxi-
mates π′ the best and compute the dominance factor. We
have e(Π, π′) = 0 iff ∃π ∈ Π, π ⪯ π′. Let Π∗ denote the
Pareto frontier. We define the approximation error of a set
of solutions Π as

e(Π) = max
π∈Π∗

e(Π, π). (1)

e(Π) is the smallest ε-value for which Π is an ε-approximate
frontier.

We are interested in finding a set of solutions with a small
approximation error within a limited deliberation time. More
specifically, we focus on the anytime behavior of a search al-
gorithm, i.e., its ability to quickly reduce the approximation
error over time and eventually find the Pareto frontier.

A heuristic (function) h : S → RN
≥0 estimates the cost

from a given state to the goal state. We assume that heuristic
h is consistent, that is, h(sgoal) = 0 and h(s) ⪯ c(⟨s, s′⟩)+
h(s′) for all ⟨s, s′⟩ ∈ E.

3 Algorithmic Background
In this section, we review the existing multi-objective
search algorithms BOA* (Hernández et al. 2023), A-BOA*-
ε (Zhang et al. 2022b), and A*pex (Zhang et al. 2022a).
For additional background, we refer the reader to a recent
survey (Salzman et al. 2023). All of the aforementioned
algorithms conform to the same best-first multi-objective
search framework: A (search) node n contains a state s(n)
and a g-value g(n) and corresponds to a path from sstart to
s(n), called the path of n. The f -value of n is defined as
f(n) = g(n) + h(s(n)). The search algorithm maintains a
priority queue Open for generated but not expanded nodes
and a set of solutions Sols. Open is initialized with a node
containing state sstart and g-value 0.

In each iteration, the search algorithm extracts a node n
from Open with the lexicographically smallest f -value. It
then performs dominance checks to determine if it can prune
the node. If not, it then expands n: If s(n) = sgoal, then
the search algorithm adds the path of n, which is a solu-
tion, to Sols. Otherwise, it generates a new child node n′ for
each edge in outEdges(s(n)). It then performs dominance
checks to determine if it can prune n′ and, if not, adds n′

to Open. When Open becomes empty, the search algorithm
terminates and returns Sols.

Best-first multi-objective search algorithms differ mainly
in which information is contained in the nodes and how they
perform dominance checks.
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3.1 BOA* and A-BOA*-ε
BOA* (Hernández et al. 2023) is a bi-objective search algo-
rithm that computes a Pareto frontier. In BOA*, each node
n corresponds to a path π from sstart to s(n) whose cost
is g(n), and the child node of n for an out-edge e of n
corresponds to the path that extends π by e. In its domi-
nance checks, BOA* prunes a node n iff there exists (Con-
dition 1) an expanded node n′ containing the same state as
n (i.e., the paths of n and n′ have the same last state) with
g(n′) ⪯ g(n) or (Condition 2) an expanded node n′ con-
taining state sgoal (i.e., n′ corresponds to a solution) with
g(n′) ⪯ f(n). BOA* uses dimensionality reduction (Pulido,
Mandow, and Pérez-de-la Cruz 2015) to speed up its domi-
nance checks: By exploiting the fact that the nodes extracted
from Open have lexicographically non-decreasing f -values,
Conditions 1 and 2 can be checked in constant time by
checking if gmin

2 (s(n)) ≤ g2(n) and gmin
2 (sgoal) ≤ f2(n),

respectively, where gmin
2 (s) is the minimum g2-value of all

expanded nodes containing state s (Hernández et al. 2023).
BOA*-ε (Goldin and Salzman 2021) is a variant of BOA*

that computes an ε-approximate frontier. BOA*-ε relaxes
Condition 2 of the dominance checks in BOA* and prunes a
node n if gmin

2 (sgoal) ≤ (1 + ε) · f2(n).
A-BOA*-ε (Zhang et al. 2022b) is an anytime approxi-

mate bi-objective search algorithm which calls a variant of
BOA*-ε to reduce the approximation error over time and
eventually find the entire Pareto frontier. A-BOA*-ε stores
those pruned nodes that might still lead to Pareto-optimal
solutions and resumes its search from these nodes (by ini-
tializing Open of BOA*-ε with them) in each iteration.

3.2 A*pex
Like BOA*-ε, A*pex computes an ε-approximate frontier,
but, unlike BOA*-ε, it works with any number of objectives.
In A*pex, a node is a so-called apex-path pair AP = ⟨A, π⟩
that consists of a cost vector A, called the apex, and a path π,
called the representative path. We define the g-value of AP
as g(AP) = A and s(AP) as the last state of the repre-
sentative path π. The f -value of AP is f(AP) = g(AP) +
h(s(AP)). Conceptually, an apex-path pair corresponds to
a set of paths with the same last state, and its apex is the
component-wise minimum of the costs of these paths. We
define AP as ε-bounded iff c(π) + h(s(AP)) ⪯ε f(AP).

Algorithm 1 shows the pseudo-code of A*pex. We refor-
mulate the pseudo-code by Zhang et al. (2022a) and encap-
sulate part of A*pex in the findApproxPF function, which
we will use to describe A-A*pex later.

A*pex performs dominance checks after generating an
apex-path pair (Lines 19-20) and extracting an apex-path
pair from Open (Lines 10-11) using the isDominated func-
tion that prunes an apex-path pair AP iff there exists (Con-
dition 1) an expanded apex-path pair AP ′ containing state
s(AP) with g(AP ′) ⪯ g(AP) or (Condition 2) a solu-
tion π in Sols that satisfies c(π) ⪯ε f(AP). A*pex uses
dimensionality reduction (Pulido, Mandow, and Pérez-de-la
Cruz 2015) to speed up the dominance checks by not check-
ing the g1-values for Condition 1. Instead of maintaining the
g-values of all expanded apex-path pairs, A*pex maintains

Algorithm 1: A*pex
Input : P = ⟨G, sstart, sgoal⟩, ε, h

1 Open← {⟨0, [sstart]⟩}
2 Sols← ∅
3 findApproxPF(ε)
4 return Sols
5 Function findApproxPF(ε):
6 foreach s ∈ S do
7 GT

cl (s)← ∅
8 while Open ̸= ∅ do
9 AP = ⟨A, π⟩ ← Open.extract()

10 if isDominated(AP) then
11 continue
12 GT

cl (s(AP)).add(Tr(g(AP))
13 if s(AP) = sgoal then
14 remove solutions weakly dominated by π

from Sols
15 add π to Sols
16 continue
17 for e ∈ outEdges(s(AP)) do
18 AP ′ ← ⟨A+ c(e), extend(π, e)⟩
19 if isDominated(AP ′) then
20 continue
21 addToOpen(AP ′)
22 Function isDominated(AP = ⟨A, π⟩):
23 if ∃π′ ∈ Sols: c(π′) ⪯ε f(AP) then
24 return true
25 if ∃x ∈ GT

cl (s(AP)) : x ⪯ Tr(g(AP)) then
26 return true
27 return false
28 Function addToOpen(AP = ⟨A, π⟩):
29 for AP ′ = ⟨A′, π′⟩ ∈ Open[s(AP)] do
30 APnew = ⟨Anew, πnew⟩ ← merge(AP ,AP ′)
31 if APnew is ε-bounded then
32 remove AP ′ from Open
33 add APnew to Open
34 return
35 add AP to Open
36 return

only the often significantly smaller set of undominated trun-
cated g-values GT

cl (s) for each state s.
Let Open[s] be the set of apex-path pairs in Open that

contains state s. Whenever A*pex attempts to add an apex-
path pair AP to Open, A*pex first tries to merge AP
with another apex-path pair in Open[s(AP)] if the resulting
apex-path pair is ε-bounded (Lines 29-34). When merging
two apex-path pairs, the new apex resulting from merging
two apex-path pairs is the component-wise minimum of the
apexes of the two apex-path pairs, and the new representa-
tive path is either one of the two representative paths of the
two apex-path pairs. Zhang et al. (2022a) proposed several
heuristics for choosing the new representative path.

A*pex builds upon PP-A* (Goldin and Salzman 2021)
and obtains average speed-ups of more than two times over
it. PP-A* is an approximate bi-objective search algorithm
that, in turn, has been shown to obtain average speed-ups
of up to an order of magnitude over BOA*-ε. Compared to
BOA*-ε, A*pex further reduce the search effort by merg-
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Algorithm 2: A-A*pex
Input : P = ⟨G, sstart, sgoal⟩, getNextEps(), h

38 Pruned← {[sstart]}
39 Sols← ∅
40 while Search not halted do
41 εcurr ← getNextEps()
42 Open← ∅
43 Pruned′ ← Pruned; Pruned← ∅
44 for each π ∈ Pruned′ do
45 addToOpen(⟨c(π), π⟩)
46 findApproxPF(εcurr)
47 if Pruned = ∅ then
48 break
49 return Sols
50 Function findApproxPF(ε):

/* Same as Lines 5 to 21 in
Algorithm 1 */

51 Function isDominated(AP = ⟨A, π⟩):
52 if ∃π′ ∈ Sols: c(π′) ⪯εcurr f(AP) then

+53 if not c(π′) ⪯ c(π) + h(s(AP)) then
+54 add π to Pruned

55 return true
56 if ∃x ∈ GT

cl (s(AP)) : x ⪯ Tr(g(AP)) then
+57 π′ ← the representative path of the apex-path pair

corresponding to x
+58 if not c(π′) ⪯ c(π) then
+59 add π to Pruned

60 return true
61 return false
62 Function addToOpen(AP = ⟨A, π⟩):
63 for AP ′ = ⟨A′, π′⟩ ∈ Open[s(AP)] do
64 APnew = ⟨Anew, πnew⟩ ← merge(AP ,AP ′)
65 if APnew is εcurr-bounded then
66 remove AP ′ from Open
67 add APnew to Open

+68 πpruned ← π′ if π = πnew or π otherwise
+69 if not c(πnew) ⪯ c(πpruned) then
+70 add πpruned to Pruned

71 return
72 add AP to Open
73 return

ing search nodes. This motivates us to investigate anytime
multi-objective search algorithms that build upon A*pex.

4 A-A*pex
In this section, we describe A-A*pex. A-A*pex calls A*pex
repeatedly with smaller and smaller ε-values to compute bet-
ter and better approximate frontiers. From one iteration to
the next, A-A*pex can either reuse its previous search effort
or restart the search from scratch. We first describe the vari-
ant of A-A*pex that reuses its previous search effort. Then,
we describe the variant that restarts the search from scratch,
which only differs in a few lines of pseudo-code.

The representative paths A*pex discards when pruning or
merging apex-path pairs might still be extendable to Pareto-
optimal solutions. One can store such representative paths
and resume searching on them later. For example, consider
the case when A*pex prunes an apex-path pair AP be-

cause its f -value is ε-dominated by some solution π′ in Sols
(Line 24). The representative path π of AP might still be
extendable to a Pareto-optimal solution if c(π)+h(s(AP))
(which weakly dominates the cost of any solution extend-
ing π) is not weakly dominated by c(π′). Similar observa-
tions hold for the representative paths of the apex-path pairs
pruned on Line 26 because of Condition 1 and the represen-
tative paths that are not chosen as new representative paths
when merging apex-path pairs on Line 30. Our technique for
reusing previous search effort is based on these observations.

Algorithm 2 shows the pseudo-code of the variant of A-
A*pex that reuses its previous search effort. The input to A-
A*pex is a problem instance, an approximation factor update
scheme encoded by the getNextEps function, and a heuris-
tic h. A-A*pex maintains a list Pruned of pruned paths,
which is initialized with path [sstart] (Line 38), and a set Sols
of solutions. In each iteration of its main loop (Lines 40-
48), A-A*pex first calls getNextEps to decrease the cur-
rent approximation factor εcurr (Line 41). It then initializes
Open with the paths in Pruned (Lines 42-45): A-A*pex
first moves the paths from Pruned to another set Pruned′

(Line 43) and then calls addToOpen with each of these
paths. Some of these paths might be put back into Pruned
by addToOpen, which we will explain later. A-A*pex then
calls findApproxPF to compute an εcurr-approximate fron-
tier (Line 46). A-A*pex shares the findApproxPF function
with A*pex. However, its isDominated and addToOpen
functions are modified (Lines 51-73). We use “+” before the
line numbers to indicate the changes:

1. Lines 53-54: If the f -value of an apex-path pair AP is
εcurr-dominated by the cost of some solution π′ in Sols
but the representative path π of AP satisfies that c(π) +
h(s(AP)) is not weakly dominated by c(π′), A-A*pex
adds π to Pruned.

2. Lines 57-59: For each vector x in GT
cl (s) for any state s,

A-A*pex maintains the representative path of the apex-
path pair whose truncated g-value equals x and resulted
in x being added to GT

cl (s). If the truncated g-value of an
apex-path pair AP is weakly dominated by some vector
x in GT

cl (s(AP)) but the representative path π of AP is
not weakly dominated by the representative path of the
apex-path pair corresponding to x, A-A*pex adds π to
Pruned.

3. Lines 68-70: When merging two apex-path pairs, one of
their representative paths is chosen as the new representa-
tive path. Let πnew denote the chosen representative path
and πpruned denote the other. If πpruned is not weakly
dominated by πnew, A-A*pex adds πpruned to Pruned.

In findApproxPF, A-A*pex does not reuse the truncated g-
values in GT

cl from previous iterations because, even if the
truncated g-value of an apex-path pair AP is weakly domi-
nated by a vector x in GT

cl from previous iterations, g(AP )
is not necessarily weakly dominated by the g-value corre-
sponding to x. The εcurr-value of the current iteration is also
different from those of previous iterations. Thus, A-A*pex
can expand apex-path pairs whose g-values are weakly dom-
inated by the g-values of some expanded apex-path pairs
containing the same states from previous iterations. How-
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ever, this does not affect it computing an εcurr-approximate
frontier in each iteration because it still considers the solu-
tions in Sols from previous iterations in dominance checks.
We formally prove its correctness in Theorem 1. When
Pruned becomes empty, A-A*pex returns Sols as a Pareto
frontier (Line 49).
A-A*pex with restarting. Instead of reusing its previous
search effort, A-A*pex can also restart the search from
scratch in each iteration. This requires changes only to
Lines 42-45, where A-A*pex now initializes Open with
path [sstart] instead of the paths in Pruned.
Enhanced dominance checks. Although A-A*pex does not
reuse the truncated g-values from previous iterations for
dominance checks, it can still prune an apex-path pair AP if
g(AP) is weakly dominated by the cost of the representative
path π′ of an apex-path pair that was expanded in previous
iterations and contains the same state as AP . In such a case,
the entire set of paths that AP corresponds to are weakly
dominated by π′ despite the εcurr-value. One can thus en-
hance the dominance checks of A-A*pex by maintaining the
set of undominated costs C(s) of the representative paths
of all expanded apex-path pairs for each state s and using
these for dominance checks. This requires changes only in-
side the isDominated function to check if the g-value of the
input apex-path pair AP is weakly dominated by any vector
in C(s(AP)) and adding one line after Line 12 to update
C(s(AP)) before expanding AP .
Mix reusing search effort and restarting from scratch.
As εcurr decreases, findApproxPF often terminates with
more expanded nodes and fewer paths in Pruned. Hence,
restarting from scratch becomes less efficient than using
Pruned to initialize Open. Let #exp and #pruned denote
the numbers of expanded nodes and pruned paths, respec-
tively. We propose a variant of A-A*pex, called A-A*pex-
hybrid, that first restarts the search from scratch in each it-
eration and starts reusing its search effort when the ratio of
#exp and #pruned of the previous iteration is larger than
a threshold. It then keeps reusing its search effort until it
terminates. In the experiments, we set the threshold to five
empirically based on our preliminary results.

4.1 Theoretical Results
This section provides theoretical results for A-A*pex. We
study only the variant of A-A*pex that reuses its previous
search effort because all theorems in this section trivially
hold for the variant of A-A*pex that restarts the search from
scratch. Theorem 1 shows that A-A*pex computes an εcurr-
approximate frontier in each iteration. Theorem 2 shows that
A-A*pex eventually computes a Pareto frontier.

Given a solution πsol = [s1(= sstart), s2 . . . sL(= sgoal)],
we use π

(l)
sol , l = 1, 2 . . . L, to denote its prefix [s1, s2 . . . sl]

of πsol. We define a path π to be l-compatible with πsol iff
(i) the last state of π is sl and (ii) c(π) ⪯ c(π

(l)
sol). We define

a path π to be compatible with πsol iff there exists an l for
which π is l-compatible with πsol. Thus, path [sstart] is both
1-compatible and compatible with any solution.

Lemma 1. Consider any solution πsol = [s1, s2 . . . sL].
If findApproxPF expands (that is, reaches Line 13 with)

an apex-path pair AP whose representative path is l-
compatible with πsol for some l, 0 ≤ l < L, then there ex-
ists, when findApproxPF terminates, (Case 1) a path that
is compatible with πsol in Pruned or (Case 2) a solution in
Sols that weakly dominates πsol.

Proof. We prove this lemma by induction on l, starting
from l = L and going backward. Consider the case where
findApproxPF expands an apex-path pair AP whose repre-
sentative path π is L-compatible with πsol. π is a path to sL
and c(π) ⪯ c(π

(L)
sol ) = c(πsol) because π is L-compatible

with πsol. findApproxPF then adds π to Sols. There must
exist a solution in Sols that weakly dominates πsol when
findApproxPF terminates because it only removes a solu-
tion from Sols when adding another solution that weakly
dominates it (Lines 14-15). Case 2 holds.

Assume the lemma holds for l + 1 and consider the
case where findApproxPF expands an apex-path pair AP
whose representative path π is l-compatible with πsol. Con-
sider the child apex-path pair AP ′ = ⟨A′, π′⟩ of AP
that findApproxPF generates for state sl+1 when reach-
ing Line 18. π′ weakly dominates π

(l+1)
sol because c(π′) =

c(π) + c(⟨sl, sl+1⟩) ⪯ c(π
(l)
sol ) + c(⟨sl, sl+1⟩) = c(π

(l+1)
sol ).

We distinguish the following two cases:

1. findApproxPF prunes AP ′ on Line 11 or 20 because
of the condition on Line 55 or 60. If π′ is added to
Pruned, Case 1 holds. If not and isDominated reaches
Line 55 without adding π′ to Pruned, then there ex-
ists a solution in Sols whose cost weakly dominates
c(π′)+h(sl+1) (which in turn weakly dominates c(πsol)
because h is consistent). Case 2 holds. If isDominated
reaches Line 60 without adding π′ to Pruned, then there
exists an expanded apex-path pair (namely, the one men-
tioned on Line 57) that contains state sl+1 and whose
representative path weakly dominates π′ (and hence is
(l + 1)-compatible with πsol). Because the lemma holds
for l + 1, it thus also holds for l.

2. findApproxPF calls addToOpen with AP ′. The algo-
rithm might merge AP ′ with other apex-path pairs before
extracting the resulting apex-path pair of these merges,
denoted as AP ′′, from Open. During these merges, a
representative path is completely discarded (i.e., nei-
ther chosen as the new representative path nor added to
Pruned) only if it is weakly dominated by the other rep-
resentative path. Therefore, if no path that weakly dom-
inates π′ is added to Pruned during these merges, the
representative path of AP ′′ must weakly dominate π′

(and hence is (l + 1)-compatible with πsol). If AP ′′ is
pruned on Line 11, the lemma holds as we have already
proved. Otherwise, AP ′′ is expanded, and the lemma
holds for l.

Lemma 2. Consider any solution πsol. When A-A*pex
reaches Line 41, there exists a path compatible with πsol in
Pruned or a solution in Sols that weakly dominates πsol.

Proof. We prove this lemma by induction. When A-A*pex
reaches Line 41 for the first time, path [sstart] in Pruned is
compatible with πsol, and hence the lemma holds. Assume
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that A-A*pex reaches Line 41 and the lemma has held so
far. If there exists a solution in Sols that weakly dominates
πsol, there must exist a solution in Sols that weakly domi-
nates πsol when A-A*pex reaches Line 41 again because A-
A*pex only removes a solution from Sols when adding an-
other solution that weakly dominates it (Lines 14-15). Oth-
erwise, there exists a path π′ in Pruned that is compatible
with πsol. A-A*pex then calls addToOpen with apex-path
pair ⟨c(π′), π′⟩ on Line 45 and might merge it with other
apex-path pairs before findApproxPF extracts the resulting
apex-path pair AP ′′ from Open. As we have already proved,
if the algorithm does not add a path that weakly dominates π′

to Pruned during these merges, the representative path π′′

of AP ′′ must weakly dominate π′ (and hence is compatible
with πsol). If AP ′′ is pruned on Line 11, we can distinguish
the following cases:

1. The representative path of AP ′′ is added to Pruned. The
lemma holds.

2. findApproxPF reaches Line 55 without adding the rep-
resentative path of AP ′′ to Pruned. There exists a so-
lution in Sols whose cost weakly dominates c(π′′) +
h(s(AP ′′)), which in turn weakly dominates c(πsol) be-
cause π′′ is compatible with πsol. The lemma holds.

3. findApproxPF reaches Line 60 without adding the rep-
resentative path of AP ′′ to Pruned. There exists an ex-
panded apex-path pair whose representative path is com-
patible with πsol. From Lemma 1, the lemma holds.

Otherwise, AP ′′ is expanded. From Lemma 1, the lemma
holds.

Theorem 1. Consider any solution πsol. There exists, when
A-A*pex reaches the end of Line 46, a solution in Sols that
εcurr-dominates solution πsol.

The proof of Theorem 1 is in the extended version of this
paper.1 It is similar to the proof of Theorem 1 by Zhang et al.
(2022a) but uses a different initialization of Open.

Theorem 2. A-A*pex terminates when εcurr becomes suffi-
ciently small, and Sols is then a cost-unique Pareto frontier.

Proof. Let Sols0 and ε0 denote Sols after the first run of
findApproxPF and its corresponding εcurr-value, respec-
tively. From Theorem 1, Sols0 is an ε0-approximate fron-
tier. Consider the subsequent iterations and a solution πsol ∈
Sols0. findApproxPF does not expand any apex-path pair
whose f -value is weakly dominated by the cost of πsol be-
cause of the condition on Line 52. Because findApproxPF
generates only ε-bounded apex-path pairs for some ε-value
smaller than ε0 and the graph is finite, there are only a fi-
nite number of (representative) paths that findApproxPF
can generate. Thus, when εcurr becomes sufficiently small,
findApproxPF merges two apex-path pairs only if one of
the representative paths weakly dominates the other and can
only choose this representative path as the new represen-
tative path. Therefore, the apex of an apex-path pair is al-
ways equal to the cost of its representative path. and hence

1http://idm-lab.org/bib/abstracts/Koen24f.html

findApproxPF cannot reach Line 59 or 70. When εcurr be-
comes sufficiently small, the condition on Line 52 will hold
only when c(π′) ⪯ f(AP), and hence findApproxPF can-
not reach Line 54. Pruned then stays empty, and A-A*pex
terminates. From Lemma 2, for any solution πsol, there ex-
ists a solution in Sols that weakly dominates πsol. Because
findApproxPF adds a solution to Sols only if it is not ε-
dominated (and hence not weakly dominated) by any solu-
tion in Sols and removes all solutions that are weakly domi-
nated by it from Sols, no solution in Sols weakly dominates
each other. Thus, Sols is a cost-unique Pareto frontier.

5 Experimental Results
In our experimental study, we first compare different vari-
ants of A-A*pex. We then compare A-A*pex with state-of-
the-art multi-objective search algorithms.

We use two graphs: (1) an empty 48 × 48 four-neighbor
grid and (2) the NY road network from the 9th DIMACS Im-
plementation Challenge,2 which has 264K states and 730K
edges. For the empty grid, we generate each cost component
as a random integer from 1 to 10 for up to six objectives.
We then randomly generate 100 problem instances. The NY
road network has two objectives available in the benchmark,
namely travel distance (d) and travel time (t). We use the
economic cost (m) (Pulido, Mandow, and Pérez-de-la Cruz
2015), the number of edges (l) (Maristany de las Casas et al.
2023), and a random integer from 1 to 100 (r) (Hernández
et al. 2023) as the third, fourth, and fifth objectives, re-
spectively. We use the same 100 problem instances used
by Sedeño-Noda and Colebrook (2019) and Ahmadi et al.
(2021). Following Hernández et al. (2023), each component
hi(s) of the heuristic h(s) for state s is the minimum cost
needed to reach sgoal from s for the ith objective.

We implemented all algorithms in C++3 and ran all ex-
periments on a MacBook with an M1 Pro chip and 32GB
of memory. The runtime limit for solving each instance was
five minutes. In A-A*pex, the sequence of ε-values output
by getNextEps began with 0.1 and was divided by η after
every iteration, where η was a predetermined parameter.

There are problem instances where no algorithm finds the
entire Pareto frontier within the runtime limit. When com-
puting the approximation error using Equation 1 in these
cases, we use the set of undominated solutions that all al-
gorithms computed as a substitution for Π∗.

5.1 Comparing Different Variants of A-A*pex
We compare different variants of A-A*pex on the first 50
problem instances on the NY road network with three ob-
jectives (m-t-d). These variants of A-A*pex are:

1. A-A*pex-reuse always reuses its search effort and is our
baseline variant of A-A*pex.

2. A-A*pex-reuse-enh always reuses its search effort and
also uses the enhanced dominance checks.

3. A-A*pex-restart always restarts the search from scratch.

2http://www.diag.uniroma1.it/challenge9/download.shtml
3https://github.com/HanZhang39/MultiObjectiveSearch
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#solved#solved#solved time (s) #exp#exp#exp

LTMOA* 47 0.31 331K
A-A*pex-reuse η = 1.5 35 6.31 2636K
A-A*pex-reuse-enh, η = 1.5 40 1.18 423K
A-A*pex-restart, η = 1.5 38 3.61 5539K
A-A*pex-hybrid, η = 1.5 40 0.84 1208K
A-A*pex-reuse η = 2 36 3.51 1779K
A-A*pex-reuse-enh, η = 2 40 1.04 396K
A-A*pex-restart, η = 2 39 2.00 3417K
A-A*pex-hybrid, η = 2 41 0.65 878K
A-A*pex-reuse η = 4 38 1.75 1121K
A-A*pex-reuse-enh, η = 4 40 0.78 378K
A-A*pex-restart, η = 4 40 1.11 1866K
A-A*pex-hybrid, η = 4 42 0.59 753K
A-A*pex-reuse η = 8 39 1.19 908K
A-A*pex-reuse-enh, η = 8 40 0.81 367K
A-A*pex-restart, η = 8 42 0.78 1307K
A-A*pex-hybrid, η = 8 42 0.41 515K

Table 1: Results for different algorithms on 50 problem in-
stances on NY with three objectives.
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(b) The other 15 instances.

Figure 1: Approximation error as a function of the runtime
for different algorithms on NY with three objectives.

4. A-A*pex-hybrid initially restarts the search from scratch
and reuses its search effort in later iterations. It also uses
the enhanced dominance checks.

We evaluate each variant of A-A*pex with η ∈ {1.5, 2, 4, 8}.
We also evaluate LTMOA* (Hernández et al. 2023), a state-
of-the-art multi-objective search algorithm that generalizes
BOA* to more than two objectives.

Table 1 shows the numbers of solved problem instances
(i.e., the number of instances for which an algorithm finds
the entire Pareto frontier within the runtime limit), average
runtimes (in seconds), and average numbers of expanded
nodes for all algorithms. All averages are over those in-
stances that all algorithms solve. LTMOA* has the largest
number of solved instances and the smallest average run-
time and number of expanded nodes. The average runtime
of each variant of A-A*pex decreases as η increases because

larger η result in fewer iterations of A-A*pex. Adding en-
hanced dominance checks decreases the average runtime of
A-A*pex-reuse and results in the smallest node expansions
of all A-A*pex variants. In general, A-A*pex-hybrid out-
performs the other three A-A*pex variants in terms of the
number of solved instances and average runtime.

Figure 1 shows the approximation error as a function of
the runtime for LTMOA* and all A-A*pex variants with
η = 1.5 and η = 8. We use only two η-values to keep the fig-
ure clean. We divide the instances into two groups, namely
the instances solved by all algorithms (Figure 1(a)) and the
other instances (Figure 1(b)). The approximation error of
each algorithm is averaged over all instances in a group. A-
A*pex-reuse and A-A*pex-reuse-enh have larger approxi-
mation errors than A-A*pex-restart and A-A*pex-hybrid in
the beginning of the search for both η-values, which shows
that restarting the search from scratch is more efficient in
the earlier iterations. In Figure 1(a), the approximation er-
ror of A-A*pex-reuse, A-A*pex-reuse-enh, and A-A*pex-
hybrid quickly drops in the later iterations, which shows that
reusing search effort is more efficient in the later iterations.
Therefore, by mixing these two techniques, A-A*pex-hybrid
often finds the Pareto frontier faster than the other variants
of A-A*pex. In Figure 1(b), all variants of A-A*pex have
a smaller approximation error than LTMOA* for the entire
five minutes of runtime for both η-values. Although we ex-
pect LTMOA* to find Pareto frontiers faster than A-A*pex
if sufficient runtime is provided, all variants of A-A*pex of-
ten compute solution sets with approximation errors smaller
than 0.01 faster than LTMOA*.

5.2 Comparing with the State-of-the-Art
We compare the hybrid variant of A-A*pex with η = 4
with the state-of-the-art multi-objective search algorithms
BOA* (Hernández et al. 2023) and A-BOA*-ε (Zhang et al.
2022b) on problem instances with two objectives and LT-
MOA* on problem instances with more than two objectives.

Figure 2 shows the results for different graphs and combi-
nations of objectives. We use solid lines for all problem in-
stances and dashed lines for those problem instances whose
entire Pareto frontiers are computed within the runtime limit.
In all cases, A-A*pex reduces the approximation error faster
than the other algorithms in the beginning of the search.
Because LTMOA* and BOA* compute solutions in lexico-
graphically increasing order of their costs, they can exactly
“cover” part of the Pareto frontier while completely missing
the rest during most part of the search, which explains their
high approximation errors at the beginning. This behavior
is undesirable from the perspective of approximating the en-
tire Pareto frontier when a limited deliberation time is given.
When a sufficient runtime is provided, LTMOA* and BOA*
find the Pareto frontier faster than A-A*pex and hence have
smaller approximation errors than A-A*pex. However, this
happens only after the approximation error becomes smaller
than 0.01, even smaller than 0.001 in many cases, which
means that A-A*pex computes 0.01-approximate frontiers
faster than BOA* or LTMOA*. For every solution π, there
exists a solution π′ in a 0.01-approximate frontier such that
π is at most 1% worse than π′ for any objective, which is
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Figure 2: Anytime behaviors of different algorithms on different graphs with different combinations of objectives. Each plot
shows the approximation error as a function of the runime for each algorithm over all 100 problem instances (solid line) and
over only those problem instances solved by at least one algorithm (dashed line).
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Figure 3: AUCs for LTMOA* (or BOA* for two objectives)
and A-A*pex on all problem instances.

sufficient for many real-world problems.
We also compute the Area Under the Curve (AUC) of the

approximation error for each problem instance P and algo-

rithm A, formally defined as AUCA(P ) =
∫ tlimit

0
e(t), where

tlimit is the runtime limit of five minutes and e is the ap-
proximation error as a function of the runtime. We compare
A-A*pex with LTMOA* (or BOA* for two objectives) as the

baseline. Figure 3 shows the results. The numbers along the
dashed lines denote how many times the AUC of A-A*pex
is smaller than that of the baseline. For instances that are
more difficult to solve (the points in the top-right corners),
A-A*pex always has a smaller AUC than the baseline. The
reduction of the AUCs is larger on the NY road network,
where A-A*pex has up to 100× smaller AUCs, than the
empty grid. However, A-A*pex still has up to 5× smaller
AUCs on the empty grid for some problem instances.

In general, the improvement of the approximation error
and the AUC of A-A*pex over other multi-objective search
algorithms is more substantial on the NY road network than
the empty grid. This is probably because Pareto-optimal so-
lutions likely share more states on the NY road network,
which allows A-A*pex to merge more nodes.

6 Conclusions
In this paper, we proposed A-A*pex, an anytime approx-
imate multi-objective search algorithm that builds upon
A*pex. Our experimental results showed that A-A*pex often
computes approximate frontiers with smaller approximation
errors than state-of-the-art multi-objective search algorithms
for short deliberation times.
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