
Real-time Safe Interval Path Planning

Devin Wild Thomas1, Wheeler Ruml1, Solomon Eyal Shimony2

1University of New Hampshire, USA
2Ben-Gurion University of the Negev, Israel
{dwt, ruml}@cs.unh.edu, shimony@cs.bgu.ac.il

Abstract

Navigation among dynamic obstacles is a fundamental task
in robotics that has been modeled in various ways. In Safe In-
terval Path Planning, location is discretized to a grid, time
is continuous, future trajectories of obstacles are assumed
known, and planning takes place offline. In this work, we de-
fine the Real-time Safe Interval Path Planning problem set-
ting, in which the agent plans online and must issue its next
action within a strict time bound. Unlike in classical real-
time heuristic search, the cost-to-go in Real-time Safe Inter-
val Path Planning is a function of time rather than a scalar. We
present several algorithms for this setting and prove that they
learn admissible heuristics. Empirical evaluation shows that
the new methods perform better than classical approaches un-
der a variety of conditions.

Introduction
Safe Interval Path Planning (SIPP) (Phillips and Likhachev
2011) is a popular way to formalize the problem of navi-
gation among moving obstacles. In SIPP, the agent and ob-
stacles move on a discrete grid. Time is continuous and the
obstacles cause cells to be blocked during certain intervals
and ‘safe’ during the complementary intervals. The trajecto-
ries of obstacles are assumed to be known for as far into the
future as necessary and the agent plans off-line, before any
obstacles start moving.

In this paper, we drop the assumption that the world stands
still while the agent plans. We call this new problem Real-
time Safe Interval Path Planning (RTSIPP). The planner is
given a pre-specified time bound and must return the next
action for the agent to take within that time. The agent may
be unable to find a complete path to a goal location within
that time, so planning iterates, returning one action at a time,
until the agent reaches a goal. In each iteration, the planner
looks ahead as far as possible within the time bound, then
moves towards the frontier node n that yields the shortest
estimated plan duration. This duration, notated f(n), is esti-
mated as the sum of the time to reach n, notated g(n), and
the estimated time to reach a goal from n, h(n).

Note that h(n) is just an estimate and the returned ac-
tion is not guaranteed to lead towards a goal. A node n
with promising f(n) may in fact lead to poor successors.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

After moving to a successor node y, it is possible that the
agent may conclude that n is the most promising successor
of y, creating an infinite cycle. For this reason, learning has
long been recognized as a core part of real-time planning:
the planner updates the h values of locations based on its
lookahead, as every non-goal state is only as good as the
best path it enables through the lookahead frontier. Learning
improved heuristic values allows real-time planners to guar-
antee reaching a goal under certain conditions (Korf 1990).

However in RTSIPP problems, unlike in the standard real-
time search setting, the time-to-goal is not a simple scalar:
due to the moving obstacles, the best path will depend on
when the agent departs. While this issue can be ignored in
classic offline SIPP because execution always starts at time
0, it plays a crucial role in RTSIPP because the agent might
later consider returning to a previously visited state and it
could be prevented from reaching a goal if it erroneously
generalized that a cell that was temporarily blocked by an
obstacle were always inaccessible. To be correct, heuristic
learning must be more complex.

Recent work on any-start-time planning showed how to
represent g values in offline heuristic search as functions
of time, so-called ‘arrival time functions’ (ATFs) (Thomas
et al. 2023). In this paper, we show that this same repre-
sentation can be used for g, h, and f values in real-time
heuristic search. We present variants of RTA* (Korf 1990)
and PLRTA* (Cannon, Rose, and Ruml 2014) that provably
learn admissible heuristics and generalize correctly in RT-
SIPP. Results of an experimental evaluation show that our
new methods outperform naive strategies for handling dy-
namic obstacles in real-time planning. In addition to provid-
ing a more realistic version of SIPP, this work also provides
a foundation for handling dynamic environments more ef-
fectively in heuristic search.

Background
Our work builds on previous research in real-time heuristic
search, SIPP, and any-start-time planning.

Real-time Heuristic Search
Real-time heuristic search was introduced by Korf (1990).
We can understand most real-time search algorithms as it-
erating three stages: First, in the planning stage, the agent
plans for a fixed time budget. In so-called ‘agent-centered

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

161



search’, this takes the form of a partial search tree rooted at
the agent’s current state (Koenig 2001), known as the local
search space (LSS). Second, in the learning stage, the agent
updates h values by backing up values from the search fron-
tier. Third, in the commitment stage, the agent uses the up-
dated f values to choose actions to commit for execution.

Real-time A* (RTA*) (Korf 1990) plans using a fixed-
depth lookahead, learns by updating the heuristic value of
the current state from the search frontier, and commits to the
top-level action (applicable at the current state) with mini-
mum f . Most relevant for our purposes, RTA* only updates
the heuristic value for a single state at each iteration. A par-
ent p’s heuristic value becomes the minimum over all its
children succ(p) of the cost to reach the child plus the child’s
heuristic value:

h(p)← min
c∈succ(p)

cost(p, c) + h(c) (1)

Local search space learning real-time A* (LSS-LRTA*)
(Koenig and Sun 2009) plans using a node-limited A*
search, resulting in a search frontier like RTA*, though it
is unlikely to have a fixed depth. To learn, LSS-LRTA* uses
a Dijkstra-like algorithm to update the heuristic values of all
states in the LSS by propagating heuristic information from
the search frontier. Vanilla LSS-LRTA* commits to the en-
tire sequence of actions up to the frontier node with lowest
f ; a variant that commits only to the best top level action,
which is the first action in that sequence, was subsequently
found to perform better (Kiesel, Burns, and Ruml 2015).

In a static setting, in a finite problem space with positive
edge costs, and with a goal reachable from every state, both
RTA* and LSS-LRTA* are complete. However, this does not
necessarily hold in a dynamic environment. In problems like
SIPP, time must be part of the state, because the applicable
actions at a location depend on the location of the dynamic
obstacles, so the state space is technically infinite. For ex-
ample, consider a food delivery robot waiting at a pedes-
trian crossing. If the light says ‘do not cross’ (thus the cross-
ing is not traversable), we are confronted with the challenge
of how to generalize the learning of that information. It is
correct but almost useless for the robot to learn that at that
location and exact moment the crossing is not traversable.
A moment later, it might waste effort checking the crossing
again. If it instead learns that the crossing is blocked and
generalizes that to all time, then it has learned an inadmissi-
ble heuristic that could render the search incomplete.

Partitioned Learning Real-time A* (PLRTA*) (Cannon,
Rose, and Ruml 2014) addresses this by partitioning the
heuristic value of a state into two components: a static com-
ponent hs corresponding to the part of h due to the static en-
vironment, that is shared among all states that differ only in
the time, and the dynamic component hd, corresponding to
any increased cost-to-go of this specific state that is caused
by dynamic elements of the environment. PLRTA* updates
hs as in LSS-LRTA*, using the gs of the nodes in the LSS,
and likewise for hd. PLRTA* considers moving obstacles
whose location is represented as a bivariate Gaussian distri-
bution, coming for example from a noisy observation of the
obstacle by the robot agent. PLRTA* handles the inadmissi-
bility issue by linearly decaying the dynamic component of

the heuristic back to zero. Thus in the crossing example, the
robot would observe the ‘do not cross’ light, and explore for
a while until it forgot about the crossing being impassable
because that learned dynamic heuristic had decayed back to
0, and potentially return to explore it again, which is undesir-
able. PLRTA* has no completeness or correctness guarantee
when there are moving obstacles present, only inheriting the
completeness guarantee of LSS-LRTA* in a purely static en-
vironment.

Suppose we knew the timing of the light. We would be
able to generalize better than PLRTA*, as we could know ex-
actly when the light would change, rather than relying on the
agent slowly forgetting that the crossing was infeasible. To
our knowledge, no existing learning method correctly gen-
eralizes for a real-time search in a SIPP state space.

Safe Interval Path Planning
Safe interval path planning (Phillips and Likhachev 2011)
is both a problem setting and a state space representation
for efficient planning with continuous time. The states and
actions are either safe or unsafe at every point in continu-
ous time. All future dynamic changes to the environment are
known. In the SIPP state space, times at which a location or
action is safe are grouped to form a safe interval. Safe in-
tervals are maximal, in that the location or action is unsafe
immediately before and immediately after the interval. (We
use the term safe to maintain consistency with prior work,
but this representation also applies where other terms such
as valid, allowed, or applicable would be more accurate.)

Formally, a SIPP problem is a tuple ⟨S,E, δ, so, xg⟩
where the states ⟨x, i⟩ ∈ S have configuration x and time in-
terval i = ⟨tb, te⟩. Similarly edges ⟨u, v, i⟩ ∈ E have source
state u, destination state v, and interval i when it is safe to
depart from u to v. The safe intervals i represent a maximal
set of consecutive times where it is safe or otherwise possi-
ble to be in the associated state or depart along the associ-
ated edge. It is unsafe for an agent to be in a configuration
while not covered by a safe interval or departing along an
edge outside of a safe interval. The cost of an edge is its du-
ration δ(x(u), x(v)), which is time-invariant. The start state
so is the configuration and interval the agent will start at and
the objective is to find a plan that arrives at the goal con-
figuration xg as early as possible. A solution is a sequence
of safe actions for the agent providing a safe path from the
start to the goal. The objective is to provide a solution that
minimizes the arrival time of the agent at the goal.

Phillips and Likhachev (2011) propose a search algo-
rithm, also named SIPP, that performs A* search over SIPP
states, where g(n) is the earliest known time at which the
agent may arrive at the configuration represented by n within
the corresponding safe interval. Paths arriving at n later are
dominated and pruned. An admissible heuristic h(n) returns
a non-overestimation of the time-to-goal from n. A success-
ful SIPP search finds a single optimal path, arriving as early
as possible at each intermediate step along the path.

The crossing example becomes trivial when re-framed as
a SIPP problem. There are two states, so: the side of the
crosswalk the robot starts on at t = 0 and sg: the far side,
which are both always safe. The unit edge e that connects

162



tdepartζ α β

∞

α+∆

tarrive

Figure 1: An edge ATF with parameters ζ, α, β, and ∆.

them has a safe interval i(e) = ⟨10,∞⟩ when the robot is
allowed to traverse the crosswalk. A SIPP search will per-
form a single expansion of so, generating a successor at sg
with g = 11 corresponding to a plan that crosses the cross-
walk the moment that the robot is allowed to. Suppose that
our robot is planning online as part of a real-time search as
it tries to reach the delivery location. The SIPP search has
provided us with what we need to commit to our agent’s
next action. However, the scalar g we used to search is in-
adequate for supporting the learning required for real-time
search. The scalar g does not track any information on how
long the plan it represents remains safe. This limits our abil-
ity to generalize, without being overly conservative while
learning a scalar heuristic.

Any-start-time Planning
Any-start-time planning (Thomas et al. 2023) plans for all
start times, rather than a single start time. To do this, g is a
function that returns the earliest arrival time for any safe de-
parture time from the initial state. Such functions are called
arrival time functions (ATF). Revisiting our crossing exam-
ple, the any-start-time plan would have a constant arrival
time of 11, until t = 10 after which the ATF is t + 1. Fig-
ure 1 shows the standard form of an ATF for a path p in a
SIPP state space. It is a piecewise linear function A[p] that
is parameterized by four real-valued numbers: ⟨ζ, α, β, δ⟩.
The critical departure times are: ζ when the start state of the
path begins, α is the earliest departure time where the agent
would not be forced to wait along its path, and β the latest
departure time before one of the states or edges becomes un-
safe. ∆ is the duration of actual movement along the path.
These parameters define the piecewise linear function:

A[ζ, α, β,∆](t) =


∞ t < ζ

α+∆ ζ ≤ t < min(α, β)

t+∆ α ≤ t < β

∞ β ≤ t

(2)

There is a constant arrival time segment from ζ to α with
arrival time α+∆, after which the ATF increases linearly in
the departure time. The equation allows the counter-intuitive
case where β < α, which is necessary because it is not al-
ways possible to do all of the waiting required by a path in
the initial state of the path. In such a case, the second case of
Equation 2 applies, and the arrival time function for a safe
departure time (ζ ≤ t < β) is α+∆.

Augmented SIPP (ASIPP) is an adaptation of SIPP to
search with ATF g rather than a scalar g. The augmented
SIPP search states consist of a SIPP state (configuration x

and safe interval i) augmented with an ATF A storing the
earliest arrival time from the start to that SIPP state. ASIPP
produces an ATF of the found path, rather than a single
scalar earliest arrival time. The ASIPP search works by com-
piling the safe intervals of the SIPP graph into an augmented
SIPP graph, identical to the SIPP graph except with an ATF
for each edge on the graph. From two SIPP states (u, v) and
the edge x joining them, we can calculate the four parame-
ters of the edge ATF:

ζ = ts(i(u)) (3)
α = max(tb(i(x)), tb(i(u)), tb(i(v))− δ(u, v)) (4)
β = min(te(i(x)), te(i(u)), te(i(v))− δ(u, v)) (5)
∆ = δ(u, v) (6)

When we search with an ATF g, the g of a child being
generated is no longer the sum of a scalar parent g and scalar
edge cost. Instead, ATF at the child is the composition of the
ATF of the parent and the ATF of the edge. The structure of
Equation 2 (shown in figure 1) is maintained under compo-
sition. If we have path p consisting of edge e followed by e′,
the ATF of p is:

A[p] = A[e′] ◦A[e] (7)

which has the equivalent edge ATF, A[p] with parameters:

ζp = ζe (8)
αp = max(αe, αe′ −∆e) (9)
βp = min(βe, βe′ −∆e) (10)
∆p = ∆e +∆e′ (11)

We denote functions that produce scalars using paren-
thesis, and functions that produce ATFs with brackets. For
example, g[n] in augmented SIPP is an ATF but g(n) in
regular SIPP is a scalar. We will generally drop the (t)
from ATFs unless they are being evaluated at a specific
time t to produce a scalar. To order open, we can use the
ATF of the node instead of g to calculate a scalar f(n) =
α(g[n]) +∆(g[n]) + h(n). These elements (ATF g, succes-
sor generation through composition, and node ordering on
earliest arrival time) are the augmentations that turn SIPP
into ASIPP. Thomas et al. (2023) find that there is minimal
overhead associated with ASIPP compared to a regular SIPP
search. To compute an any-start-time plan, Thomas et al.
(2023) repeatedly runs ASIPP with a monotonically increas-
ing starting time, storing the resulting ATFs in a set of non-
dominated ATFs, called a compound ATF. The compound
ATF can be efficiently queried for a plan at any-start-time.
This is done by maintaining an ordered set of intervals, each
pointing to the search node (with ATF g) that is dominant
for all times in that interval. A node n is dominant at time t
if g[n](t) ≤ g[n′](t) for all other n′ in the compound ATF.

Real-time SIPP: Definition and Challenges
Formally, an RTSIPP problem is a tuple ⟨S,E, δ, so, xg, b⟩,
just as in offline SIPP except for the addition of the time bud-
get b for each planning iteration. A solution to RTSIPP is a
sequence of actions emitted over time, with action i emit-
ted at time i × b after the start of planning. The objective is

163



Algorithm 1: Node-limited Augmented SIPP

1: function NLASIPP(start, goal, budget)
2: open← {start}, cl← {} ▷ cl: ‘closed list’
3: while open not empty do
4: cur← open.pop() ▷ min f = g(t0) + h
5: if cur is goal or budget exhausted then
6: return open ∪{cur}, cl
7: for e ∈ successors(cur) do
8: α← max(α(e) - ∆(cur), α(cur))
9: β ← min(β(e) - ∆(cur), β(cur))

10: ζ ← ζ(cur), ∆← ∆(cur) + δ(e)
11: g← A[ζ, α, β,∆], d← destination(e)
12: if d /∈ cl or α+∆ <cl(d) then
13: cl[d]← α+∆
14: open← open ∪⟨d, g, h(d), cur⟩
15: return Failure

to minimize total solution duration, subject to keeping the
agent safe.

We begin by presenting Node-limited Augmented SIPP
(NLASIPP), a node-limited version of ASIPP used by our
new methods for RTSIPP. We then present baseline ap-
proaches to solving RTSIPP with LSS-LRTA* and parti-
tioned learning, each backup a scalar heuristic. We discuss
the shortcomings of the baseline approaches and present our
three novel real-time heuristic search algorithms that use
ATFs to solve RTSIPP which address these shortcomings.

Node-limited Augmented SIPP
Node Limited Augmented SIPP (NLASIPP, Algorithm 1) is
a straightforward variant of ASIPP that reduces to ASIPP
when budget = ∞. NLASIPP takes as input a start state,
a goal configuration, and an expansion budget. Like aug-
mented SIPP, NLASIPP is an A* search on the augmented
SIPP graph, using a path ATF of the form of Equation 2
instead of a scalar-valued g, as shown in the successor gen-
eration (line 8-10). Search nodes are a tuple ⟨s, g(t), h, p⟩,
where s ∈ S is the SIPP state, g(t) is the ATF, h is the scalar
heuristic cost-to-go, and p is the parent pointer. The earli-
est arrival time corresponding to the scalar-valued g used by
SIPP is α+∆, which is summed with h to calculate a scalar
f to order nodes on open (line 4). The earliest arrival at each
state is stored in the closed list (line 13) and used to prune
successors, as it is always at least as good to arrive earlier in
a state (line 12). Because we use NLASIPP as a component
of a real-time heuristic search, it returns the open and closed
lists (line 6) for use by learning and commitment strategies.

We define the shifted Identity ATF, notated as:

I[shift ](t) = t+ x = A[−∞,−∞,∞, shift ](t) (12)

which for all finite t triggers the third case of Equation 2.
I[0](t) is the ATF for a path of no edges, and we define it
for use as a base case. NLASIPP inherits an important prop-
erty of ASIPP, which is that all optimal paths to a goal are
represented by a node on open with a path ATF that is a
non-overestimate of the cost of the path:

Theorem 1. Given a SIPP problem ⟨S,E, δ, so, xg⟩ and any
admissible scalar heuristic h over S, then always in line 3 of
NLASIPP using h, for all t ∈ i(so), and any optimal path p∗
from so to xg departing at time t, there exists a node nf on
open, with frontier state S(nf ), such that: a) S(nf ) ∈ p∗
and b) I[h](A[nf ](t)) ≤ A[p∗](t).

Proof. By induction on steps of the augmented SIPP search.
When open contains only the initial node: s0 must be on the
path so (a) holds. The path ATF is the identity and the heuris-
tic is admissible so (b) holds. The inductive step is succes-
sor generation, during which a child s′f ∈ p∗ is generated.
s′f can only be pruned if a state arriving earlier in s′f has al-
ready been generated. If this state is on open, then the induc-
tive step for (a) holds. Otherwise, s′f is closed which would
contradict p∗ optimal unless (a) and (b) hold for some state
later in p∗. Cost is monotonic so (b) holds during successor
generation.

Scalar Learning for RTSIPP
We now describe two baseline approaches that are straight-
forward adaptations of LSS-LRTA* and PLRTA* to the
SIPP state space. For each, we show a simple SIPP prob-
lem that demonstrates its shortcomings, which will be ad-
dressed by our ATF-based methods. The first baseline uses
the learning method of LSS-LRTA* to backup a single scalar
heuristic h. We will refer to this specialization as LSS-SIPP,
to avoid confusion when referring to the general concepts of
LSS-LRTA*. In order for the learned h to be admissible at all
times t within the SIPP state, we need to also minimize over
departure time in the LSS-LRTA* learning backup (Equa-
tion 1) for successor edge c with ATF A:

h(p)← min
c∈succ(p)

min
t
(A[c](t)) + h(c) (13)

If we did not minimize over departure time, our heuristic
could be inadmissible for some possible departure times.

There are two issues with minimizing over t to learn a
scalar heuristic, rather than learning h as a function of t.
The first issue is that if we learn a scalar heuristic value for
each interval, that learning is not generalized beyond that
interval. To address this, our second baseline, learns a par-
titioned heuristic, with one of the partitions being the time-
independent heuristic hs that is valid for all times. We call
this second baseline PLRTS. Learning the partitioned static
heuristic addresses the first issue. However, because every
state with a successor by definition has a departure time that
requires no waiting, the dynamic component of the scalar
heuristic learned by PLRTS is always 0.

The second issue arises particularly for long intervals.
Because we are required to minimize over all possible de-
parture times, our learned scalar heuristic will tend to be
overly optimistic. For example, consider the RTSIPP prob-
lem shown in Figure 2a that has an expansion budget b = 1
and three states: S the start state, G the goal state, and X
representing a detour. All states are always safe. The edge,
⟨S,X⟩ takes one time unit and is always safe, and ⟨X,G⟩
takes ten time units and is also always safe. Finally, ⟨S,G⟩
takes one time unit but is unsafe until t = 80. An LSS-SIPP

164



S

X

G

(a)

δ=1

δ=1

δ=10

[80,∞)

O

(b)

a

b x

y

sl

sgs0

Figure 2: RTSIPP examples that defeat scalar learning.

agent will learn a heuristic for S of h(S) = 1 from the edge
directly to G at t ≥ 80. It will then commit to traveling to X.
On the second iteration, it will learn h(X) = 2 and commit
to S which has f = 2. On later rounds, it will continue to
cycle between S and X with no additional heuristic learning.
The agent’s learning is unable to encode that at early times
the detour is preferable and it takes until ⟨S,G⟩ becomes
safe for the agent to escape.

Exact Learning for Real-time SIPP
We now present three approaches that, instead of relying on
scalar approximations, learn exact representations of cost-
to-go for RTSIPP. First, some preliminaries.

All of our ATF-based methods perform partitioned learn-
ing. PLRTA* has scalar f(n) = g(n) + hd(n) + hs(n). In
RTSIPP, hd(n) should clearly be a function of time, while
hs(n) remains a scalar. However, with ATFs it is clearer to
learn the function f , where:

f [n](t) = h[n](g[n](t)) = g[n](t)+hd[n](t)+hs(n) (14)

This means that f is not initially 0, but instead I[hs](g(t)).
Note that f [n], h[n], and hd[n] are compound ATFs, g[n] is
an ATF, and hs is a scalar. The ATF g[n] corresponds to the
duration of the path up to the state in node n, while f [n]
is the heuristic cost to the goal from the state in node n plus
g[n]. Conceptually each ATF in f [n] can be divided into two
components, the ATF to a search frontier state from a prior
round of search plus the static heuristic at that state. That
sum is what we learn, which is why we refer to learning
the summed heuristic f , though h or hd can be retroactively
calculated from f, g, and hs if desired.

Minimal ATF Learning for RTSIPP
Our first approach, Real-time Augmented SIPP (RTAS) is an
RTA*-like approach, in that it limits learning to only the cur-
rent state. This allows RTAS to directly use Theorem 1 and
transform the open list returned by NLASIPP into a com-
pound arrival time function for the current state. This means
that it learns directly from the open list of the search, with-
out requiring any backing up through the intermediate nodes
in the closed list.

Algorithm 2 shows the pseudocode of RTAS. NLSIPP
(line 4) returns the search frontier when the budget is ex-
hausted. In line 6 we initialize the scalar static heuristic to an
overestimate,∞. The dynamic heuristic is initialized to the

Algorithm 2: Real-time Augmented SIPP

1: function RTAS(cur, goal, b)
2: if cur is goal then
3: return success
4: open, closed = NLASIPP(cur, goal, b)
5: s = state(cur), x = configuration(s)
6: h′

s(x) =∞ , f [s] = {}
7: for node ∈ open do
8: nx = configuration(state(node))
9: h′

s(x) = min(h′
s(x),∆(g[node]) + hs(nx))

10: ∆(g[node]) = ∆(g[node]) + hs(nx)
11: f [s] = f [s] ∪ g[node]
12: hs(x) = max(h′

s(x), hs(x))
13: return BESTTLA(open)

empty set of ATFs if the current state has never been visited
before (line 6). The static component of the learned heuris-
tic is the minimum sum of the cost to the frontier and the
heuristic time-to-goal at the frontier (line 9). Recall that we
use parentheses for scalars such as hs(x) and square braces
for ATFs such as A[node] and f [s] to disambiguate evalu-
ating the ATF function. To compute the dynamic heuristic,
each path ATF A[node] is shifted later by the static heuristic
of the frontier node (line 10), then inserted in the compound
ATF f [s] (line 11). Finally, because they are both admissi-
ble, we take the maximum of our old static heuristic and the
new one (line 12) and commit to the best top-level action,
returning it in line 13.

Figure 2b shows an example search from an RTSIPP
problem. The agent is navigating from so to sg , path a
is blocked temporarily by moving obstacle O, states: x, y
∈ open , sl ∈ LSS . Our agent in state so has done an
NLASIPP search for a path to the goal at sg . There are two
possible paths, a is shorter in distance, but requires waiting
on a slow-moving obstacle O, while b is longer but requires
no waiting. The agent moves with unit speed, while the ob-
stacle O takes six units to clear path a. For this example,
let’s say that NLASIPP returns open consisting of states x
and y (and the closed list, which is not used by RTAS).

Figure 3 shows the dynamic heuristic learned by RTAS
for so. The open nodes have the path arrival time functions
A[x] and A[y], plotted in dotted violet. A[x] has traveled

Departure Time

A
rr

iv
al

Ti
m

e

0 2 4 6 8 10
6

8

10

12
A
[x
]

+
2

b

A
[y
]

+
3

a

Figure 3: Compound ATF from example in Figure 2b.

165



Algorithm 3: LearnStatic

1: function LEARNSTATIC(open, closed)
2: for state in closed do
3: hs(state)← inf

4: order open by increasing hs

5: while open not empty and closed not empty do
6: n← pop(open)
7: if state(n) in closed then
8: remove state(n) from closed
9: for all parent p of n do

10: if hs(p) > δ(p, n) + hs(n) then
11: hs(p)← δ(p, n) + hs(n)
12: Place p on open, maintaining sort

six units with no waiting, with ζ = 0 its ATF has parame-
ters ⟨0, 0,∞, 6⟩ and, for example, an arrival time of 6 if the
agent departs at time 0. On the other hand, A[y] must spend
six units waiting for O to get out of the way, plus one unit
traveling, giving parameters ⟨0, 6,∞, 1⟩ and an arrival time
of 7 unless the agent departs on or after 6. Using Manhattan
distance as the static heuristic, hs(x) = 2, and hs(y) = 3.
The compound ATF f [so] is the minimum of the open ATFs
shifted by their static heuristic, with the best known, (and in
this case, optimal) path (shown by the solid line) following
b until t = 2, after which the best plan is to wait for a until
t = 5, after which the best plan is just to follow a.

Maximal ATF Learning for RTSIPP
RTAS can be seen as a minimal-learning approach to solv-
ing RTSIPP: it updates only a single state, but in return re-
quires only a single pass over the open list. The next algo-
rithm, Maximal ATF learning for RTSIPP (MaxATFS), is a
maximal-learning approach, updating all states in the LSS
in the style of LSS-LRTA* and PLRTA*. Like PLRTA*, we
assume that the heuristic time-to-goal function returns sepa-
rate admissible scalar values for hs and f . MaxATFS makes
two passes through the closed nodes in the LSS: in the first,
the scalar hs is updated, and in the second, the compound
ATF f is updated. We consider paths through closed nodes
as being composed of three segments. For example, consider
the path b in Figure 2b. When updating closed state sl, the
three segments are: 1) (so, sl), the path to the closed state
(with time-dependent duration g); 2) (sl, sf0), the path from
the closed state to the search frontier, which we will traverse
in reverse through a Dijkstra-like back-up process; and 3)
(sf0 , sg), the path from the search frontier to a goal, which
is represented by the heuristic at the frontier.

Learning the Static Heuristic To learn the static heuris-
tic, we restate the learning method of LSS-LRTA* for the
SIPP state space, which we call LearnStatic. Algorithm 3 de-
scribes the algorithm, which differs from the original LSS-
LRTA* learning stage only in terms of notation and being
specific to the static component of the heuristic. The closed
states are initialized to hs = ∞ (line 3). Open is reordered
by minimum hs (line 4). We then do a Dijkstra-like traver-
sal of the LSS, popping a minimum hs frontier node (line 6)

Algorithm 4: LearnDynamic

1: function LEARNDYNAMIC(open, closed)
2: for s in closed do
3: f [s]← {}
4: for n in open do
5: f [n]← {I[hs(n)]}
6: order open by increasing min

t
f [s](t)

7: while open not empty and closed not empty do
8: n← pop(open)
9: if state(n) in closed then

10: remove state(n) from closed
11: for all edge e from parent p′ to state(n) do
12: for all path p to frontier in f [s] do
13: A[p′] = A[p] ◦A[e]
14: if not f [p′] dominates A[p′] then
15: f [p′] = f [p′] ∪ {A[p′]}
16: add p′ to open maintaining ordering

which contracts the search frontier; also we remove it from
closed (line 8) indicating that it will not need further up-
dating in this stage. We then visit each of the node’s prede-
cessors, updating their hs (line 11) and (re)placing them on
open (line 12) if we have found a lower value. Note that the
size of closed is monotonically non-increasing, and all the
hs are monotonically decreasing. In the example shown in
Figure 2b, we would learn hs(sl) when we pop sf0 as the
Dijkstra node, calculating hs(sl) = 1 + 2.

Learning the Dynamic Heuristic To learn the dynamic
heuristic, we again adapt LSS-LRTA*, except this time the
Dijkstra style traversal backs up compound ATFs f (Equa-
tion 14) rather than scalar hs. The LearnDynamic routine
(Algorithm 4) initializes closed states to an empty com-
pound ATF (line 3), and open states to the identity ATF,
shifted by their static heuristic (line 5). Open is then sorted
on the earliest (expected) arrival time at the goal, from the
frontier (line 6). LearnDynamic then performs a Dijkstra-
style traversal of the LSS where for each closed node, the
ATFs in the compound ATF f ’s of all its children are com-
posed with the edge from parent node to child node (line 13)
and added to the parents compound ATF f (line 15). If the
added ATF was not dominated (line 14), we (re)place p′ in
open (line 16).

Algorithm 5 shows MaxATFS, our maximal ATF learning
algorithm for RTSIPP. MaxATFS updates the entire LSS: a
partitioned static scalar hs with LearnStatic, and dynamic

Algorithm 5: Maximal ATF learning for RTSIPP

1: function MAXATFS(cur, goal, b)
2: if cur at goal then
3: return success
4: open, closed = NLASIPP(cur, goal, b)
5: LEARNSTATIC(open, closed)
6: LEARNDYNAMIC(open, closed)
7: return BESTTLA(open)

166



Learning PLRTS RTAS MedATFS MaxATFS
Static LSS Single LSS LSS
Dynamic 0 Single Single LSS

Table 1: Algorithm Learning Characteristics

compound ATF f with LearnDynamic.
We also define a hybrid approach, Medium ATF learn-

ing for RTSIPP(MedATFS) which differs from MaxATFS
in that does the dynamic learning from RTAS rather than
LearnDynamic, causing it to update the static heuristic for
the entire local search space, but the dynamic heuristic for
only the current state. Table 1 summarizes the learning char-
acteristics of the four algorithms.

MaxATFS backups maintain the consistency and admis-
sibility of the base heuristic used at the search frontier.

Theorem 2. If hs is admissible/consistent and δ is mono-
tonic then h = f−g computed from the f learned by Learn-
Dynamic is admissible/consistent.

Proof. By induction. In the base case, frontier nodes have
admissible/consistent hs. The inductive step is line 13, we
assume A[p](t) is admissible/consistent, A[e](t) is exact, so
once we have learned from all the children of a[p′](t), it
must also be admissible/consistent. The process terminates
because closed is monotonically non-decreasing in size and
execution stops when it reaches size 0.

Empirical Evaluation
To evaluate the performance of these techniques, we ran
a series of experiments on RTSIPP problems. We quan-
tify the performance of the algorithms; PLRTS, RTAS, Me-
dATFS, and MaxATFS as the expansion budget is varied.
Our primary performance metric is the goal achievement
time, which is the total time of the actions taken by the agent
on its path to the goal including moving and waiting, exclud-
ing time spent solely on computation.

Experimental Set-Up
The agent has 4-way motion, and each movement takes 1
time unit. A static map is populated with random dynamic
obstacles. At each unblocked grid cell, safe intervals are
generated that have a length uniformly distributed from ‘min
duration’ to ‘max duration’, and separated such that each lo-
cation is unsafe ‘ratio’ percent of the time. Safe intervals are
generated for each state until at least 10,000 time units, after
which the state becomes unsafe.

Search time budgets in NLASIPP limit the number of ex-
pansions per move, which can be seen as corresponding to
the amount of computation that can be accomplished per
time unit. The algorithms are implemented in a shared, effi-
cient C++ code base.1 The NLASIPP implementation has an
expansion rate of about 700,000 expansions/s and is shared
by all four tested algorithms. Experiments were run one at a
time on one of a cluster of identical computers, each with an
Intel i3-12100 CPU and 64 GB of RAM.

1https://github.com/dwthomas/real-time-sipp

Figure 4: Goal achievement time results, median (solid line),
95% confidence interval(filled), limited to 10000 time units.

We test 4 static problem instances, using 32 random seeds,
and logarithmically spaced expansion budgets from 4 to ap-
proximately the number required by SIPP to solve the in-
stance. The static problem instances consist of a 2D grid
with static obstacles and a start and goal location. Three of
the static problem instances are scenarios from the Moving
AI Lab Benchmarks: random512-25-0 (Figure 5a, cropped
to show detail), den520d (Figure 5b), and warehouse-10-20-
10-2-1 (Figure 5c) (Sturtevant 2012).

Random was selected to provide a map where the chal-
lenge is predominantly from the dynamic obstacles because
there are only a few small local minima in the static map.
Den520d is derived from a level from the game Dragon
Age: Origins and is used to represent a situation where a
game might need to navigate around dynamic obstacles.
Warehouse was included to highlight the situation where
the agent must navigate through thin corridors, that can be-
come blocked. The cup map (Figure 5d) is a hand-crafted
map with a single cup-shaped local minimum to challenge
an algorithm to escape from large local minima. Random,
den520d, and warehouse were generated with safe intervals
from 500-1000 units long, cup 10-100. The den620d and
cup maps used a ratio of 50%, random 25%, and warehouse
10%.

Results
Figure 4 shows some goal achievement time (in time units)
results. On the den520d map (fig 4 top) we see similar per-
formance between algorithms for very small (<5) budgets
and very large budgets (>100). MedATFS performs signif-
icantly better than RTAS and the PLRTS for low budgets.
This suggests that combining LSS-LRTA* style static learn-
ing and RTA* dynamic learning is beneficial beyond what

167



Figure 5: Best algorithm in simulated real-time experiments.

either provides alone. MaxATFS dramatically outperforms
the other three methods. MaxATFS outperforming the static
LSS-LRTA* methods (MedATFS, PLRTS) suggests that it
is the dynamic portion of the learning that is critical.

Warehouse is an interesting setting, because there is an
exploration/exploitation tradeoff when deciding which hall-
way to travel down. Whatever hallways you take, you would
expect to encounter the same number of dynamic obstacles
and have to wait the same amount of time on them. In the
warehouse results (Figure 4 bottom) we see MaxATFS per-
forming similarly to the PLRTS until a budget of around 10,
where its performance dramatically improves. In contrast,
RTAS and MedATFS perform much better than the PLRTS
and MaxATFS until their performance dramatically wors-
ens at budgets larger than 10. Until the budgets reach 1000,
MaxATFS performs significantly better than the other three
algorithms. The good performance of MaxATFS suggests
that once the budget is greater than 10 MaxATFS is able to
learn a dynamic heuristic that guides the search to select the
best paths. In contrast, it appears that the less powerful dy-
namic heuristic learning of RTAS and MedATFS is learning
a dynamic heuristic that guides the search to do more explo-
ration, causing it to perform worse than with a tiny budget.

In experiments on the random map (not pictured), we ob-
served similar behavior to den520d, except MaxATFS did
not dramatically outperform MedATFS until a budget of 10.
The transition at 10 may be the scale size of the random
problem, where MaxATFS is able to perfectly guide the lo-
cal search, while the pre-learning base heuristic is sufficient
for the global search. In the experiments on the cups map
(not pictured), MedATFS and MaxATFS do well learning
a static heuristic in the presence of dynamic obstacles, and

outperform the PLRTS with small expansion budgets. How-
ever here RTAS has a dramatic degradation in performance
as the budget is increased, similar to the hump seen in the
warehouse results. This suggests that it is having a simi-
lar issue with learning the heuristic, however, one that is
addressed by a LSS-LRTA* style learning method for the
static heuristic, where good performance in the warehouse
map seemed to require LSS-LRTA* style learning for the
dynamic heuristic as well. Overall, we find MaxATFS has a
significantly better goal achievement time for most expan-
sion budgets in the random, warehouse, and den520d maps.

It is not surprising that the algorithms that do more learn-
ing often perform better when given the same expansion
budget. We now adjust the results to take into account the
time overhead of each algorithm. Figure 5 plots which al-
gorithm has the lowest goal achievement time for a given
simulated real-time and simulated expansion rate. We mea-
sure the time spent planning, and learning during our exper-
iments and extrapolate what the total per-iteration planning
budget would have been, in seconds, if ASIPP had various
expansion rates. Each cell is colored based on the algorithm
with the lowest median goal achievement time over the 32
random seeds. We find that MedATFS or RTAS performs
best when there is a limited planning budget, while Max-
ATFS performs best for moderate planning budgets. PLRTS
performs the best when there is a large planning budget.

Related Work
Prior work in SIPP has included experiments run ‘in real-
time’ (Narayanan, Phillips, and Likhachev 2012), including
on robots (Phillips and Likhachev 2011). These run anytime
or offline SIPP fast enough on certain problem instances
to be used in real-time but are not true real-time heuristic
search algorithms as the time they spend planning depends
on the problem size. Sigurdson et al. (2018) describes a real-
time heuristic search for multi-agent pathfinding, similar to
SIPP but with multiple agents and discrete time steps.

Conclusion
We introduced the Real-time SIPP problem setting and
showed how to adapt real-time heuristic search methods to
efficiently handle dynamic environments using ideas from
any-start-time planning. We defined three algorithms to
learn consistent heuristics using ATFs. RTAS is an adapta-
tion of RTA* to SIPP, which can learn without performing
any backup operations. MaxATFS is a correct heuristic par-
titioning scheme for RTSIPP that learns a consistent heuris-
tic for all states in the LSS. MedATFS is a hybrid approach
that uses LSS-LRTA*-style learning for the static heuristic
but the simpler RTA*-style method for the dynamic heuris-
tic. We found that RTAS and MedATFS can outperform
the static-only PLRTS algorithm, particularly with smaller
search budgets, and MaxATFS outperforms the other three
algorithms for a wide range of search budgets. Although
making SIPP real-time turns out to be remarkably complex,
the machinery we introduce is also likely to apply in other
situations where the passage of time affects the value of act-
ing, such as in situated planning.

168



Acknowledgments
We are grateful for support for this work from the United
States National Science Foundation (NSF grant 2008594)
and the United States-Israel Binational Science Foundation
(BSF grant 2019730).

References
Cannon, J.; Rose, K.; and Ruml, W. 2014. Real-time Motion
Planning with Dynamic Obstacles. AI Communications, 27:
345–362.
Kiesel, S.; Burns, E.; and Ruml, W. 2015. Achieving goals
quickly using real-time search: experimental results in video
games. Journal of Artificial Intelligence Research, 54: 123–
158.
Koenig, S. 2001. Agent-Centered Search. AI Magazine,
22(4): 109–131.
Koenig, S.; and Sun, X. 2009. Comparing real-time and in-
cremental heuristic search for real-time situated agents. Au-
tonomous Agents and Multi-Agent Systems, 18(3): 313–341.
Korf, R. E. 1990. Real-time Heuristic Search. Artificial
Intelligence, 42: 189–211.
Narayanan, V.; Phillips, M.; and Likhachev, M. 2012. Any-
time Safe Interval Path Planning for dynamic environments.
In Proceedings of IROS, 4708–4715.
Phillips, M.; and Likhachev, M. 2011. SIPP: Safe interval
path planning for dynamic environments. In Proceedings of
ICRA, 5628–5635.
Sigurdson, D.; Bulitko, V.; Yeoh, W.; Hernández, C.; and
Koenig, S. 2018. Multi-Agent Pathfinding with Real-Time
Heuristic Search. In 2018 IEEE Conference on Computa-
tional Intelligence and Games (CIG), 1–8.
Sturtevant, N. R. 2012. Benchmarks for Grid-Based
Pathfinding. IEEE Transactions on Computational Intelli-
gence and AI in Games, 4(2): 144–148.
Thomas, D. W.; Shimony, S. E.; Ruml, W.; Karpas, E.; Sh-
perberg, S. S.; and Coles, A. 2023. Any-Start-Time Plan-
ning for SIPP. In Proceedings of the ICAPS-23 Workshop
on Heuristics and Search for Domain-Independent Planning
(HSDIP-23).

169


