
Clique Analysis and Bypassing in Continuous-Time Conflict-Based Search

Thayne T. Walker1 2, Nathan R. Sturtevant3 and Ariel Felner4

1University of Denver, USA
2Lockheed Martin Corp., USA

3Department of Computing Science, Alberta Machine Intelligence Institute (Amii), University of Alberta, Canada
4Ben-Gurion University of Negev, Israel

thayne.walker@du.edu, nathanst@ualberta.ca, felner@bgu.ac.il

Abstract

While the study of unit-cost Multi-Agent Pathfinding
(MAPF) problems has been popular, many real-world prob-
lems require continuous time and costs. In this context,
this paper studies symmetry-breaking enhancements for
Continuous-Time Conflict-Based Search (CCBS), a solver
for continuous-time MAPF. Resolving conflict symmetries in
MAPF can require an exponential amount of work. We adapt
known symmetry-breaking enhancements from unit-cost do-
mains for CCBS: bypassing and biclique constraints. We then
improve upon these to produce a new state-of-the-art algo-
rithm: CCBS with disjoint k-partite cliques (CCBS+DK). Fi-
nally, we show empirically that CCBS+DK solves for up to
20% more agents in the same amount of time when compared
to previous state-of-the-art.

Introduction
The objective of multi-agent pathfinding (MAPF) is to find
non-conflicting paths for multiple agents being routed on
a graph. Agents paths are conflicting if at any time their
shapes overlap. MAPF has applications in warehouses (Li
et al. 2021b), package delivery (Choudhury et al. 2021),
games (Botea et al. 2013) and firefighting (Roldán-Gómez,
González-Gironda, and Barrientos 2021).

A significant amount of work has focused on “classic”
MAPF where agents move on a grid or planar graph with
unit-cost edges (Stern et al. 2019). Additionally, all actions
take one time step and agents always occupy exactly one ver-
tex. These limitations simplify the problem, but cannot be
applied to domains which may exhibit variable size agents
and continuous-time, variable-duration motion and wait ac-
tions. We seek optimal solutions to the continuous-time
MAPF problem (MAPFR) (Walker, Sturtevant, and Felner
2018; Andreychuk et al. 2019), denoted with subscript “R”
for real-valued action durations and costs on general graphs
(e.g., planar, non-panar, unit-cost and non-unit cost graphs).

Continuous-Time Conflict-Based Search (CCBS) (An-
dreychuk et al. 2022) is a solver for MAPFR. CCBS
re-formulates the Conflict-Based Search (CBS) algo-
rithm (Sharon et al. 2015) to allow variable-duration wait
actions and constraints which account for continuous-time

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

execution. CCBS was shown to be effective on several set-
tings that are inspired by real-world applications. Addi-
tional enhancements, such as heuristics (Li et al. 2019a), dis-
joint splitting (DS) (Li et al. 2019b) and conflict prioritiza-
tion (Boyarski et al. 2015b) were added to CCBS (Andrey-
chuk et al. 2021). These enhancements improve the runtime
of CCBS. In contrast to other prior optimal continuous-time
approaches (Walker, Sturtevant, and Felner 2020) which as-
sume only fixed-duration wait actions, CCBS plans optimal,
arbitrary duration wait times.

CCBS represents a significant advancement for MAPFR.
However, efficient conflict resolution continues to pose a
problem for this algorithm. A conflict symmetry (Li et al.
2021a) occurs when two or more agents have many different
ways to reach their goals efficiently, but all combinations of
them result in a conflict. For optimal algorithms like CCBS,
this means that all equal-cost path combinations must be
explored before proving that a cost increase is necessary
to avoid the conflict. Conflict symmetries can cause an ex-
ponential amount of work to resolve (Li et al. 2021a). In
this paper, we address conflict symmetries by adapting and
building new symmetry-breaking enhancements for CCBS:
• We adapt the bypass (BP) enhancement (Boyarski et al.

2015a), originally for CBS, to be used with CCBS.
• We re-formulate Biclique Constraints (BC) (Walker,

Sturtevant, and Felner 2020), originally formulated for
CBS, to be used with CCBS.

• We create a new algorithm: CCBS with disjoint bicliques
(CCBS+DB) by combining disjoint splitting (DS) (Li
et al. 2019b) as formulated for CCBS (Andreychuk et al.
2021) with BC.

• We extend CCBS+DB to use k-partite cliques to create
CCBS with disjoint k-partite cliques (CCBS+DK).
This paper is organized as follows: We first provide a def-

inition of the MAPFR problem. Next, we describe the CCBS
algorithm and related work. This is followed by a description
of the new enhancements. Finally, we present a comprehen-
sive ablation study of the enhancements.

Problem Definition
MAPF was originally defined for a “classic” setting (Stern
et al. 2019) where the movements of agents are coordinated
on a unit-cost planar graph. Edges have a unit cost/unit

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

152

time duration and agents occupy a point in space. Thus,
two agents can only have conflicts when on the same ver-
tex at the same time, or traversing the same edge in opposite
directions. MAPFR (Walker, Sturtevant, and Felner 2018;
Andreychuk et al. 2019), an extension of MAPF for real-
valued action durations, uses a weighted graph G=(V,E)
which may be non-planar. Every vertex v∈V is associ-
ated with coordinates in a metric space and every edge
e∈E is associated with a positive real-valued edge weight
w(e)∈R+. For the purposes of this paper, weights repre-
sent the times it takes to traverse edges. However, time
duration and cost can be treated separately. There are k
agents, A={1, .., k}. Each agent has a start and a goal vertex
Vs={start1, .., startk}⊆V and Vg={goal1, .., goalk}⊆V
such that starti ̸=startj and goali ̸=goalj for all i ̸=j.

A solution to a MAPFR instance is Π={π1, .., πk}, a
set of single-agent paths which are sequences of states. A
state s=(v, t) is a pair composed of a vertex v∈V and a
time t∈R+. A path for agent i is a sequence of d+1 states
πi=[s0i , .., s

d
i], where s0i=(starti, 0) and sdi=(goali, tg)

where tg is the time the agent arrives at its goal and all ver-
tices in the path follow edges in E.

Agents have a shape which is situated relative to an agent-
specific reference point (Li et al. 2019c). Agents’ shapes
may vary, but this paper uses circular agents. Agents move
along edges via a straight vector in the metric space. Travers-
ing an edge is called an action, a=(s, s′), where s and s′

are a pair of neighboring states. Wait actions of any positive,
real-valued duration is allowed at any vertex. Variable veloc-
ity and acceleration are allowed. For simplicity, this paper
assumes fixed velocity motion with no acceleration.

A conflict happens when two agents perform ac-
tions ⟨ai, aj⟩ such that their shapes overlap at the same
time (Walker, Sturtevant, and Felner 2018). A feasible
solution has no conflicts between any pairs of its con-
stituent paths. The objective is to minimize the sum-of-costs
c(Π)=

∑
π∈Π c(π), where c(π) is the sum of edge weights

of all edges traversed in π. We seek Π∗, a solution with min-
imal cost among all feasible solutions. Optimization of the
classic MAPF problem is NP-hard (Yu and LaValle 2013),
hence, optimization of the MAPFR problem is also NP-hard.

Background
We now describe CCBS and other prior work.

Conflict-Based Search
Continuous-time Conflict-Based Search (CCBS) (Andrey-
chuk et al. 2022) is based on the classic Conflict-Based
Search (CBS) (Sharon et al. 2015) algorithm, so we describe
it next. CBS performs search on two levels. The high level
searches a constraint tree (CT). Each node N in the CT
contains a solution N.Π, and a set of constraints N.C. Each
path πi∈N.Π of agent i in N is constructed using a low-
level search which respects constraints. A constraint blocks
an agent from performing action(s) and is defined as a tu-
ple ⟨i, v, t⟩, where i is the agent, v is a vertex (or edge) and
t is the time step in which the agent must avoid the ver-
tex (or edge). Next, CBS checks for conflicts between any

pairs of paths πi and πj in N.Π. If N.Π contains no con-
flict, then N is a goal node and CBS terminates. If N.Π
contains a conflict between any πi and πj , then CBS per-
forms a split, meaning that it generates two child nodes Ni

and Nj of N and adds constraints ci and cj to Ni.C and
Nj .C respectively. CBS systematically checks for conflicts,
generates child nodes with constraints to avoid the conflict
and re-plans the conflicting paths with the new constraints
and other constraints inherited from ancestor nodes. CCBS
prioritizes the search by the total cost of N.Π. It terminates
when a feasible solution is found.

Various improvements for CBS have been proposed such
as adding high-level heuristics (Li et al. 2019a), conflict pri-
oritization (Boyarski et al. 2015b), disjoint splitting (Li et al.
2019b) and conflict symmetry resolution (Zhang et al. 2020;
Li et al. 2021a). Some enhancements were also proposed
for MAPFR, such as kinodynamic constraints (Kottinger,
Almagor, and Lahijanian 2022; Wen, Liu, and Li 2022),
biclique constraints (BC) (Walker, Sturtevant, and Felner
2020) (which will be described later) and CCBS itself (An-
dreychuk et al. 2022).

Safe Interval Path Planning
Safe Interval Path Planning (SIPP) (Phillips and Likhachev
2011) is an algorithm for planning a single agent on the same
graph as moving obstacles. In the case of CCBS, the moving
obstacles are other agents. SIPP uses an A*-based algorithm
with a specialized successor generation routine. SIPP omits
the generation of actions which would result in conflicts and
adds wait actions with a specific duration to avoid conflicts.
SIPP does this by computing a set of safe intervals for each
vertex, that is, time intervals in which an agent may occupy
a vertex without conflicting with moving obstacles. In this
way, SIPP guarantees conflict-free shortest paths.

Continuous-Time Conflict-Based Search
CCBS (Andreychuk et al. 2022) modifies CBS by allowing
continuous-time actions. This is accomplished by adding ad-
ditional functionality to CBS:
• CCBS uses continuous-time-and-space collision detec-

tion. It uses arbitrary wait times instead of fixed duration
wait actions.

• CCBS handles durative conflicts, (where agents’ shapes
overlap for a period of time), by utilizing time-range con-
straints (Atzmon et al. 2018).

• CCBS uses SIPP (Phillips and Likhachev 2011) at the low
level. CCBS interprets time-range constraints (i.e., unsafe
intervals) as safe intervals for SIPP.
We now describe CCBS in detail. An example for CCBS

is illustrated in Figure 1. Figure 1(b) shows a problem in-
stance on the simple planning graph in Figure 1(a) in which
three agents exist, one at each vertex. Each of the agents
needs to rotate one edge in the clockwise direction (or two
edges in the counter-clockwise direction) in order to reach
their goal. Assuming an agent radius of

√
2/4, actions A→B

and C→A conflict if taken simultaneously.
After CCBS detects the conflict, time-range constraints

are constructed for the agents. Time-range constraints block

153

2

√
3

1

A

B

C

(a)

x

y

z

(b)

x

y

z

.36

.36

(c)

Figure 1: (a) A planning graph, (b) a MAPFR instance, and
(c) a solution that uses fractional wait times.

agents from performing actions inside of a given time range.
This is done by computing the delay time necessary for the
action C→A to avoid conflict with the action A→B (and
vice-versa). This delay time is used to create an unsafe in-
terval, the interval in which, if the action is taken, it will
conflict. In this case, the unsafe interval for action C→A is
[0, 0.36). Hence, if action C→A is delayed by 0.36, it can
be executed without conflicting with action A→B.

After CCBS constructs the time-range constraint for agent
z, the low-level SIPP solver is called. CCBS re-interprets
the unsafe interval [0, 0.36) to the safe interval, [0.36,∞)
for SIPP. Agent z will be forced to wait 0.36 time steps be-
fore executing action C→A, and the conflict with the action
A→B is avoided. The wait action is shown by the self-loop
on agent z in the solution, Figure 1(c).

This problem instance is unsolvable without a non-unit
cost wait action. If, for example, agent z were to wait one
full time step, it would cause agent y to wait one full time
step as well, causing it to conflict with agent x. This is one
reason why arbitrary-duration wait actions are important for
MAPFR. In addition, lower-cost solutions are possible with
arbitrary-duration wait actions, since agents are allowed to
wait for fractional times instead of whole time steps.

There are several enhancements for CCBS as described
so far. The CCBS authors introduced a high-level heuris-
tic based on the max-weight independent set problem. It
was formerly formulated as as an integer linear program
(ILP) for classic MAPF (Li et al. 2019a), but reformulated
for continuous time as a linear program (LP) (Andreychuk
et al. 2021). Finally, a special formulation of disjoint split-
ting (Andreychuk et al. 2021) was added to CCBS. Disjoint
splitting is now explained in further detail.

Disjoint Splitting
Disjoint splitting (DS) (Li et al. 2019b) is a technique for
CBS which helps avoid resolving the same conflict multiple
times in different sub-trees of the CT. The split procedure
for DS is as follows: one child node uses a negative con-
straint defined as a tuple ⟨i, v, t⟩ which causes the agent (i)
to avoid a vertex (v) at a specific time (t). The other child
node uses a positive constraint, ⟨i, v, t⟩, which forces the
agent (i) to visit a vertex (v) at a specific time (t). A positive
constraint for agent i also acts as a negative constraint for
all other agents so that they avoid conflicting with agent i.
Positive constraints are enforced at the low level by adding
time-specific sub-goals or landmarks to the search. It was
shown that DS helps CBS to do less work in general (Li
et al. 2019b).

The implementation of DS for CCBS differs from CBS
in two ways (Andreychuk et al. 2021): (1) Constraints for
agent i in CCBS include a time range ⟨i, v, (t1, t2]⟩ (Atz-
mon et al. 2018). Since the arrival at a landmark is al-
lowed at multiple times, special logic is required to deter-
mine which exact time is optimal and feasible with respect
to all other constraints. (2) Unlike DS for Classic MAPF,
positive constraints do not act as a negative constraint for all
other agents. Instead, a single negative constraint is added
for agent j to help it avoid the landmark for agent i.

This second difference is a limitation that must be solved
in CCBS using bipartite analysis, covered later in this pa-
per. Despite this weakness, DS yields consistent improve-
ments in runtime performance versus the original splitting
method (Andreychuk et al. 2021).

New Enhancements
Bypass
The bypass enhancement (BP) (Boyarski et al. 2015a) is a
technique used to avoid some splits in the CT. BP was never
implemented for CCBS, and to our knowledge, no study
has been performed to determine its effectiveness for CCBS.
Our intent in including BP in this paper is to experiment with
its effectiveness in continuous-time domains. Our findings
show that it is very effective in problem instances with simi-
larities to “classic” MAPF, but much less effective in certain
continuous-time settings. These details will be discussed in
the empirical results section.

The implementation of BP for CCBS is straightforward,
and follows the original formulation, with some adaptations
for continuous-time. BP (for both CBS and CCBS) inspects
the paths for two agents involved in a conflict. If a new path
of the same cost is available for one of the conflicting agents
such that: (1) the new path does not have an increased cost,
(2) the new path respects new constraints which are required
to avoid the conflict that caused the split and (3) the new
path has fewer conflicts with all agents than the respective
path in the parent node, this new path is called a bypass. If a
bypass is found, child nodes are not generated, instead, the
current node is updated with the bypass path for one of the
agents and re-inserted into the OPEN list. This enhancement
improves performance by avoiding splits in the tree which
would otherwise result in two new sub-trees.

Biclique Constraints
Biclique constraints (BC) were empirically studied for
MAPFR (Walker, Sturtevant, and Felner 2020) with unit-
cost wait actions. We now study BC with variable-duration
wait actions. Recall from the discussion of CBS that dur-
ing a split, agents i and j each receive a new constraint ci
and cj in their respective child nodes. For BC, CCBS must
be combined with Multi-Constraint CBS (Li et al. 2019c)
which allows each agent to receive sets of one or more
new constraints Ci and Cj , respectively. Constraint sets are
valid iff no solution exists when both agents i and j vio-
late any constraints ci∈Ci and cj∈Cj , respectively at the
same time. Thus, completeness is ensured only when the

154

actions blocked by Ci are mutually conflicting with all ac-
tions blocked by Cj . BC builds valid sets of constraints for
MAPFR using bipartite conflict graphs.

Bipartite Conflict Graphs Figure 2(a) shows an example
problem instance where two agents must cross paths. Figure
2(b) shows an enumeration of all actions available to two
agents at overlapping timeframes, (wait actions omitted).
Figure 2(d) shows the bipartite conflict graph for the enu-
merated actions. A bipartite conflict graph (BCG) (Walker,
Sturtevant, and Felner 2020) is constructed by creating two
sets of nodes for the actions available to the two agents dur-
ing overlapping timeframes. The nodes for one agent are ar-
ranged on the left, and nodes for the other agent are arranged
on the right. Then edges are added between nodes for pairs
of actions that conflict. The graph is bipartite because no
node on the left is connected to any other node on the left,
similarly for nodes on the right, but nodes on the left may be
connected to nodes on the right.

In order to choose a valid set of constraints, the nodes
chosen must form a bipartite clique or biclique in the BCG.
That is, every node chosen for the set on the left must be
connected to every node chosen for the set on the right of
the BCG. A biclique is shown with thick lines in Figure 2(d),
where the set of nodes in the biclique is {2, 3} and {4, 5} re-
spectively. In practice, one can find a max-vertex biclique (a
biclique with a maximal number of vertices) in polynomial
time (Walker, Sturtevant, and Felner 2020).

Time-Annotated Bipartite Conflict Graphs Biclique
nodes in a BCG can be annotated with unsafe intervals for
SIPP. This is done by computing the unsafe times (i.e., the
amount of time one agent should wait to avoid conflict)
for each neighboring node in the biclique as shown for ac-
tion 2 in Figure 2(c). Unsafe interval computation can be
done using a binary search approach (Yakovlev and Andr-
eychuk 2017) or, for circular agents, using an algebraic ap-
proach (Walker and Sturtevant 2019). In this example, ac-
tion 2 cannot be performed in the time range [0, 0.58) in
order to avoid conflict with action 4, and [0, 0.71) to avoid
conflict with action 5. The intersection of those intervals is
used to annotate the action in the biclique as shown for ac-
tion 2 in Figure 2(d). Avoiding execution of the action in the
intersected unsafe interval ensures the mutually conflicting
property (Walker, Sturtevant, and Felner 2020).

In the example, blocking action 2 in the intersected in-

x

y

(a)

x

y

5
2
6

1
43

(b)

x

y

5

2
4

[0, 0.71)

[0, 0.58)

(c)

1
[0, 0.58)

2

3

4

5

6
(d).

Figure 2: An example of bipartite conflict analysis. (a) A
MAPF instance, (b) an enumeration of actions (wait actions
omitted), (c) an illustration of unsafe intervals for action 2
and (d) a bipartite conflict graph and biclique.

terval ([0, 0.58) ∩ [0, 0.71)=[0, 0.58)) ensures that the in-
terval for which action 2 is blocked conflicts with all other
actions in the biclique, namely actions 4 and 5. If the interval
[0, 0.71) were erroneously chosen instead, action 2 would be
blocked for part of the timeframe ([.58, .71)) in which it does
not conflict with action 4, potentially blocking a feasible
and/or optimal solution that uses action 4 in that timeframe.
This technique is necessary for creating valid sets of time-
range constraints required by the SIPP routine of CCBS.

New Biclique Constraints for CCBS
In this paper, we tested BC with CCBS for the first time. Al-
though the use of max-vertex bicliques for BC was shown to
be very effective in continuous-time domains with fixed wait
actions (Walker, Sturtevant, and Felner 2020), when applied
to CCBS, which computes arbitrary wait actions, we found
that using max-vertex bicliques to generate biclique con-
straints was usually detrimental to performance. As noted
earlier, taking the intersection of unsafe intervals of adjacent
edges usually causes the interval to be shortened. Because
of this shortened interval, the resulting safe intervals used
with SIPP will not cause wait actions to be generated with
a long enough duration to avoid conflict. This can result in
causing a conflict between the two actions which caused the
split (which we will call the core action pair) to recur at a
slightly later time, resulting in another split in the sub-tree
for the same two actions.

In order to remedy this, we computed the biclique so that
it only includes the pairs of actions whose unsafe interval
is a superset of that for the core action pair. For exam-
ple, if the core action pair were actions 2 and 4, the bi-
clique would include both actions 4 and 5, because its un-
safe interval is a superset: [0, 0.71) ⊇ [0, 0.58). On the other
hand, if the core action pair were actions 2 and 5, action
4 could not be included in the set. In this way, the correct
wait time is generated by SIPP and the same conflict is al-
ways avoided in the sub-tree. This approach of computing
an interval-superset biclique often results in a smaller bi-
clique and thus a smaller set of biclique constraints than the
max-vertex biclique approach, nevertheless, the result yields
performance gains versus CCBS with the original splitting
method in many settings.

Biclique constraints in CBS are not usually applicable in
“classic” planar graphs (assuming agents’ size is sufficiently
small) since agents would only conflict with one other action
at a time (e.g., agents crossing the same edge in opposite
directions), resulting in a 1x1 biclique which is equivalent
to classic constraints. However, with CCBS, biclique con-
straints are useful in planar graphs since multiple wait ac-
tions are possible for the same agent at a vertex at a specific
point in time, which makes multiple conflicts possible.

Disjoint Splitting with Biclique Constraints
Recall that with disjoint splitting, in one CT child node there
is a positive constraint for agent i, and in the other there is
a negative constraint for agent i. Additionally, (specifically
in the formulation for CCBS), a single negative constraint
for agent j is added to the node with the positive constraint.
Doing this alone is quite effective (Andreychuk et al. 2021).

155

Algorithm 1 Disjoint Biclique Constraint Generation

1: Input:
2: A pair of conflicting actions: ai, aj .
3: Graph on which motion is planned: G=(V,E).
4: Output:
5: Child node constraints: Ni.C,Nj .C.
6: ▷ Construct a Bipartite Conflict Graph:
7: Vi ← {(ai.s.v} ×N(ai.s.v)} ▷ Possible actions
8: Vj ← {(aj .s.v} ×N(aj .s.v)}
9: Ei ← {∀(vi, vj) ∈ {vi} × Vj | CONFLICT(vi, vj)}

10: Ej ← {∀(vj , vi) ∈ {vj} × Vi| CONFLICT(vj , vi)}
11: if |Ei| > |Ej | then
12: Pos← i ▷ Reference for positive constraint.
13: Neg ← j ▷ Reference for negative constraint.
14: else
15: Pos← j
16: Neg ← i
17: end if
18: ▷ Assign positive constraint.
19: NPos.C ← ⟨aPos,UNSAFEINTERVAL(aPos, aNeg)⟩
20: ▷ Assign neg. constraints as part of pos. constraint.
21: for (va, vb) ∈ EPos do
22: NPos.C ← ⟨va,UNSAFEINTERVAL(va, vb)⟩
23: end for
24: ▷ Assign negative constraint.
25: NNeg.C ← ⟨aNeg,UNSAFEINTERVAL(aNeg, aPos)⟩

However, it is still possible for a conflict with the positively
constrained action to recur in the sub-tree of the CT. We pro-
pose that when performing a disjoint split between agent i
and agent j that along with a positive constraint for agent i,
a set of negative constraints be added for agent j to the same
CT node so that while agent i is forced to take an action,
agent j is forced to avoid all actions which conflict with it.

To comprehensively enforce that agent j avoids the
positively-constrained action for agent i (or vice-versa), we
perform a modified form of bipartite analysis outlined in Al-

5

36

1

4 2

i j

×××
3×××

1

××× 2

i j 5

36

×××
4 2

i j

A

B C

Figure 3: A disjoint split with biclique constraints.

gorithm 1. This procedure for computing time-annotated bi-
clique constraints is simpler than outlined in the previous
section because it is not necessary to test for the addition
of edges for all pairs of vertices in the BCG and therefore
the interval intersection and shortening steps are not neces-
sary for the negative constraints. This is because the negative
constraints must avoid the positive constraint’s action for the
entire duration. The input is the pair of conflicting actions,
ai and aj and the graph G. The procedure starts by enumer-
ating possible actions (via adjacent edges) that start at the
start vertex of action ai (resp. aj) (see lines 7 and 8). Edges
are then added for actions which conflict with the core action
(lines 9 and 10). Our implementation chooses the positively
constrained agent to be the one with the most nodes (line
11). However, alternative approaches could be taken such
as choosing the set with the largest cumulative unsafe inter-
val, the largest mean unsafe interval, etc. Finally, one posi-
tive constraint is added with the set of negative constraints
for conflicting actions for the positively-constrained agent
(lines 18-23), and one negative constraint for the negatively-
constrained agent (line 25). We make sure to compute the
proper unsafe interval for each constraint, using the UN-
SAFEINTERVAL routine.

The placement of constraints is illustrated in Figure 3.
Node A is a node in the CT with a conflict between actions 1
and 5 shown in bold; this is the core action pair. Nodes B and
C are child nodes. Node B shows the positive constraint for
the red agent in bold for action 1, with negative constraints
for the blue agent’s conflicting actions shown with ‘x’s. The
other actions for the red agent in node B are dashed, mean-
ing that they are no longer reachable because of the positive
constraint. Finally, node C shows a single negative constraint
that mirrors the positive constraint in node B.

In summary, while regular disjoint splitting would only
create a positive constraint for agent i with a single nega-
tive constraint for agent j to child node 1 and a negative
constraint for agent i to child node 2, disjoint splitting with
bicliques, or disjoint bicliques (DB) adds multiple negative
constraints for agent j to child node 1 as well. The effect of
adding the extra constraints for agent j is that agent j avoids
the positively-constrained action for agent i from multiple
paths, preemptively avoiding conflicts further down in the
CT. Ultimately, a significant number of nodes are pruned
from the CT.

We now show that this approach is complete (if a solu-
tion to the problem instance exists) and that it also ensures
optimality.

Lemma 1. Using biclique constraints with disjoint splitting
(disjoint bicliques) never blocks a feasible solution from be-
ing found by CCBS.

Proof. Let N be a CT node. Let ai and aj be a core action
pair – a conflicting pair of actions from πi ∈ N.Π and πj ∈
N.Π respectively.

Let N̄i be a child of N which contains a single negative
constraint blocking action ai. Let N̂i be a second child of
N with a single positive constraint forcing agent i to per-
form action ai, and multiple negative constraints C̄j , block-
ing agent j from conflicting with ai.

156

Let Π∗ be the only feasible solution to the MAPF problem
instance. There are three possible cases:

1. Π∗ contains ai
2. Π∗ contains aj
3. Π∗ contains neither ai nor aj

If case 1 is true, Π∗ is guaranteed to be found in the sub-
tree of N̂i because ai is enforced by the positive constraint.
If case 2 is true, Π∗ is guaranteed to be found in the sub-
tree of N̄i because aj is not blocked. If case 3 is true, Π∗ is
guaranteed to be found in the sub-tree of N̄i because ai is
blocked and aj is not enforced.

Because the BCG only includes actions which conflict
with ai, it is not possible to block any action that does not
conflict with ai. Since in case 1, Π∗ cannot contain any ac-
tions that conflict with ai, blocking all actions for agent j
which conflict with ai cannot preclude Π∗. Thus case 1 still
holds with disjoint bicliques.

Theorem 2. CCBS with disjoint bicliques is optimal.

Proof. Per Lemma 1, using disjoint bicliques can never pre-
clude CCBS from finding a solution (if any exist). Since the
OPEN list is ordered by lowest cost, CCBS is guaranteed to
find a lowest-cost feasible solution before terminating.

Disjoint K-Partite Cliques
So far, we have discussed the approach for combining bi-
cliques with disjoint splitting for resolving a single conflict.
It is often the case that multiple agents conflict with the pos-
itively constrained action. It is possible (and helpful) to ad-
ditionally constrain these agents using negative constraints.
This is done by executing Algorithm 1 for all agents that
have a conflict with the positively constrained action to form
two k-partite conflict graphs (KCG), one for agent i and an-
other for agent j. But it is explained more simply as enumer-
ating all actions by all agents which conflict with ai and aj
respectively and computing unsafe intervals. All other steps
are straightforward, and amount to assigning adding nega-
tive constraints for all actions that conflict with the positively
constrained one. Our implementation chooses the agent with
the largest KCG to get the positive constraint.

In order to avoid performing extra conflict checks to
discover other agents that conflict with the positively-
constrained action, we make use of a conflict count table
(CCT) (Walker 2022) which is adapted for MAPFR to per-
form bookkeeping on all conflicts. The CCT is set up so that
looking up conflicts in the table is indexed on a per-agent,
per-action basis to expedite the KCG creation. In a vast ma-
jority of cases, the number of partitions in the KCG graphs
are much smaller than the number of agents.

We show that DK is correct by an extension of Lemma 1:

Lemma 3. The use of disjoint k-partite cliques with disjoint
splitting never blocks a feasible solution in CCBS.

Proof. Following the definitions from Lemma 1, DK now
adds negative constraints for multiple agents to N̂i. Since
the constraints in N̄i are unchanged, cases 2 and 3 still hold.

Case 1 still holds because Π∗ cannot contain any action
by any agent which conflicts with ai, therefore just as the
disjoint bicliques procedure ensures that only actions which
conflict with ai are blocked for agent j, DK ensures that
only actions which conflict with ai are blocked for all agents
j ̸= i (or subset of agents ∈ j ̸= i). Thus, DK can never
block a feasible solution in any of the three cases.

Finally, substituting Lemma 3 into Theorem 2, we see that
DK is also optimal. In summary, we now have a powerful ca-
pability for multi-agent conflict resolution, capable of elim-
inating even more nodes in the CT.

Empirical Results
We now analyze the enhancements described in the previous
section, namely: bypass, which is new to CCBS in this pa-
per, biclique constraints (BC) which is newly formulated in
this paper, and disjoint k-partite cliques (DK) which is new.
All tests in this section were performed single-threaded, on
cloud compute instances that report an Intel Xeon 2.5GHz
processor. In addition to the three roadmaps: “Sparse”,
“Dense” and “Super-dense” and the four grid maps focused
on by the original CCBS authors, we test our enhancements
in 32 of the MAPF grid benchmarks (Stern et al. 2019) with
2k neighborhood (Rivera, Hernández, and Baier 2017) con-
nectivities, namely 4-, 8-, 16- and 32-neighborhoods. In ac-
cordance with previous benchmark settings, agents are cir-
cular, with a radius of

√
2/4, however, any agent radius can

be used with this algorithm.
All tests were run by starting with 2 agents and increment-

ing the number of agents by 2 until the problem instance be-
came unsolvable in under 30 seconds. We thank the original
CCBS authors for making their code publicly available. Our
implementation is based on theirs and is also freely avail-
able1. We updated some of the memory management, which
made it slightly faster than the original. For this reason, some
of our baseline results differ from previously published ones.

We will describe each of our experiments in turn and
then discuss them all together. Figure 4 shows the suc-
cess rates; the percentage of problem instances solvable in
under 30 seconds for increasing numbers of agents. The
rates are computed over 25 problem instances for each map.
All plots, except for the super-dense roadmap are on 32-
neighbor grids. We remind the reader that results are optimal
in terms of cost (i.e., shortest non-conflicting paths), and that
adding a single agent to a problem instance represents a mul-
tiplicative increase in the problem instance’s computational
complexity. More precisely, the upper bound on the compu-
tational complexity of MAPF (and by extension MAPFR) is
exponential in the number of agents (Yu and LaValle 2013),
therefore, adding one agent to a problem instance increases
the exponent of the upper bound by one. Hence, even a small
gain (e.g., a few percentage points) can mean that a large re-
duction in work is actually realized.

Tables 1, 2 and 3 show the sum total of the maximum
number of agents solvable over 25 problem instances in un-
der 30 seconds per map. The statistics with the best result

1https://github.com/thaynewalker/CCBS

157

underlined and those within the 95th percentile of the best
are in bold. The label “CCBS” in Figure 4 is CCBS with all
enhancements from the original authors except DS. The la-
bel “Base” is CCBS with all enhancements, including DS,
the previous state-of-the-art. In all of the tables, the column
labeled “Base” is also the previous state-of-the-art.

Table 1 shows totals for all grid maps for 4-neighbor grids,
totals for each class of maps, and an overall total. 4-neighbor
grids in this context are similar to those for “classic” MAPF,
except instead of fixed wait actions, agents may wait an arbi-
trary amount of time. Table 2 shows aggregate group results

10 20 30 40 50

0

50

100

Su
cc

es
s

R
at

e
(%

) CCBS Base BP BP+DS BP+BC BP+DK

10 20 30 40 50 60 70 80

0

50

100

Su
cc

es
s

R
at

e
(%

)

10 20 30 40 50 60 70 80

0

50

100

Su
cc

es
s

R
at

e
(%

)

10 20 30

0

50

100

Su
cc

es
s

R
at

e
(%

)

10 20 30 40 50 60 70 80

0

50

100

Su
cc

es
s

R
at

e
(%

)

10 20 30 40 50 60 70 80 90

0

50

100

Su
cc

es
s

R
at

e
(%

)

10 20 30

0

50

100

Number of Agents

Su
cc

es
s

R
at

e
(%

)

den520d

Boston 0 256

empty-48-48

maze-128-128-10

random-64-64-10

warehouse-10-20-10-2-2

super-dense roadmap

Figure 4: Success rates on 32-neighbor grids and roadmaps.

for the same groupings as Table 1, and the grand total for
all remaining connectivity settings, namely 8-, 16- and 32-
connected grids. Table 3 shows the results for all settings on
probabilistic roadmaps (Andreychuk et al. 2019). “sparse”
contains 158 nodes and 349 edges with a mean vertex degree
of 4.2, “dense” contains 878 nodes and 7,341 edges with a
mean degree of 16.7, and “super-dense” contains 11,342 ver-
tices and 263,533 edges with a mean degree of 100.4.

Map Base BP+DS DK BP+DK
Berlin 1 256 1,200 1,334 1,200 1,334
Boston 0 256 1,112 1,140 1,112 1,152
Paris 1 256 1,432 1,524 1,434 1,524
City Total 3,744 3,998 3,746 4,010
den520d 844 860 844 868
brc202d 580 604 586 606
den312d 474 510 474 552
lak303d 474 538 476 552
orz900d 626 566 622 564
ost003d 562 582 564 582
DAO Total 3,560 3,660 3,566 3,724
empty-8-8 312 316 314 338
empty-16-16 520 520 520 546
empty-32-32 886 920 886 918
empty-48-48 1,058 1,110 1,058 1,144
Empty Total 2,776 2,866 2,778 2,946
lt gallowstemplar 632 654 634 658
ht chantry 570 588 566 592
ht mansion n 680 726 680 746
w woundedcoast 664 698 670 706
DAO2 Total 2,546 2,666 2,550 2,702
maze-32-32-2 280 278 286 278
maze-32-32-4 252 256 248 254
maze-128-128-2 248 254 252 256
maze-128-128-10 340 364 340 360
Maze Total 1,116 1,152 1,126 1,148
random-64-64-10 1,210 1,222 1,210 1,266
random-64-64-20 862 860 852 920
random-32-32-10 614 674 614 674
random-32-32-20 424 438 424 448
Random Total 3,110 3,194 3,100 3,308
room-64-64-16 424 432 424 428
room-64-64-8 290 288 290 314
room-32-32-4 286 298 286 306
Room Total 1,000 1,018 1,000 1,048
w-10-20-10-2-2 1,124 1,372 1,124 1,390
w-10-20-10-2-1 1,022 1,078 1,022 1,066
w-20-40-10-2-2 1,890 1,998 1,890 1,998
w-20-40-10-2-1 1,740 1,870 1,870 2,038
Warehouse Total 5,776 6,318 5,776 6,492
Total 23,628 24,872 23,642 25,378

Table 1: Sum total of agents solved on 4-neighbor grid
MAPF benchmarks

158

Map Type Base BP+DS DK BP+DK

8-neighbor grids
City 4,820 5,016 4,982 5,084
DAO 4,298 4,394 4,382 4,474
Empty 3,304 3,560 3,396 3,628
DAO2 3,174 3,318 3,242 3,380
Maze 1,304 1,292 1,298 1,336
Random 3,486 3,628 3,514 3,760
Room 1,142 1,148 1,124 1,168
Warehouse 6,688 6,990 6,722 7,280
Total 28,216 29,346 28,660 30,110

16-neighbor grids
City 3,906 4,044 3,958 4,148
DAO 3,578 3,616 3,602 3,800
Empty 3,252 3,326 3,278 3,366
DAO2 2,598 2,662 2,624 2,776
Maze 1,142 1,154 1,146 1,188
Random 3,080 3,124 3,110 3,260
Room 1,044 1,058 1,040 1,082
Warehouse 6,516 6,650 6,550 6,926
Total 25,116 25,634 25,308 26,546

32-neighbor grids
City 3,310 3,358 3,414 3,680
DAO 2,860 2,884 2,940 3,058
Empty 2,798 2,058 2,872 3,116
DAO2 2,190 2,218 2,224 2,342
Maze 1,030 1,028 1,060 1,124
Random 2,840 2,866 2,940 3,186
Room 1,032 1,042 1,040 1,106
Warehouse 5,832 6,128 5,926 6,478
Total 21,892 21,582 22,416 24,090

Table 2: Sum total of agents solved on 8-, 16- and 32-
neighbor grid MAPF benchmarks

Map Base BP+DS DK BP+DK

Sparse 434 434 440 444
Dense 604 604 630 712
Super-dense 402 402 442 474
Total 1,440 1,440 1,512 1,630

Table 3: Sum total of agents solved on roadmaps

Discussion

In Figure 4, the BP enhancement (teal circle) success rate
is not significantly better or worse than CCBS alone (p
square). It never performs worse than CCBS in any of the
32-neighbor maps. This is also corroborated by the results
for the roadmaps in Table 3, BP does not improve perfor-
mance in these cases. On the other hand, in Table 1, which
is on 4-neighbor maps, we see that adding BP to Base (pre-
vious state-of-the-art) yields statistically significant gains in
nearly every map. Table 2 shows a similar trend for all 8-

neighbor grids, but as the connectivity is increased to 16-
and 32-neighbor grids, the improvement from BP becomes
less significant. The cost symmetries in these settings de-
creases as the connectivity increases. Ultimately, in the road
maps, which have practically no cost symmetries, we see no
improvement with BP. The results also show that there is no
significant decline in performance in the higher connectiv-
ities when using BP. From this we learn that (1) BP offers
significant performance improvements when there are many
cost symmetries in the graph, and the performance benefits
are directly proportional to the amount of cost symmetries.
(2) The cost of BP is not significant, even with no symme-
tries in the map. (3) BP is complimentary to DS and BC.

The trend in Figure 4 shows that BC provides a consistent
improvement over CCBS in 32-neighbor grids. It is com-
plimentary to DS, as evidenced by the fact that BP+DK
performs better than both BP+DS and BP+BC. The trend
in all tables shows that the performance improvement of
DK is correlated to the mean vertex degree in the graph.
The amount of improvement is especially significant in the
dense and super-dense road maps, where BP offers no ben-
efit. In these roadmaps, the branching factor is high, with
many edge crossings, a situation which is conducive to large
bicliques. Still, the cost of DK is not significant in planar
graphs. From this we learn that (1) DK offers significant
performance improvements when many edges cross in the
graph. (2) BP and DK are complimentary, as evidenced by
BP being stronger in settings with many cost symmetries
and DK being stronger in settings with few cost symmetries.
With CCBS, because an agent may have multiple different
wait actions at a location, BCGs larger than 1x1 are possible,
thus a small benefit over Base is shown with BC in Table 1.

Because the BP enhancement is never significantly detri-
mental to performance, and provides a benefit even when
there are few cost symmetries, it can be used generally. The
DK enhancement tends to work best in many cases where
BP does not, and it also has no significant execution cost,
hence it can be used generally.

Finally, combining BP with DK consistently beats state-
of-the-art by statistically significant margins. Compared to
the previous state-of-the-art, our enhancements allow solu-
tions for up to 10% more agents and in grid maps and for
up to 20% more agents in super-dense roadmaps in the same
amount of time.

Conclusion
We have tested re-formulated enhancements with CCBS,
namely: Bypassing (BP) and Biclique Constraints (BC).
We have formulated novel enhancements for CCBS,
namely: Disjoint Bicliques (DB) and Disjoint K-Partite
Cliques (DK), leading to a new state-of-the-art algorithm:
CCBS+DK. We found BC alone to be less effective. We
found BP to be most effective in graphs with many cost sym-
metries. We found DB and DK to be most effective in graphs
with few cost symmetries and densely crossing edges. We
have shown that BP and DK are complimentary and that us-
ing them together allows a statistically significant improve-
ment over state-of-the-art generally for all MAPF bench-
marks and sparse to super dense graphs.

159

Acknowledgments
The research at the University of Denver was supported
by the National Science Foundation (NSF) grant number
1815660 and Lockheed Martin Corporation. Research at the
University of Alberta was funded by the Canada CIFAR
AI Chairs Program. We also acknowledge the support of
the Natural Sciences and Engineering Research Council of
Canada (NSERC). Research at Ben Gurion University was
supported by BSF grant number 2021643.

References
Andreychuk, A.; Yakovlev, K.; Atzmon, D.; and Stern, R.
2019. Multi-Agent Pathfinding with Continuous Time. In
International Joint Conference on Artificial Intelligence,
39–45.
Andreychuk, A.; Yakovlev, K.; Boyarski, E.; and Stern, R.
2021. Improving continuous-time conflict based search. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, 11220–11227.
Andreychuk, A.; Yakovlev, K.; Surynek, P.; Atzmon, D.; and
Stern, R. 2022. Multi-agent pathfinding with continuous
time. Artificial Intelligence, 305.
Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N.-F. 2018. Robust Multi-Agent Path Finding. In
International Conference on Autonomous Agents and Multi-
agent Systems, 1862–1864.
Botea, A.; Bouzy, B.; Buro, M.; Bauckhage, C.; and Nau,
D. 2013. Pathfinding in games. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.
Boyarski, E.; Felner, A.; Sharon, G.; and Stern, R. 2015a.
Don’t Split, Try To Work It Out: Bypassing Conflicts in
Multi-Agent Pathfinding. In International Conference on
Automated Planning and Scheduling, 47–51.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.;
Betzalel, O.; and Shimony, S. E. 2015b. ICBS: Improved
Conflict-Based Search Algorithm for Multi-Agent Pathfind-
ing. In International Joint Conference on Artificial Intelli-
gence, 223–225.
Choudhury, S.; Solovey, K.; Kochenderfer, M. J.; and
Pavone, M. 2021. Efficient large-scale multi-drone deliv-
ery using transit networks. Journal of Artificial Intelligence
Research, 70: 757–788.
Kottinger, J.; Almagor, S.; and Lahijanian, M. 2022.
Conflict-Based Search for Multi-Robot Motion Planning
with Kinodynamic Constraints. In 2022 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
13494–13499. IEEE.
Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.
2019a. Improved Heuristics for Multi-Agent Path Finding
with Conflict-Based Search. In IJCAI, volume 2019, 442–
449.
Li, J.; Harabor, D.; Stuckey, P. J.; Felner, A.; Ma, H.; and
Koenig, S. 2019b. Disjoint Splitting for Multi-Agent Path
Finding with Conflict-Based Search. In International Con-
ference on Automated Planning and Scheduling, 279–283.

Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; Gange, G.; and
Koenig, S. 2021a. Pairwise symmetry reasoning for multi-
agent path finding search. Artificial Intelligence, 103574.
Li, J.; Surynek, P.; Felner, A.; Ma, H.; and Kumar, T. K. S.
2019c. Multi-Agent Pathfinding for Large Agents. In AAAI
Conference on Artificial Intelligence, 7627–7634.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. S.;
and Koenig, S. 2021b. Lifelong multi-agent path finding in
large-scale warehouses. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, 11272–11281.
Phillips, M.; and Likhachev, M. 2011. Sipp: Safe interval
path planning for dynamic environments. In International
Conference on Robotics and Automation, 5628–5635. IEEE.
Rivera, N.; Hernández, C.; and Baier, J. A. 2017. Grid
Pathfinding on the 2k Neighborhoods. In AAAI Conference
on Artificial Intelligence, 891–897.
Roldán-Gómez, J. J.; González-Gironda, E.; and Barrientos,
A. 2021. A survey on robotic technologies for forest fire-
fighting: Applying drone swarms to improve firefighters’ ef-
ficiency and safety. Applied Sciences, 11(1): 363.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-Based Search for Optimal Multi-Agent Pathfind-
ing. Artificial Intelligence Journal, 219: 40–66.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Kumar, T. K. S.; Boyarski,
E.; and Barták, R. 2019. Multi-Agent Pathfinding: Defini-
tions, Variants, and Benchmarks. In International Sympo-
sium on Combinatorial Search, 151–159.
Walker, T. T. 2022. Multi-Agent Pathfinding in Mixed
Discrete-Continuous Time and Space. Ph.D. thesis, Univer-
sity of Denver. Language: English.
Walker, T. T.; and Sturtevant, N. R. 2019. Collision Detec-
tion for Agents in Multi-Agent Pathfinding. arXiv preprint
arXiv:1908.09707.
Walker, T. T.; Sturtevant, N. R.; and Felner, A. 2018. Ex-
tended Increasing Cost Tree Search for Non-Unit Cost Do-
mains. In International Joint Conference on Artificial Intel-
ligence, 534–540.
Walker, T. T.; Sturtevant, N. R.; and Felner, A. 2020. Gen-
eralized and Sub-Optimal Bipartite Constraints for Conflict-
Based Search. In AAAI Conference on Artificial Intelligence.
Wen, L.; Liu, Y.; and Li, H. 2022. CL-MAPF: Multi-agent
path finding for car-like robots with kinematic and spa-
tiotemporal constraints. Robotics and Autonomous Systems,
150: 103997.
Yakovlev, K.; and Andreychuk, A. 2017. Any-Angle
Pathfinding for Multiple Agents Based on SIPP Algorithm.
arXiv preprint arXiv:1703.04159.
Yu, J.; and LaValle, S. M. 2013. Structure and Intractability
of Optimal Multi-Robot Path Planning on Graphs. In AAAI
Conference on Artificial Intelligence, 1443–1449.
Zhang, H.; Li, J.; Surynek, P.; Koenig, S.; and Kumar, T.
K. S. 2020. Multi-Agent Pathfinding with Mutex Propaga-
tion. In International Conference on Automated Planning
and Scheduling.

160

