
The Bench Transition System and Stochastic Exploration

Dawson Tomasz1, Richard Valenzano2

Toronto Metropolitan University
dawson.tomasz@proton.me1, rick.valenzano@torontomu.ca2

Abstract

Stochastic exploration has been shown to be an effective way
to mitigate the negative impact that heuristic local minima
and plateaus can have on Greedy Best First Search (GBFS).
Previous work has induced exploration using type systems,
which typically partition the state-space using simple fea-
tures like heuristic value and depth. In this work, we intro-
duce new type systems motivated by the Bench Transition
System (BTS). The BTS is a structure used to character-
ize the behaviour of GBFS. It is based on high water-mark
benches, which are sets of states that have made the same
amount of progress towards the goal. Since the high water-
mark of a state cannot be calculated during search, our type
systems approximate the BTS using the notions of Heuris-
tic Improvement and Low Water-Mark. We first identify that
these approximations are exact in state-spaces with plateaus
but no local minima, and also show that the resulting type
systems are probabilistically complete. Our empirical evalu-
ation shows the effectiveness of this approach on a variety of
planning domains.

1 Introduction
The Greedy Best First Search (GBFS) algorithm (Doran and
Michie 1966), which is core to many automated planners,
searches the state space greedily according to guidance by a
heuristic function. Due to its inherent greediness, any inac-
curacy in the heuristic can produce uninformed heuristic re-
gions (UHRs) in the state-space, which GBFS can have trou-
ble getting past. Stochastic exploration has been shown to be
an effective method of mitigating this issue (Valenzano et al.
2014; Xie et al. 2014; Kuroiwa and Beck 2022; Asai and
Fukunaga 2017). When using these techniques, the search
generally alternates between standard greedy expansions
where the state is selected solely by heuristic value, and ex-
ploratory expansions where the state is selected stochasti-
cally and often against the advice of the heuristic.

Type-based exploration is one such stochastic exploration
method. It works by bucketing states together according to
state features such as heuristic value or path length (Xie
et al. 2014). Exploration is then a two step process: a bucket
is stochastically selected and then a state is stochastically
chosen from that bucket. Type-based exploration techniques
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have been shown to add useful variation to the search that
has been shown empirically to improve search performance.

In this work, we propose two novel type systems based
upon the Bench Transition System (BTS) (Heusner, Keller,
and Helmert 2017, 2018a,b). The BTS is a structure used to
analyze the behaviour of GBFS. It identifies the regions of
the space that GBFS will potentially search, and conversely
identifies the parts of the space that GBFS will never search.
Furthermore, it can be used to characterize the UHRs that
GBFS may encounter during the search.

Below, we identify that the BTS has several properties
regarding how it partitions UHRs and the state-space in
general, that would seemingly make it ideal as a type sys-
tem. Unfortunately, this is not possible since the BTS is
based upon the notion of high water-mark, which cannot be
computed during search. Instead, we identify two methods,
called heuristic improvement and low water-mark, which
can be used to approximate high water-mark and can be
computed during search, meaning they can be used to de-
fine type systems. We formally show that these methods per-
fectly match the BTS on certain state-spaces with plateaus
and no local minima, and they induce probabilistically com-
plete type systems. Finally, we show that these new type
systems can greatly outperform existing approaches when
added to a basic GBFS-based planner, though find mixed re-
sults when added to a fully featured planner.

2 Background
In this section we introduce the notation used, and then re-
view the BTS and relevant stochastic exploration techniques.

State-Spaces and The Bench Transition System
We begin with the basic concepts of a state-space and by re-
viewing the BTS. The notation used largely follows the orig-
inal BTS work (Heusner, Keller, and Helmert 2017, 2018b).

A state space is defined as S = ⟨S, sinit, Sgoal, succ⟩,
with S being the set of states, sI being the start state, Sgoal

being a set of goal states, and succ : S 7→ 2S is the succes-
sor generator function. Given a set of states S′, succ(S′) is
the successor set of every state in S′.

An s-plan is a path to a goal state starting from s. The
set of all s-plans is denoted P (s), and the set of all paths
between two states s and s′ is denoted P (s, s′). Note that
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we ignore transition costs in this work. In a slight abuse of
notation, we use s ∈ S to denote that s is in the set of states
for state space S .

A heuristic function is h : S 7→ R+
0 and we de-

fine the heuristic value of a set of states S′ as h(S′) =
mins′∈S′ h(s′). A state space topology T = ⟨S, h⟩ is then
defined as a state space S combined with a heuristic h.

Greedy Best-First Search (GBFS) is a classic best-first
search algorithm. We largely assume the reader is familiar
with the use of open and closed lists in best-first search al-
gorithms, but recall that on every iteration, GBFS selects a
state in the open list with the lowest heuristic value for ex-
pansion. Ties are broken arbitrarily. Since GBFS is a satis-
ficing algorithm, we assume that states are never re-opened.

The Bench Transition System (BTS) formally character-
izes the behaviour of GBFS on a given state-space topology.
It uses the concept of high-water mark, which is defined as

hwh(s) :=

{
minp∈P (s)(maxs′∈p(h(s

′))) P (s) ̸= {}
∞ otherwise

Notice that a state’s high-water mark is lower bounded by its
own heuristic. Namely, hwh(s) ≥ h(s). We also define the
high water-mark of a set of states S as the minimum high
water-mark among them.

A GBFS is said to have made progress when a new lowest
high water-mark state is encountered. Thus, a progress state
is defined as follows:
Definition 2.1. Let ⟨S, h⟩ be a state space topology. A state
s ∈ S is a progress state if hwh(s) > hwh(succ(s)).

Notice that for any progress state, h(s) = hwh(s). We
can now state the definition of a bench:
Definition 2.2. Let ⟨S, h⟩ be a state space topology. For
any s ∈ S , a bench, denoted B(s), is a tuple ⟨I, E⟩. The
inner states I is the set of all states s′′ ̸= s that can be
reached from s along paths on which all states s′ ̸= s are
non-progress states and satisfy h(s′) ≤ hwh(succ(s)). The
set E of exit states is the set of all progress states s′ with
h(s′) ≤ hwh(succ(s)) that are successors of s or of some
inner bench state of s.

We refer to the bench level of B(s) as level(s) =
hwh(succ(s)). We will also abbreviate B(s) as B when s
is clear from context, use I(B) and E(B) to denote the inner
and exit sets respectively of bench B, and use s′ ∈ B(s) to
mean s′ ∈ I(B(s)) ∪ E(B(s)).

A Bench Transition System is then a directed graph whose
vertices are benches and whose edges correspond to a
progress state leading to a new bench:
Definition 2.3. Let T = ⟨S, h⟩ be a state space topology
with initial state sI . The bench transition system of T , de-
noted BTS(T ), is a directed graph ⟨V,E⟩ where V and E
are defined inductively as follows:
1. B(sI) ∈ V
2. If B(s) ∈ V, s′ ∈ E(B(s)), and s′ /∈ Sgoal then
B(s′) ∈ V and ⟨B(s),B(s′)⟩ ∈ E

A BTS breaks a GBFS search into a set of episodes, each
consisting of the expansion of a progress state and the pro-
gression to a bench with a lower level. Heusner, Keller, and

Helmert (2018b) also identified that a BTS can be used to
formalize different types of uninformed heuristic regions
(UHRs), such as a crater (ie. a local minima):

Definition 2.4. Let BTS(T ) = ⟨V,E⟩ and s be a state such
that B(s) ∈ V . A state s′ ∈ B(S) is called a crater entry
state if s′ ∈ I(B(s)), s′ /∈ E(B(s)), h(s′) = level(s),
and ∃s′′ ∈ succ(s′) such that h(s′′) < level(s). A crater
is defined as the set of all states s′ reachable from a crater
entry s along a path on which for any s′′, h(s′′) < level(s).

Once a crater entry state is expanded, the search will have
made heuristic progress but not high water-mark progress. It
will then have to expand every state in that crater before it
can move on to the next bench (Heusner, Keller, and Helmert
2017). Craters/local minima are important state space fea-
tures since the total search effort of GBFS strongly corre-
lates with the size and depth of the largest local minima en-
countered during the search (Cohen and Beck 2018).

Plateau are another form of UHR. In a BTS, a plateau is
a subset of states on the same bench that all have the same
heuristic value (Heusner, Keller, and Helmert 2017). Large
plateau obstruct search by making the heuristic no more in-
formed than a random search (Xie, Müller, and Holte 2014).

Stochastic Exploration
Stochastic exploration can mitigate the impact of UHRs on
GBFS by stochastically choosing states for expansion, often
against the advice of the heuristic function. This can often
helpfully diversify the search in the event that GBFS is stuck
in a UHR, either by allocating some effort off the UHR or
by helping find a way off of it.

The different approaches for introducing exploration gen-
erally alternate (or use a similar mechanism) between se-
lecting nodes from the open list for expansion greedily ac-
cording to h, and sampling nodes stochastically from the
open list according to some defined procedure. The meth-
ods largely differ in the procedure used. ϵ-GBFS samples
states uniformly from amongst those in the open list (Valen-
zano et al. 2014). However, if the open list is dominated by a
single UHR, uniform sampling is biased to largely only se-
lect from within that UHR. Type-GBFS addresses this issue
by sampling uniformly over types instead of the whole open
list (Xie et al. 2014). This approach uses a given type system,
which partitions the nodes into different buckets:

Definition 2.5. If S is a state space, then T = ⟨T1, ..., Tn⟩
is a type system of open list OPEN ⊆ S if it is a disjoint
partitioning of OPEN .

Exploration in Type-GBFS involves two steps. First, a
type is selected uniformly at random from amongst those
with nodes in the open list. Next, a node is selected uni-
formly at random from amongst those in the selected type.
This removes the bias towards sampling high cardinality
types. In the original work, the most effective type system
bucketed nodes together if they shared the same h-cost and
g-cost (Xie et al. 2014). We call this the ⟨h, g⟩ type system.

Kuroiwa and Beck (2022) later introduced biased type se-
lection. This method also uses the ⟨h, g⟩ type system. It does
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so by first sampling an h-cost in a way that is biased towards
low h-costs. A bucket from amongst those with the selected
h-cost is then selected uniformly at random, and a node is
selected randomly from that bucket. This approach is moti-
vated by the fact that while the the heuristic function may
be imperfect, it still usually does well to discriminate be-
tween those nodes far away from the goal and those reason-
ably close. The most effective biasing scheme introduced by
Kuroiwa and Beck was Softmin-Type, which sets the proba-
bility of selecting a heuristic value h′ as

softmin(h′) =
exp(−h′/τ)∑

h′′∈OPEN exp(−h′′/τ)
(1)

where the denominator is the sum over the unique h-values
in OPEN , and τ > 0 is the temperature parameter.

We note that under reasonable conditions, most of the ex-
isting stochastic approaches are probabilistically complete
on infinite graphs, meaning that the probability these algo-
rithms solve any search problem approaches 1 as the num-
ber of node expansions goes to infinity (Valenzano and Xie
2016). This is not true for standard GBFS, which can get
stuck on an infinite path if the the heuristic is misleading
enough. This is a desirable property even in finite graphs,
since it decreases the risk that the search is led arbitrarily
astray by incorrect heuristic information.

3 The BTS as a Type System?
Suppose we had a type system that bucketed together nodes
if and only if they were on the same bench. We refer to this
hypothetical system as the BTS type system. Below, we dis-
cuss the impossibility of realizing this type system, but first
identify several positive attributes that such a type system
would have. This will help motivate the new type systems
introduced in Section 4, which are based on approximations
of the BTS. We begin with the following observation:
Observation 3.1. In the BTS type system, all nodes within
the same plateau or crater will reside in the same bench.

A consequence of this observation is that the exploration
induced by the BTS type system will mitigate the cardinality
bias of large UHRs when used as part of Type-GBFS. That
is, since all the nodes in an UHR will be of the same type, the
likelihood of selecting a node from a large UHR will be the
same as selecting from a small UHR. Thus the exploration
will not be dominated by these large UHRs.

Asai and Fukunaga (2017) distinguished between intra-
UHR exploration1 (exploring within a UHR) and inter-
UHR exploration (exploring between UHRs). These differ-
ent modes were each found to be beneficial, while also or-
thogonal to each other (Asai and Fukunaga 2017). By Ob-
servation 3.1, a search using the BTS type system is explic-
itly choosing between UHRs, and is thus doing inter-plateau
exploration. When selecting from amongst nodes of a given
type, it is selecting within a UHR, and thus is doing intra-
plateau exploration. This means that type-based exploration
using the BTS type can easily incorporate more complex

1The original work refers to inter- and intra-plateau exploration,
but extending these concepts to UHRs is straightforward.

strategies for each type of exploration by simply changing
the sampling strategy for each phase of exploration.

Our next observation relates to the fact the BTS type sys-
tem only buckets together nodes that are “near” each other
in the state-space:
Observation 3.2. Nodes n1 and n2 can only be in the same
type in the BTS type system, if the deepest progress state on
the paths common to both n1 and n2 is the same.

This property means that nodes found along very differ-
ent paths — and thus likely to be in very different locations
of the search space — are unlikely to be grouped together
unless they are both in a massive UHR. The standard ⟨h, g⟩
type system does not have this property: states in very dif-
ferent parts of the state-space may have the same h and g
values, and thus may be bucketed together. In the terminol-
ogy of Asai and Fukunaga 2017, the BTS type system would
induce breadth-based diversification since it would distin-
guish between nodes at the same depth but in different parts
of the state-space. It would also induce depth-based diver-
sification, meaning that exploration across different depths
would be encouraged. While nodes at different depths may
be bucketed together, depth is implicitly a part of the BTS
type system since each new deepest progress state creates
a new type just as each new depth does in the ⟨g, h⟩ type
system. Asai and Fukunaga (2017) showed that neglecting
to perform both modes of diversification can result in patho-
logical behaviour.

Unfortunately, except in certain cases such as those in the
next section, the BTS type system described above cannot be
used in practice. The first issue is that in its original formula-
tion, any node that is not possibly expanded by GBFS is not
included in the BTS. As there are very likely cases where
the heuristic is misleading enough that the search would be
better off explicitly trying to “get off the BTS”, this is not
desirable behaviour for exploration in satisficing search.

The above issue can be addressed by adding the nodes
omitted from the BTS to the same type as the nearest ances-
tor that is a progress state. We use a similar approach when
defining our type systems. However, the next issue does not
obviously have such a solution. Recall that the BTS is built
upon the notion of high-water mark. This property requires
knowledge of the state-space that is unavailable at the time
that a node is generated. After all, the high water-mark of s is
calculated from the heuristic values along all s-plans, which
are precisely what’s being searched for. Therefore, the BTS
cannot be immediately used to construct a type system.

4 BTS-Approximate Type Systems
In this section we first introduce subspaces to facilitate BTS
approximations. We then introduce two such approxima-
tions and show they are equivalent to the BTS in state spaces
without local minima. Finally, we define type systems based
on these approximations and show that Type-GBFS using
these type systems is probabilistically complete.

From Benches to Subspaces
Before introducing our approximations, we begin with sev-
eral observations about benches. First, the states in bench
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B(s) are contiguous in that they are all reachable from the
root s of the bench. Second, any s′ on the bench must sat-
isfy a bench candidacy test, namely that h(s′) ≤ level(s).
Finally, any exit state s′ must satisfy an exit test, namely that
s′ is a progress state and h(s′) ≤ level(s). Using these ob-
servations, we can now generalize the concept of a bench as
a state-space subspace, or subspace for short, by allowing
for arbitrary candidacy and exit tests.
Definition 4.1. Let τ = ⟨β, π⟩ be a tuple of boolean func-
tions from S × S to {⊤,⊥} for state-space topology ⟨S, h⟩.
π is called the exit test and β is the candidacy test. For any
s ∈ S, the τ -based subspace of s, denoted by Bτ (s), is the
tuple ⟨I, E⟩, where I is a set of inner subspace states and E
is a set of subspace exit states. I and E are defined as:

I ={s′ ∈ S | ∃p ∈ P (s, s′) :

∀s′′ ∈ p, π(s, s′) = ⊥ ∧ β(s, s′′) = ⊤}
E ={s′ ∈ S | (s′ ∈ succ(I) ∨ s′ ∈ succ(s))

∧ (π(s, s′) = ⊤ ∧ β(s, s′) = ⊤)}

We will use Bτ to refer to Bτ (s) when s is clear from
context, and I(Bτ ) and E(Bτ ) to denote Bτ ’s inner and exit
sets, respectively.

We now note that Definition 4.1 simply replaces the
specific candidacy and exit tests from Definition 2.2, with
generic β and π tests. In particular, a bench can be expressed
as a subspace using

β(s, s′) =

{
⊤, h(s′) ≤ hwh(succ(s))

⊥, otherwise

π(s, s′) =

{
⊤, hwh(s

′) > hwh(succ(s
′))

⊥, otherwise

That is, a bench is a special case of a subspace.

The Heuristic Improvement and Low Water-Mark
Subspaces
We can now use alternative candidacy and exit tests to
define new subspaces that approximate benches. The first
is the heuristic improvement subspace, which considers
“progress” to be made any time that a state s has a successor
with a lower heuristic value than s:
Definition 4.2. The heuristic improvement subspace of state
s, denoted Bhi(s), is the τhi-based subspace of s where
τhi = ⟨βhi, πhi⟩, and where levelhi(s) = h(succ(s)), these
tests are defined as follows:

βhi(s, s
′) =

{
⊥, s′ ∈ succ(s) ∧ h(s′) > levelhi(s)

⊤, otherwise

πhi(s, s
′) =

{
⊤, h(succ(s′)) < h(s′)

⊥, otherwise

In a heuristic improvement subspace, the exit states each
have a child which makes heuristic improvement, and the
inner states are those that are reachable from s on a path
along which the heuristic never decreases.

Our next new subspace is based on the low water-mark of
a path. Given a path p = ⟨s0, ..., sn⟩ where s0 is the initial
state, the low water-mark of p is lwh(p) = mins′∈ph(s

′).
A low water-mark subspace then defines exit states as those
with a successor which sets a new lower water-mark:
Definition 4.3. The low water-mark subspace of s, de-
noted Blw(s), is the τlw-based subspace of s where τlw =
⟨βlw, πlw⟩, and where levellw(s) = h(succ(s)), these tests
are defined as follows:

βlw(s, s
′) =

{
⊥, s′ ∈ succ(s) ∧ h(s′) > levellw(s)

⊤, otherwise

πlw(s, s
′) =

{
⊤, h(succ(s′)) < levellw(s)

⊥, otherwise

We note that we are slightly abusing notation, as the low
water-mark for s can only be defined based on a path from
the initial state to s, not using s alone. The subspace defini-
tion could be extended to be path-dependent to account for
this, but we defined it in terms of a state for the sake of read-
ability. Given the conditions considered in the next section,
the analysis below applies for this path-dependent case.

Recall that the BTS is not suitable as a type system since
it relies on the high water-mark of states, which is un-
known during search. The new subspaces only depend on
information available when a state is generated. So while
high water-mark, by definition, accounts for deadends and
craters, in our subspace approximations, craters will regis-
ter as progress and deadends won’t be recognized (short of
a heuristic that recognizes them) misaligning our transition
systems and the BTS. However, in the next section we iden-
tify a case where our approximations are exact.

BTS Equivalence in Simple Local-Minima Free
Domains
We will now show that both of the new subspaces are equiv-
alent to benches for a simple family of state-spaces that con-
tain plateaus but not local minima. This type of state-space
is formalized as follows:
Definition 4.4. A state-space topology ⟨S, h⟩ is mono-
tonically non-increasing if for every path p(s0, sn) =
⟨s0, s1, ...sn⟩ through S starting with the initial state,
∀sj , sj+1 ∈ p(s0, sn), with 0 ≤ j < n, h(sj) ≥ h(sj+1).

Where a dead-end is a state s with no successors, we show
that the heuristic of s is equal to its high and low water-
marks in such state spaces:
Lemma 4.1. If ⟨S, h⟩ is a monotonically non-increasing
state space topology with no dead-ends, then for all s ∈ S,
h(s) = hwh(s) = lwh(s).

Proof. Consider path ⟨s0, ..., si, ..., sn⟩ where s0 is the ini-
tial state, sn is a goal state, and s = si. By Definition
4.4, the heuristic value of any state from si+1 to sn must
be less than or equal to h(si). Since this is true of any
such path, hwh(s) = h(s). Similarly, h(si) is no greater
than the heuristic value of any state from s0 to si−1, so
lwh(s) = h(s) = hwh(s).
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These state-space also have no craters (ie. local minima):

Lemma 4.2. If ⟨S, h⟩ is a monotonically non-increasing
state space topology with no dead-ends, then for any state
s, B(s) does not contain a crater and for P = I(B(s)) ∪
E(B(s)), it is true that ∀s′ ∈ P , h(s′) = level(s).

Proof. Suppose there is a state s′ that is in a crater on B(s).
By Definition 2.4, this means that h(s′) < level(s). Since
Lemma 4.1 states that hwh(s

′) = h(s′), this means that
hwh(s

′) < level(s). But this is only possible if s′ was the
descendent of a progress state and thus not on B(s). Thus,
there can be no craters by contradiction.

The second part of the statement follows since h(s′) ≤
level(s) by the bench candidacy test.

We can now show the equivalence of benches and the new
subspaces on these types of state spaces:

Lemma 4.3. Let T = ⟨S, h⟩ be a monotonically non-
increasing topology with no dead-ends and let s ∈ S be
progress state in BTS(T ). Then B(s) = Bhi(s) = Blw(s).

Proof. Below, B(s), Bhi(s), and Blw(s) are abbreviated as
B, Bhi, and Blw, respectively. By Lemma 4.2, ∀s′ ∈ I(B)∪
E(B), h(s′) = level(s). From Lemma 4.1, h(succ(s)) =
hwh(succ(s)) = lwh(succ(s)) and so levelhi(s) =
level(s) = levellw(s).

We start by showing that the inner sets of the subspaces
are equal. Recalling Definition 4.1, to show the inner sets
are equal, it is sufficient to show that for each subspace, the
condition π(s′, s) = ⊥ ∧ β(s, s′) = ⊤ is equivalent.

First note that πhi(s
′, s) = ⊤ when h(succ(s′)) < h(s)

and πhw(s
′, s) = ⊤ when hwh(succ(s

′)) < hwh(s). With
h(s) = hwh(s), πhi and πhw are equivalent. From Lemma
4.2 we know that ∀s′ ∈ B(s), h(s′) = level(s). Any state
s′ ∈ Bhi(s) with h(s′) < level(s) would necessarily have
been reached by a progress state and so cannot exist; fur-
thermore, any state s′ ∈ Bhi(s) with h(s′) > level(s)
would violate the monotonicity of the space given the βhi

test, meaning ∀s′ ∈ Bhi, h(s
′) = level(s′). Therefore, all

states s′ ∈ I(Bhi) also satisfy h(s′) = level(s).
The argument for low water-mark is nearly identical. The

low water-mark notion of progress is equivalent to high
water-mark and heuristic improvement in these spaces, and
the low water-mark candidacy test is identical to heuristic
improvement’s. Therefore I(B) = I(Bhi) = I(Blw).

We next show that the exit sets are equivalent. We know
from above that I(B) = I(Bhi) = I(Blw) and that the
three progress tests are all equivalent; therefore to show that
E(B) = E(Bhi) = E(Blw) we need only consider the β
test for the cases that s′ ∈ succ(s) or s′ ∈ succ(I).

The β predicates of each will prohibit successors of s that
do no satisfy h(s′) = level(s).

If s′ ∈ succ(I) then the β predicates are irrelevant. In
all cases, due to the monotonicity of the space, if a succes-
sor of I , s′, has a lower heuristic value than level(s) then a
progress state must have been traversed to reach s′, which
is impossible since I contains no progress states. There-
fore exit states in the three subspaces will satisfy h(s′) =
level(s), making E(B) = E(Bhi) = E(Blw).

Now notice that the inductive procedure in Definition 2.3
can be used to create a transition system for any subspace
definition, not just benches. We refer to the new transition
systems for T as the Heuristic Improvement Transition Sys-
tem (HITS), denoted HITS(T ), and the Low Water-Mark
Transition System (LOTS), denoted LOTS(T ). The follow-
ing theorem formalizes the fact that these are all equivalent
in monotonically non-increasing state-spaces.

Theorem 4.4. For a monotonically non-increasing state-
space topology T with no dead-ends and any state s, B(s) ∈
BTS(T ) ⇐⇒ Bhi(s) ∈ HITS(T ) ⇐⇒ Blw(s) ∈
LOTS(T ).

Proof. We can now show the statement is true by consider-
ing “synchronizing” the generation of BTS(T ), HITS(T ),
and LOTS(T ) according to the procedure in Definition 2.3.
That is, every time a state is selected from an exit set in a
bench, that same exit state is selected to generate a new sub-
space for HITS(T ) and LOTS(T ). We will now show by
induction that the vertex sets of these transition systems are
identical after each bench/subspace is added.

The base case is after the bench for the initial state sI is
added. Clearly, all three will have a single bench after this
step. If sI is a progress state (ie. it has a successor with a
lower heuristic value than it), then the fact that the bench
and subspaces are equal follows immediately by Lemma
4.3. If not, then for any s′′ ∈ succ(s), h(s′′) = h(s)
since the state-space is monotonically non-decreasing. Thus,
level(s) = h(s) = levellw(s) = levelhi(s), and so the
same argument as in Lemma 4.3 can be used to show that
B(sinit) = Bhi(sinit) = Blw(sinit).

We now assume the vertex sets are identical after k ≥ 1
benches have been added. If there are no more exit ver-
tices in BTS(T ) to handle, then the same must be true of
HITS(T ), and LOTS(T ). This holds since the inductive
hypothesis guarantees the vertex sets and exit sets are identi-
cal and so none could have been missed. Thus, the transition
system generating procedure would terminate for all three,
and the statement holds in this case.

If there is a remaining exit state to handle in the BTS, then
it must also be in the other transition systems, since the ver-
tex sets are identical by the inductive hypothesis. The new
bench generated will then be identical to the new subspaces
generated by Lemma 4.3. Therefore the vertex sets will be
the same after the k+1-st step, and thus the statement holds.

Thus, HITS and LOTS are perfect approximations of the
BTS in the case of montonically non-increasing state-spaces
with no dead-ends. While exact equivalence only holds in
this restricted setting, recall that the motivation is to pro-
duce type systems that approximate the BTS while being
computable during search. Even if the state-space was not
exactly monontonically non-increasing, we would still ex-
pect the subspaces to be fairly similar if the deviation from
this requirement was not too large. However, future work is
needed to verify this hypothesis.
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New Type Systems
We can now consider using the heuristic improvement and
low water-mark subspaces to define type systems. Since type
systems must cover the entire state space, we must deviate
slightly from the subspaces they are based upon. In Defini-
tions 2.2 and 4.1, the states that are in I ∪ E must satisfy
a candidacy condition and cannot include any successors of
an exit state. Moreover, only those successors of a progress
state that actually make progress are included in the sub-
space. Both of these causes of states being discarded from a
subspace must be relaxed in order to ensure the state space
is covered by the type system. And so in our type systems, a
notion of progress is used, bench candidacy is not used, and
the non-improving children of progress states are included.

In the case of heuristic improvement, a state s′ has made
progress from its parent s if h(s′) < h(s). And so upon ex-
panding state s, if s has a child with an improved heuristic
value, then a a single new type is created and all improv-
ing members of succ(s) are added to the new type. When a
state s′ is generated that does not improve upon the heuris-
tic value of its parent s, it is assigned to the same type as
s. For a non-progress state s, this corresponds to s′ being
in the same subspace as s. However, if s is a progress state,
this is a relaxation of the inner bench set condition that states
be reachable by non-progress states only, which is needed to
ensure the type system covers the entire state space.

An analogous approach is used for the low water-mark
type system. A state s′ has made progress from its parent s
if lwh(s

′) < lwh(s). Upon expanding s, if it’s a low water-
mark progress state, a new type is created for each new low
water-mark value seen with a state in succ(s) (ie. lower than
the one associated with s’s type). States that do not result in
an improved low water mark will be assigned s’s type. Im-
portantly, since the type of a state (either heuristic improve-
ment or low water-mark) does not change after it is first gen-
erated, these processes are both incremental and thus enable
the efficient maintenance of the type buckets.

We note that these type systems create type trees which
roughly correspond to the transition systems they’re based
on. However, they deviate slightly from the way the asso-
ciated subspaces are defined above in the case of non-unit
cost domains or with an inconsistent heuristic. In these cases
there can be varying amounts of progress from a progress
state to its children. Since the type systems cover the open
list they must include all amounts of progress. In the heuris-
tic improvement type system, this was achieved by includ-
ing all improving successors of a progress state into the new
type, not just the most improving. In the low-water mark
type system, this was achieved by creating a new type for
each new low water-mark encountered among the children,
instead of just those with the most improvement. This was
done as opposed to putting them all into the same type to
avoid the case of having states with different low water-mark
values in the same low water-mark type.

Finally, we note that type-based exploration using these
type systems remains probabilistically complete under rea-
sonable conditions. These results follow from the fact that
type-based exploration is probabilistically complete if there
are a finite number of types (Valenzano and Xie 2016). In

the case of the heuristic improvement type system, this will
hold if every path through the state space has no more than
N < ∞ heuristic improvements along it (ie. there are no
endlessly oscillating heuristic values). In the case of the low
water-mark type system, there are a finite number of types
if there is a finite number of low water-mark values be-
tween the initial state and any goal state. This will hold if
the heuristic values can only take on non-negative integer
values, for example.

5 Empirical Evaluation
To evaluate our new type systems, we used benchmark prob-
lems from the satisficing tracks of IPC 2011, 2014, and
2018. In domains that were included in both 2011 and 2014
sets, the 2014 version was taken. In total, 496 instances were
used, all of which were treated as unit-cost problems. Ex-
periments were run on a VMware Virtual Platform using
an 8 core, Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
with a 16 KiB L1 cache, with a 10 minute time limit and
a 3.5 GB memory limit per instance. All methods were im-
plemented in Fast Downward (Helmert 2006; Artificial In-
telligence Group - University of Basel 2023), using the FF
heuristic (Hoffmann and Nebel 2001). For stochastic meth-
ods, we ran each 5 times and averaged the results.

Adding Exploration to GBFS
In the first set of experiments, we consider adding ex-
ploration to standard GBFS using queue alternation. This
method uses a standard GBFS queue and an exploration
queue, both containing the same states. The search alternates
between which queue is selected from on each search step.

We test against 3 baselines from the literature: (1) stan-
dard GBFS, (2) Type-GBFS using the ⟨h, g⟩ type system,
and (3) Softmin-Type using the default temperature of τ = 1
for all instances. For evaluating our new type systems, we
exploit the fact that since each type consists of a contiguous
subspace that often contains a UHR, it is easy to use differ-
ent strategies for inter and intra-UHR exploration separately.
The former is accomplished by selecting a type, and the lat-
ter by selecting a node from that type. For these strategies,
we consider 3 sampling techniques. The first is the standard
Uniform selection (U). The second is Biased Heuristic Se-
lection (H). Here, we use the softmin in Equation 1 from
Softmin-Type. When this approach is used for type selec-
tion, the heuristic value of the type is set as the minimum
value of any state in the type. The third selection approach
used is Depth selection (D). This method was only used for
type selection. It is analogous to the softmin biasing, except
we bias in favour of types deeper in the type tree. In the
rest of this section, we use the following notation for re-
ferring to different configurations: [type system]

[type selection]
[state selection].

For example, HIDU denotes a heuristic improvement type sys-
tem with depth type selection and uniform state selection,
and LWD

Hdenotes a low water-mark type system with depth
type selection and heuristic state selection.

Due to the extensive runtime, we first evaluated our new
type systems on just the 2011 and 2014 domains. The results
are shown in Table 1. The per-domain results are omitted in
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Algorithm Coverage

GBFS 198.0
Type-GBFS 224.2
HIUU -GBFS 206.4
LWU

U -GBFS 204.2
HIHU -GBFS 255.6
HIHH -GBFS 263.4
HIDU -GBFS 295.0
HIDH -GBFS 284.2
LWH

U -GBFS 256.4
LWH

H -GBFS 254.4
LWD

U -GBFS 258.6
LWD

H -GBFS 263.6

Table 1: Coverage over 376 problems from the IPC 2011 and
2014 domains.

the interest of space. Of the configurations that use uniform
selection for both type selection and state selection (just be-
low GBFS in Table 1), Type-GBFS was the best. It on av-
erage solved 17 more instances than the runner-up and was
roughly as good or better in all tested domains.

Doing a non-uniform type selection step made the biggest
difference, as seen in the bottom part of Table 1. In general,
it appears that heuristic improvement types have higher cov-
erage than low water-mark types, depth selection performs
better than heuristic selection, and HIDU is substantially bet-
ter than all the other configurations, with the runners up be-
ing HIDH , LWD

H , and HIHH . Interestingly, the improved per-
formance of depth sampling over the other configurations
mostly arose in just a couple domains such as visitall-14 and
transport-14 with HIDU dominating those while performance
was relatively similar in the other tested domains.

Having identified the best performing of our new config-
urations, HIDU and LWD

U , we then compare to Softmin-GBFS
on all domains from 2011, 2014, and 2018. Table 2 summa-
rizes the results. We first note that the three biased modes
all improved upon Type-GBFS. Softmin-Type was slightly
better than LWD

H , but HIDU was the best performer, solving
40 more problems than the runner up. Importantly, the ad-
vantage of HIDU holds on the 2018 domains, even though it
was selected based only on the 2011 and 2014 domains. In
general, all three biased type systems performed similarly
well on most domains and HIDU performed much better on a
select few—like visitall-14, transport-11, data-networks-18,
and tetris-14; the reason for this discrepancy is left as future
work. Without any parameter tuning, HIDU and LWD

Hproved
effective exploration enhancements for GBFS.

While HIDU had the best coverage, it also finds longer
plans. Figure 1 summarizes the results of a plan length com-
parison with Softmin-GBFS. Each point is a problem that
both algorithms solved with the red line indicating where
the plan lengths are equal. Softmin-GBFS dominated HIDU ,
while LWD

U appeared to slightly out perform Softmin-GBFS.
This perhaps suggests that heuristic improvement and low
water-mark type systems are somewhat orthogonal.

Type Soft HIDU LWD
H

barman-14 9.0 15.4 20.0 19.0
childsnack-14 0.2 0.0 0.0 0.2
elevators-11 14.4 16.0 16.0 16.0
floortile-11 8.2 7.4 6.8 7.4
ged-14 17.8 20.0 20.0 20.0
hiking-14 20.0 20.0 20.0 20.0
nomystery-11 18.4 12.2 8.6 9.4
openstacks-14 0.0 14.6 16.6 16.6
parcprinter-11 20.0 20.0 19.8 19.8
parking-11 14.2 19.8 15.8 20.0
pegsol-11 20.0 20.0 20.0 20.0
scanalyzer-11 18.8 19.6 19.2 19.8
sokoban-11 18.6 19.0 17.0 18.8
tetris-14 6.6 15.8 20.0 10.0
thoughtful-14 14.0 9.6 8.6 10.8
tidybot-11 16.2 16.2 17.6 16.4
transport-11 0.0 0.8 13.2 1.2
visitall-14 0.0 0.0 19.6 1.4
woodworking-11 7.8 19.4 16.2 17.0
2011-2014 Total: 224.2 265.8 295 263.8
agricola-18 10.8 10.0 10.8 11.8
data-network-18 5.6 10.0 15.6 8.8
organic-synthesis-18 3.0 3.0 3.0 3.0
organic-synth-split-18 9.8 9.6 9.6 8.4
snake-18 5.2 19.2 19.2 7.4
spider-18 10.0 5.0 9.2 9.4
termes-18 13.2 12.8 12.0 14.6
2018 Total: 57.6 69.6 79.4 63.4
Total: 281.8 335.4 374.4 327.2

Table 2: Average Coverage across domains from IPC 2011,
2014, and 2018. Type and Softmin abbreviate Type-GBFS
and Softmin-GBFS respectively.

Adding Exploration to Lama-2011
In our next set of experiments, we experiment with adding
exploration to a fully featured planner in LAMA-2011
(Richter and Westphal 2010). For this investigation, we con-
sidered 4 planners. The first is the original version of LAMA
which uses 4 search queues: two for the different heuristics
and 2 for the different preferred operators. The second is
Type-Lama, which adds a fifth queue for type-based explo-
ration using ⟨h, g⟩. The third is Softmin-LAMA which adds a
fifth queue using Softmin-Type. Finally, we test HIDU -LAMA,
which adds a fifth queue employing HIDU selection

The results are summarized in Table 3. HIDU , the best
GBFS enhancement, did not perform well as a LAMA
enhancement. LAMA employing a HIDU queue in fact per-
formed worse than standard LAMA, suggesting it was sim-
ply added overhead. Type-LAMA and Softmin-LAMA per-
formed very similarly with Type-LAMA being slightly bet-
ter, and both performed better than LAMA. It is interesting
to note that biased selection was not dominant here like it
was in GBFS enhancements. This suggests that GBFS and
LAMA benefit from different kinds of exploration.

6 Related Work
Outside type systems, other GBFS exploration techniques
have been proposed. Invasion Percolation (IP) targets intra-
plateau exploration by inducing exploration that approxi-
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Figure 1: Plan length comparison: Softmin, HIDU , and LWD
H .

mates building a spanning tree of a random graph (Asai and
Fukunaga 2017). Local exploration methods, such as a local
GBFS or random walk have also been explored for finding
exits to a local minimum (Xie, Müller, and Holte 2014).

There are also many deterministic enhancements to GBFS
aimed at introducing diversity to the search. Multiple heuris-
tic search alternates between multiple queues, each one or-
dered by a different heuristic (Röger and Helmert 2010).
Best First Width Search introduces exploration based on
novelty, with novel states being preferred (Lipovetzky and
Geffner 2017). Identifying how to best combine these ideas
with our BTS-inspired type systems remains future work.

Recent approaches for parallel GBFS algorithms have ex-
plicitly attempted to ensure the search stays on the BTS so as
to minimize the number of bench paths explored. Kuroiwa
and Fukunaga (2019) proposed the parallel GBFS algorithm
LG, which, using knowledge from the BTS, empirically
greatly reduced the number of bench paths expanded during
search. Later work expanded on this to create parallel GBFS
algorithms which are guaranteed to only expand states that
are in the BTS (Kuroiwa and Fukunaga 2020; Shimoda and
Fukunaga 2023). Bench-based type systems may have use-
ful applications in BTS inspired parallel GBFS techniques.

LAMA Type Soft HIDU
barman-14 20.0 20.0 20.0 20.0
childsnack-14 5.0 6.0 7.0 11.0
elevators-11 16.0 16.0 16.0 16.0
floortile-11 6.0 7.0 6.2 5.0
ged-14 20.0 20.0 20.0 20.0
hiking-14 20.0 20.0 20.0 20.0
nomystery-11 11.0 17.4 10.0 15.0
openstacks-14 20.0 20.0 20.0 19.4
parcprinter-11 20.0 20.0 20.0 20.0
parking-11 20.0 20.0 20.0 20.0
pegsol-11 20.0 20.0 20.0 20.0
scanalyzer-11 20.0 20.0 20.0 20.0
sokoban-11 19.0 18.0 19.0 17.0
tetris-14 18.0 14.0 19.6 16.4
thoughtful-14 15.0 17.0 15.0 18.0
tidybot-11 16.0 17.4 16.0 17.2
transport-11 18.0 17.6 17.0 18.2
visitall-14 20.0 20.0 20.0 20.0
woodworking-11 20.0 20.0 20.0 1.0
agricola-18 10.0 12.0 11.8 12.4
data-network-18 12 14.4 15.8 10.6
organic-synthesis-18 3.0 3.0 3.0 3.0
organic-synth-split-18 10.0 11.6 10.0 11.2
snake-18 4.0 5.6 4.8 4.4
spider-18 16.0 16.2 16.0 16.0
termes-18 14.0 14.0 14.0 14.0
Total Solved: 393.0 407.2 401.2 385.8

Table 3: Average Coverage across domains from IPC 2011,
2014, and 2018. Type, Soft and HIDU abbreviate Type-
LAMA, Softmin-LAMA and HIDU -LAMA.

7 Conclusion
In this paper, we observed that the BTS may serve as a suit-
able basis for constructing type systems for stochastic ex-
ploration. In noting that benches in the BTS cannot be used
during search, we introduced the more general notion of
subspaces and used Heuristic Improvement and Low Water-
Mark to approximate the BTS in a search friendly way.
These BTS approximations were then used to build BTS-
approximate type systems that were empirically shown to
effectively enhance standard GBFS.

We conducted no parameter tuning in our empirical eval-
uation — this is left as future work. The LAMA planner
was only tested with a single BTS-based configuration with
lackluster results; it may benefit more from a different type
system or different selection policies. The actual BTS as a
type system may be tested in small problems for which it can
be calculated; this we leave as future work. More generally,
BTS-approximate type systems suggest a family of path de-
pendent type systems. These systems, and their underlying
type trees, may be useful for other kinds of selection policy
approaches such as that in Monte Carlo Tree Search, or they
may be useful to inform load balancing in parallel GBFS.
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