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Abstract

While most work in heuristic search concentrates on goal-
specific heuristics, which estimate the shortest path cost from
any state to the goal, we explore all-pair heuristics that esti-
mate distances between all pairs of states. We examine the re-
lationship between these heuristic functions and the shortest
distance function they estimate, revealing that all-pair consis-
tent heuristics may violate the triangle inequality. Thus, we
introduce a new property for heuristics called ∆-consistency,
requiring adherence to the triangle inequality. Additionally,
we present a method for transforming standard consistent
heuristics to be ∆-consistent, showcasing its benefits through
a synthetic example. We then show that common heuristic
families inherently exhibit ∆-consistency. This positive find-
ing encourages the use of all-pair consistent heuristics, and
prompts further investigation into the optimality of A∗, when
given an all-pair heuristic instead of a goal-specific heuristic.

Introduction
The aim of A∗ (Hart, Nilsson, and Raphael 1968) and its
many derivatives is to find a least-cost path between a given
start state (vertex) and a goal state (or set of vertices) in a
graph representing combinatorial and pathfinding problems.
A∗ explores states in a best-first search order according to
f(n) = g(n) + h(n) where g(n) is the currently known
cheapest cost from the start state to n and h(n) is a heuristic
function that estimates the cost-to-go from n to the goal. A∗

is guaranteed to return an optimal solution if the heuristic is
admissible. A desirable attribute of an admissible heuristic is
consistency, which ensures that A∗ never explores the same
state more than once.

Most of the literature on consistent heuristics, including
the optimally-efficient proof of A∗ (Dechter and Pearl 1985),
has focused on a heuristic computed specifically toward the
goal (denoted here as a goal-specific heuristic). In this paper,
we delve deeper into the concept of consistency, assuming
that an admissible consistent heuristic is defined for all pairs
of states in the underlying graph, not solely directed towards
the goal. An all-pair consistent heuristic h(u, v) estimates
the shortest distance d(u, v).

Examination of all-pair consistent heuristics reveals an
intriguing observation: some consistent heuristics may not
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conform to the triangle inequality. To explore this phe-
nomenon, we adopt a broader perspective and compare the
similarities and discrepancies of the d and h functions across
various properties in relation to metric spaces. We discuss
existing methods for strengthening h and d, rectifying some
of the discrepancies between them. Furthermore, we dis-
tinguish between a consistent heuristic, which can be seen
as a variation of the triangle inequality defined with re-
spect to both h and d, and a stronger attribute which we
denote as ∆-consistent heuristic, where the heuristic func-
tion adheres to the triangle inequality defined solely with
respect to h. We introduce a novel approach, denoted as
Heuristic-Differential Heuristic (HDH), that enforces a con-
sistent heuristic to also be ∆-consistent by increasing the h-
values of some pairs of states. We demonstrate how HDH re-
duces the search effort in a synthetic example. Interestingly,
this example serves to highlight that A∗, when provided with
an all-pair heuristic and treated as if it were a goal-specific
heuristic—a practice commonly adopted—is not optimally
efficient, compared to algorithms capable of leveraging pair-
wise heuristic estimations.

Finally, we analyze common existing heuristic families
and prove they are ∆-consistent. As a result, our new HDH
does not enhance any of the analyzed heuristics. In fact, we
have not yet identified any state-of-the-art heuristic tech-
niques that are consistent but not ∆-consistent. Neverthe-
less, this paper opens a new research direction concerning
the usage of all-pair consistent heuristics and the theoretical
attributes of related algorithms.

Definitions and Background
Let I = (G = (V,E), c, s, g, h) be a search problem in-
stance, where G is a graph in which V is the set of vertices,
E is the set of edges, and c : E → R≥0 is a cost func-
tion that assigns a non-negative cost to each edge in E. In
addition, s and g are two graph vertices. The objective in
heuristic search is to find a path of minimal cost from the
start state s to the goal state g. Let d : V ×V → R≥0∪{∞}
be the distance between vertices. That is, d(u, v) represents
the shortest path cost between u and v in G with regard to c
(or infinity if no such path exists). The heuristic function h
estimates distances between states of the graph. A heuristic
is admissible if it is always a lower bound on the distance it
estimates. We distinguish between two types of heuristics.

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

127



Goal-Specific Heuristic
A goal-specific heuristic estimates the distances to a specific
goal node g (or set of goals) from any given state, hg : V →
R≥0 ∪ {∞}. hg is admissible if ∀u : hg(u) ≤ d(u, goal).
A∗ and its many derivatives search towards a specific goal
(or a set of goals) and use such a heuristic. Another desirable
attribute for heuristics is consistency:

∀ u, v ∈ V : hg(u) ≤ d(u, v) + hg(v) (1)

In undirected graphs a consistent heuristic entails that
∀(u, v) : |h(u)−h(v)| ≤ d(u, v) (Felner et al. 2011). Given
a consistent heuristic, the f -value along paths are monoton-
ically non-decreasing. This assures that when a node u is
chosen for expansion by A*, then the shortest path to u has
been discovered (i.e., g(u) = d(u)). This rules out the need
to re-open/re-expand any node. Nevertheless, admissible but
inconsistent heuristics also have benefits as large heuristic
values can be propagated to their neighbors through the use
of bidirectional pathmax (Felner et al. 2011), reducing the
search effort in many cases. We note that most of the litera-
ture on heuristics is on goal-specific heuristics.

All-Pair Heuristic
An all-pair heuristic h : V × V → R≥0 ∪ {∞} is defined
for every pair of states u and v and is admissible if:

∀ u, v ∈ V : h(u, v) ≤ d(u, v) (2)

All-pair heuristics may be used when solving multiple in-
stances, each time targeting a different goal state. For ex-
ample, GPS navigation systems must find paths to differ-
ent addresses. The airline distance heuristic, sometimes em-
ployed by GPS systems, can be easily applied between any
two states. Yet, within a search towards a given goal, such
heuristics are usually used as goal-specific heuristics.

Additionally, all-pair heuristics might be needed for some
variants of Bidirectional heuristic search (BiHS). BiHS
searches from both directions (from start to the goal and
from the goal to start) and tries to find a meeting point
of both search frontiers. A Front-to-end heuristic is based
on two goal-specific heuristics, one for the forward search
towards the goal (hgoal(n)) and one for the backward
search towards the start (hstart(n)). A front-to-front heuris-
tic (Kaindl and Kainz 1997; de Champeaux and Sint 1977;
Eckerle et al. 2017; Siag et al. 2023) estimates the distance
between any two states that can be in the two frontiers, and
is equivalent to an all-pair heuristic.

An all-pair heuristic h is consistent if the following two
equations hold:

∀ u, v, p ∈ V : h(u, v) ≤ d(u, p) + h(p, v) (3a)

∀ u, v, p ∈ V : h(u, v) ≤ h(u, p) + d(p, v) (3b)
These equations are direct interpretations of bi-consistent

heuristics defined for bidirectional search (Eckerle et al.
2017), defined here for ordinary unidirectional search. We
note that the two equations are needed because h is defined
for both distances to p and distances to v and both should
be considered in the equations. That is, all-pair consistency
assures that the path estimation from u to v via p will never

be shorter than the direct estimation of the path from u to v
(as represented by the left-hand side of the equations).

Notably, heuristics found in existing literature are mostly
used in unidirectional search settings and regarded as goal-
specific heuristics employed within the framework of A∗ or
its various derivatives. Nevertheless, many of these heuris-
tics can be practically computed between all pairs. Impor-
tantly, the proof that A∗ is optimally efficient only consid-
ers goal-specific heuristics and does not deal with all-pair
heuristics. In fact, our paper will present an example where
A∗, equipped with a consistent (and admissible) all-pair
heuristic, unnecessarily expands nodes during the search.

Consistent and ∆-consistent Heuristics
Consistency, and in particular all-pair consistency, is of-
ten linked to the triangle inequality property. Although they
share a noticeable resemblance, they are not entirely equiv-
alent in mathematical terms. The triangle inequality applies
to an individual function f(·, ·), considering three vertices
u, v, p and is expressed as f(u, v) ≤ f(u, p) + f(p, v). It
means that the direct path from u to v is no worse than the
bypass from u to v via an intermediate vertex p, when mea-
sured by f . But, the consistency definition (equations 1,3)
mixes two functions, d and h. The mathematically-correct
triangle inequality for a heuristic h is defined as follows:

∀u, v, p ∈ V : h(u, v) ≤ h(u, p) + h(p, v) (4)

Given an admissible and consistent heuristic h it is possi-
ble that h may not satisfy the triangle inequality. In other
words, there can be three states u, v, p such that h(u, v) >
h(u, p) + h(p, v). Consider a minimal example of this in
the graph with three vertices in Figure 2(a), where the blue
lines represent the cost of the shortest paths (d-value) in G.
All six shortest distances equal 20. The dashed orange lines
in Figure 2(b) represent the heuristics between relevant pairs
of states. All heuristics in Figure 2(b) are admissible because
they are all smaller than 20. Additionally, they are all all-pair
consistent as defined in equations 3a and 3b. For example,
(3a) h(u, v) = 6 ≤ d(u, p) + h(p, v) = 20 + 3 = 23, and
(3b) h(u, v) = 6 ≤ h(u, p) + d(p, v) = 1 + 20 = 21. The
same reasoning applies to all other heuristic values in the
figure. However, in this graph, the triangle inequality does
not hold as h(u, v) = 6 > h(u, p) + h(p, v) = 1 + 3 = 4.

We thus distinguish between two types of all-pair con-
sistent heuristics: standard consistent heuristics (as defined
in Equations 3a and 3b), which retain the name consis-
tent heuristic, and ∆-consistent heuristics. A ∆-consistent
heuristic h is an admissible heuristic that also satisfies the
triangle inequality with respect to V . That is, a heuristic h is
∆-consistent if it is admissible and satisfies Equation 4.
∆-consistency is a stronger attribute than standard consis-

tency, as we next prove.
Lemma 1. If a heuristic h is ∆-consistent, it must also be
consistent.

Proof. We prove it for equation 3a. h(u, v) ≤ h(u, p) +
h(p, v). Since h is admissible1 then h(u, p) ≤ d(u, p). Thus,

1In general, triangle inequality does not imply admissibility.
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Figure 1: Illustration of the all-pair heuristic hierarchy

h(u, v) ≤ d(u, p) + h(p, v). The same reasoning applies for
equation 3b.

The other direction is not true — a consistent heuristic h
might not necessarily be ∆-consistent, as demonstrated in
our example of Figure 2.

Hence, we establish a hierarchy among all-pair heuristics,
illustrated in Figure 1, ranging from weaker conditions (bot-
tom) to stronger conditions (top). In goal-specific heuristics,
there is no notion of triangle inequality (as h is not defined
for all pairs of vertices), rendering ∆-consistency irrelevant
in this context.

Properties of d and h
Both d and all-pair heuristics h are defined over all pairs of
states. While d represents the ground truth distances, h aims
to estimate d. In mathematics, various properties, such as
the triangle inequality, govern distances between elements
in sets. To broaden the analysis, we next explore these prop-
erties for both d and h.

Properties of d
The costs of shortest paths between pairs of vertices (rep-
resented by the function d) in directed graphs are quasi-
pseudo-metric (Chartrand and Tian 1997). Meaning that d
has the following three properties with respect to V :
1. Non-negativity: d(u, v) ≥ 0 for all u, v ∈ V

2. Zero Self-distance: d(u, u) = 0 for all u ∈ V

3. Triangle Inequality: d(u, v)) ≤ d(u, p) + d(p, v) for all
u, v, p ∈ V . This means that going directly from u to v is
never worse than going from u to v via a bypass through a
pivot p. Obeying the triangle inequality is entailed directly
from the definition of d.
Notably, if all edges are positive, d has yet another property:
4. Identity of Indiscernibles: d(u, v) > 0 iff u ̸= v for all
u, v ∈ V

A function that satisfies properties 1-4 is a quasi-metric
with respect to V . Moreover, if the graph G is undirected,
then d has yet another property:

Consider a triangle where all h-values are 100 and the real dis-
tances are all smaller than 100. Clearly, the triangle inequality is
valid here but the heuristics are all inadmissible. Nevertheless, our
definition of ∆-consistency requires the admissibility of h.
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2u v
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1
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Figure 2: (a) Distances, and (b) their heuristics

5. Symmetry: d(u, v) = d(v, u) for all u, v ∈ V

A function that has properties 1-3, 5 is known as pseudo-
metric, whereas a function that possesses all five properties
is known as a full metric.

Properties of h
Given an admissible and consistent all-pair heuristic h, we
examine the properties of h w.r.t. V and d.
1. Non-negativity. By definition, h(u, v)≥0 for all u, v∈V .
2. Zero Self-distance. By admissibility, h(u, v) ≤ d(u, v).
As d(u, u) = 0, it follows that h(u, u) = 0 for all u ∈ V .
3. No Triangle Inequality.

As shown above, consistency does not imply ∆-
consistent. Thus, a consistent heuristic may not obey the tri-
angle inequality.
4. No Identity of Indiscernibles. Additionally, it is possible
that h(u, v) = 0 for some states u ̸= v ∈ V , even when all
edges are positive (no Property 4).
5. No Symmetry. Finally, h may not be symmetric (no Prop-
erty 5), even in undirected graphs. In Figure 2(b), h(u, v) =
2 ̸= h(v, u) = 6.

As shown, d can exhibit properties ranging from a quasi-
pseudo-metric to metric, depending on the context. How-
ever, consistent heuristics do not inherently possess any of
these properties. Thus, we now explore methods to adjust h
to incorporate some of the properties of d. While the meth-
ods to establish Properties 4 and 5 are known, the method
for establishing Property 3 is novel to this work.

Establishing Identity of Indiscernibles As mentioned
above, if all edges are positive, then d(u, v) > 0 iff u ̸=
v. However, even when edges are positive, there may be
states u, v for which h(u, v) = 0 and u ̸= v. For ex-
ample, the zero heuristic is both admissible and consistent.
If the cost of the cheapest edge in the graph, denoted by
ϵ, is known, then we can adapt the heuristic as follows
hϵ(u, v) = max(ϵ, h(u, v)). This adaptation maintains the
admissibility and consistency of h and establishes the Iden-
tity of Indiscernibles. Notably, this adaptation can be applied
to goal-specific heuristics as well.

Establishing Symmetry in undirected graphs In undi-
rected graphs, d(u, v) = d(v, u). However, h may not be
symmetric, i.e., states u and v may exist, such that h(u, v) ̸=
h(v, u). Due to admissibility, we have h(u, v) ≤ d(u, v)
and h(v, u) ≤ d(v, u). Consequently, if G is undirected,
we can define a new heuristic h↔(u, v) = h↔(v, u) =
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max(h(u, v), h(v, u)) ≤ d(u, v) = d(v, u). h↔ is guar-
anteed to be admissible and symmetric. Furthermore, if h
is consistent, then h↔ is also consistent, as directly derived
from the definition of consistency.

While a consistent heuristic is not a quasi-pseudo-metric,
as it does not guarantee the triangle inequality, a ∆-
consistent heuristic qualifies as quasi-pseudo-metric w.r.t. V
(or quasi-metric, if it also has the identity of indiscernibles),
similar to d. Additionally, in an undirected graph where h is
symmetric (e.g., using the rectification in the previous sec-
tion), a ∆-consistent is pseudo-metric (or a metric, if h pos-
sesses the identity of indiscernible property).

We next propose a method, called heuristic-differential
heuristic (HDH), for enforcing the triangle inequality in a
consistent heuristic, increasing many of its h-values and
making it ∆-consistent.

Strengthening Consistent Heuristics by HDH
Given a consistent any-pair heuristic h, the first inequality in
Eq. 3a (h(u, v) ≤ d(u, p) + h(p, v)) implies:

h(u, v)− h(p, v) ≤ d(u, p) | ∀ u, v, p ∈ V (5)

Similarly, the second inequality in Eq. 3a (h(u, v) ≤
h(u, p) + d(p, v)) implies:

h(u, v)− h(u, p) ≤ d(p, v) | ∀ u, v, p ∈ V (6)

If, we rename the vertices in Equation 6 and set: p = u,
u = v, v = p, we get that:

h(v, p)− h(v, u) ≤ d(u, p)| ∀ u, v, p ∈ V (7)
By considering Eq. 5 and Eq. 7 we define an alternative

heuristic from u to the goal p, using a pivot v, as follows:

ĥ(u, p) = max
v∈G

{max

{
h(u, v)− h(p, v)

h(v, p)− h(v, u)

}
} (8)

It can be readily observed that ĥ satisfies the triangle in-
equality. If we fix v = g in ĥ(u, v) then we get an alternative
goal-specific heuristic from any state u to the goal that may
be better than h(u, g).

We note that calculating ĥ(u, g) considering all possible
pivot states in the graph for v (as denoted in Eq. 8) may
not be practical. However, this inequality holds even when
limiting v to be a subset of the states in the graph, e.g., pre-
determined “pivots” or only using states already discovered
during the search as pivots.

In addition, in undirected graphs, we can rectify h to
ensure that h(u, v) = h(v, u) for all states (as described
above), and utilize the fact that d(u, v) = d(v, u) to get a
further improved heuristic, in which terms in the maximum
expression are replaced with their absolute values:

ĥ(u, p) = max
v∈G

{|h(v, p)− h(v, u)|} (9)

This concept is reminiscent of the differential heuristic
(DH) (Sturtevant et al. 2009), which shares a similar defi-
nition but operates on the true distances from a node v to
all other nodes in the graph, rather than on the heuristics,

defined as DHv(u, g) = |d(v, g) − d(v, u)|. Thus, we de-
fine the Heuristic-Differential Heuristic (HDH) as follows.
Let hHDH(u, v) = max(h(u, v), ĥ(u, v)). This heuristic re-
mains admissible and consistent while also adhering to the
triangle inequality, rendering it ∆-consistent.

Notably, hHDH will not improve h if h is already ∆-
consistent, as shown in the following lemma.
Lemma 2. If h is ∆-consistent, then for every pair of states
u and p it holds that hHDH(u, p) ≤ h(u, p).

Proof. For every two states u, v if hHDH(u, p) = h(u, p) the
lemma holds trivially. Therefore, we focus on proving the
lemma for the case where hHDH(u, p) = ĥ(u, p), by exam-
ining both terms of the max expression in Eq. 8.

i) Since h is ∆-consistent, we get that h(u, v) ≤ h(u, p)+
h(p, v) for all u, p, v ∈ V . Thus, h(u, v)−h(p, v) ≤ h(u, p),
proving the lemma for the first term.

ii) The triangle inequality from v to p (where u is a pivot)
gives: h(v, p) ≤ h(v, u) + h(u, p) for all u, p, v ∈ V . Thus,
h(v, p)− h(v, u) ≤ h(u, p), proving the lemma for the sec-
ond term.

Therefore, if h is ∆-consistent, there is no benefit in us-
ing ĥ since it will never exceed the value of h. A similar
proof applies to the case of undirected graphs where for a
∆-consistent heuristic h, we have that:
1. ĥ(u, v) = |h(u, p) − h(p, v)| ≤ d(u, v). This is due to

the consistency attribute.
2. ĥ(u, v) = |h(u, p) − h(p, v)| ≤ h(u, v). This is due to

the ∆-consistency attribute.
We note that computing hHDH can be computationally ex-

pansive, as the right-hand side of Eq. 8 depends on all ver-
tices in the graph. Furthermore, a common assumption in
search algorithms is that they only have access to the graph
through state expansions. Under this constraint, computing
hHDH by taking the maximum over all vertices of G becomes
infeasible. However, it is feasible to approximate hHDH by
considering only the vertices discovered during the search
process, thereby reducing computational complexity while
maintaining the aforementioned expansion assumption. Al-
ternatively, one can choose a fixed set of vertices V ′ and
compute the right-hand side of Eq. 8 while only considering
pivots from V ′.

Demonstration of HDH on a Search Problem
If h is consistent but not ∆-consistent, Lemma 2 does not ap-
ply, and there might be states n, g where ĥ(n, g) > h(n, g).
Thus, with a consistent heuristic A∗ can use hHDH as an en-
hanced heuristic to potentially improve its performance.

Consider again the graph Figure 2(a) and its heuristic val-
ues in Figure 2(b). We have shown above that this heuristic
is admissible and consistent but that it does not obey the
triangle inequality. We now focus on h(u, p) = 1 and are in-
terested in improving it by calculating hHDH(u, p). The first
term in the max gives h(u, v)− h(p, v) = 6− 3 = 3, while
the second term gives h(v, p) − h(v, u) = 10 − 2 = 8,
resulting in ĥ(u, p) = 8. This implies that hHDH(u, p) =
max(1, 8) = 8.
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Figure 3: Example: enhancing a weakly-consistent heuristic.

Consider the triangle inequality in the form h(x, y) ≤
h(x, z) + h(z, y). It means that the direct path from x to
y is no worse than the bypass from x to y via z, denoted
(x → z → y). Consider edge (u, p) in Figure 2. It can
be part of a bypass in two cases. The first case considers
paths from u to v. In this case, (u, p) is first in the bypass
(u → p → v). Here h(u, v) = 6 while the bypass path via p
gives h(u, p)+h(p, v) = 1+3 = 4. Clearly, the triangle in-
equality does not hold in this case. To rectify this, we can set
h(u, p) = 3, as done in the first term in ĥ(u, p), ensuring that
the bypass distance is at least 6, as dictated by the triangle
inequality. The second case considers paths from v to p. In
this case, edge (u, p) is second in the bypass (v → u → p).
Here the direct edge gives h(v, p) = 10 while the bypass
path via u gives h(v, u) + h(u, p) = 2 + 1 = 3. Clearly, the
triangle inequality also does not hold in this scenario. To ad-
dress this, we can set h(u, p) = 8, ensuring that the bypass
distance is at least 10, as required by the triangle inequality.
This adjustment is implemented through the second term in
the formula of ĥ(u, p).

Next, consider the undirected graph in Figure 3, in which
solid blue lines indicate the edge costs and dashed orange
lines indicate heuristic values, and focus on the path from
s to g. In this example, the heuristic is consistent, but not
∆-consistent. While h(a, g) = 1, observe that ĥ(a, g) =
|h(a, b) − h(g, b)| = 6 − 3 = 3. This information can be
utilized by A∗. In particular, in this example, using only the
original heuristic h, A∗ would expand s with f(s) = 3, fol-
lowed by a with f(a) = g(a) + h(h) = 3 + 1 = 4. Then
it will expand c and g (both with f = 5) and find the opti-
mal solution. By contrast, using ĥ, f(a) = g(a) + ĥ(a) =
3+ 3 = 6. Now, A∗ does not expand a and directly expands
c and g. Notably, this example can be modified such that A∗

would need to expand an arbitrarily large number of states
when not using hHDH. Moreover, the computation of ĥ in
this instance only entails the goal and states expanded dur-
ing the search, thereby upholding the assumption that states
are accessible solely through expansions.

Importantly, the proof of optimal efficiency for
A∗ (Dechter and Pearl 1985) hinges on the assump-
tion that the algorithm uses a goal-specific heuristic. To the
best of our knowledge, the optimality of A∗ has not been
explored in the context of all-pair heuristics. However, the
provided example illustrates a significant point: when A∗

receives an all-pair heuristic and treats it as a goal-specific
heuristic, as often practiced, it may not achieve optimal

efficiency compared to algorithms capable of leverag-
ing pairwise heuristic estimations, particularly when the
heuristic lacks ∆-consistency. It remains an open question
whether A∗ is optimally efficient equipped with an all-pair
∆-consistent heuristic, a matter we leave for future work.

Characterizing Common Heuristic Families
We will now explore common families of heuristic functions
and show that they adhere to the triangle inequality.

An abstraction transformation for graph G = (V,E)
and a cost function c can be defined as follows: Let G′ =
(V ′, E′) be a graph, c′ : E′ → R≥0 be a cost function on
G′, and A : V → V ′ be a function that maps vertices of G
to vertices of G′. We denote by all-pair abstraction-based
heuristic a heuristic function h(G′,A,c′) : V × V → R≥0

of G, where the heuristic value between two states is the
cost of the shortest paths between them when mapped into
G′. That is, h(G′,A,c′)(u, v) = dG′(A(u), A(v)), where
dG′(A(u), A(v)) denotes the shortest path in G′ between
A(u) and A(v), w.r.t. c′.

All-pair abstraction-based heuristics encompass various
commonly used techniques, such as constraint relaxation
(where edges are added) (Gaschnig 1979; Hansson, Mayer,
and Yung 1992; Bonet and Geffner 2001), domain abstrac-
tions (Hernádvölgyi and Holte 2000; Kreft et al. 2023),
STAR abstractions (Holte et al. 1996; Botea, Müller, and
Schaeffer 2004; Sturtevant and Buro 2005), and homomor-
phism abstraction, which includes pattern databases (PDBs)
(Kibler 1982; Culberson and Schaeffer 1998; Felner, Korf,
and Hanan 2004), Merge-and-shrink (Dräger, Finkbeiner,
and Podelski 2009; Helmert et al. 2014; Sievers and Helmert
2021), and other techniques.

Lemma 3. All-pair abstraction-based heuristics obey the
triangle inequality.

Proof. Assume by contradiction that an all-pair abstraction-
based heuristic h does not hold the triangle inequality. Thus,
there exists three states, u, v, p such that h(u, v) > h(u, p)+
h(p, v). By definition, h(n,m) = dG′(A(n), A(m))
for all states n,m ∈ V . Hence, dG′(A(u), A(v)) >
dG′(A(u), A(p)) + dG′(A(p), A(v)). Consequently, dG′

does not satisfy the triangle inequality in G′, in contradic-
tion to the fact that the cost of the shortest paths between
vertices in any graph is quasi-pseudo-metric.

Additionally, when a set of heuristics adheres to the tri-
angle inequality, both their sum and maximum also preserve
this property.

Lemma 4. Heuristics conforming to the triangle inequality
maintain this property under the SUM and MAX operations.

Proof. Let h1 and h2 be any two heuristics that obey the
triangle inequality, u, v, p ∈ V be any three states, hS =
h1+h2, and hM = max(h1, h2). Since the triangle inequal-
ity holds for h1 and h2, h1(u, v) ≤ h1(u, p) + h1(p, v) and
h2(u, v) ≤ h2(u, p) + h2(p, v). By summing these two in-
equalities, we get that h1(u, v) + h2(u, v) ≤ h1(u, p) +
h2(u, p) + h1(p, v) + h2(p, v). By replacing h1 + h2 with
hS we get: hS(u, v) ≤ hS(u, p) + hS(p, v). Consequently,
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hS obeys the triangle inequality, showing that this property
is maintained under summation.

In addition, assume w.l.o.g. that h1(u, v) ≤ h2(u, v)
for a pair of states u, v. Since h2(u, v) ≤ h2(u, p) +
h2(p, v), it follows that max(h1(u, v), h2(u, v)) ≤
h2(u, p) + h2(p, v). Moreover, given that h2(n,m) ≤
max(h1(n,m), h2(n,m)) for all n,m ∈ V , we have
max(h1(u, v), h2(u, v)) ≤ max(h1(u, p), h2(u, p)) +
max(h1(p, v), h2(p, v)). By replacing max(h1, h2) with
hM we obtain hM (u, v) ≤ hM (u, p) + hM (p, v). Hence,
hM adheres to the triangle inequality, demonstrating that
this property is preserved under maximization.

Since all-pair abstraction-based heuristics satisfy the tri-
angle inequality, Lemma 4 implies that the summation and
maximization of such heuristics also maintain this property.
These operations encompass various heuristic techniques,
including additive PDBs and selecting the maximum value
among different PDBs. Notably, despite trying, the authors
of this paper cannot conceive of a non-synthetic consistent
and admissible all-pair heuristic that violates the triangle in-
equality. This remains a challenge for the entire community.

Conclusions
This paper studies all-pair consistent heuristic function and
their relation to the all-pair shortest path function with re-
gard to different distance properties. We defined a new prop-
erty of ∆-consistency, a special case of consistency in which
the heuristic adheres to the triangle inequality with respect
to the states in the graph. Moreover, we introduced HDH, a
novel method for extending the triangle inequality to consis-
tent heuristics, making them ∆-consistent. We then proved
that most existing heuristics already maintain the triangle in-
equality and are thus ∆-consistent. Two intriguing questions
remain unanswered:
i) Are there natural mechanisms for constructing heuris-
tics that result in heuristics that are consistent but not ∆-
consistent?
ii) Is A∗ optimally efficient when given a ∆-consistent all
pair heuristic?
These inquiries are left as challenges for the search commu-
nity to explore in the future.
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Dräger, K.; Finkbeiner, B.; and Podelski, A. 2009. Directed
model checking with distance-preserving abstractions. Int.
J. Softw. Tools Technol. Transf., 11(1): 27–37.
Eckerle, J.; Chen, J.; Sturtevant, N. R.; Zilles, S.; and
Holte, R. C. 2017. Sufficient Conditions for Node Expan-
sion in Bidirectional Heuristic Search. In Proceedings of
the Twenty-Seventh International Conference on Automated
Planning and Scheduling, ICAPS, 79–87.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive Pattern
Database Heuristics. J. Artif. Intell. Res., 22: 279–318.
Felner, A.; Zahavi, U.; Holte, R.; Schaeffer, J.; Sturtevant,
N. R.; and Zhang, Z. 2011. Inconsistent heuristics in theory
and practice. Artif. Intell., 175(9-10): 1570–1603.
Gaschnig, J. 1979. A Problem Similarity Approach to De-
vising Heuristics: First Results. In Proceedings of the Sixth
International Joint Conference on Artificial Intelligence, IJ-
CAI 79, Tokyo, Japan, August 20-23, 1979, 2 Volumes, 301–
307. William Kaufmann.
Hansson, O.; Mayer, A.; and Yung, M. 1992. Criticizing so-
lutions to relaxed models yields powerful admissible heuris-
tics. Inf. Sci., 63(3): 207–227.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Trans. Syst. Sci. Cybern., 4(2): 100–107.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. J. ACM, 61(3):
1–63.
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