
Neural Sequence Generation with Constraints via Beam Search with Cuts:
A Case Study on VRP

Pouya Shati1,2, Eldan Cohen3, Sheila McIlraith1,2

1Department of Computer Science, University of Toronto, Toronto, Canada
2Vector Institute for Artificial Intelligence, Toronto, Canada

3Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
pouya@cs.toronto.edu, ecohen@mie.utoronto.ca, sheila@cs.toronto.edu

Abstract

In recent years, neural sequence models have been applied
successfully to solve combinatorial optimization problems.
Solutions, encoded as sequences, are typically generated
from trained models via beam search, a search algorithm that
generates sequences token-by-token while keeping a fixed
number of promising partial solutions at each step. In this
paper, we explore the problem of augmenting beam search
generation with the enforcement of requirements—hard con-
straints that any generated solution must adhere to. We pro-
pose a hybrid approach, by encoding the requirements in the
form of a constraint satisfaction problem (CSP) and itera-
tively solving the CSP to cut any partial solution within the
beam search that is incapable of satisfying the requirements.
We study this problem in the context of vehicle routing prob-
lems (VRP) further augmented with capacity-related or tem-
poral requirements. We experimentally show that cuts often
allow us to satisfy the requirements with negligible impact
on solution quality. Without the use of cuts, beam search is
shown to be exponentially less likely to satisfy the require-
ments as the length of the solution increases and/or the re-
quirements are strengthened.

1 Introduction
Neural sequence models, including recurrent neural net-
works (Medsker and Jain 2001) and transformers (Vaswani
et al. 2017), have been successful in solving combinatorial
optimization problems (Bello et al. 2016; Kool, van Hoof,
and Welling 2018). While typically applied to natural lan-
guage tasks, neural sequence models can be trained to gener-
ate structured solutions to combinatorial problems either via
supervised learning (Vinyals, Fortunato, and Jaitly 2015) or
more recently via reinforcement learning (Lafleur, Chandar,
and Pesant 2022; Kool, van Hoof, and Welling 2018).

A neural sequence model is commonly decoded through
iterative next token prediction, generating the solution one
token at a time (Sutskever, Vinyals, and Le 2014; Bahdanau,
Cho, and Bengio 2015). A beam search procedure can fur-
ther expand iterative production to generate a set of solutions
rather than one (Freitag and Al-Onaizan 2017; Cohen and
Beck 2019). Beam search works well with most sequence
generation tasks. Combinatorial tasks, however, often in-

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

volve strict requirements that are not guaranteed to be sat-
isfied by approaches that purely optimize predictive scores
such as beam search (Cohen and Beck 2021). Depending on
the application, requirements may reflect safety or liveness
constraints, guardrails to ensure appropriate behavior, cus-
tomizing constraints that reflect laws in different jurisdic-
tions, or they may include physical or temporal constraints
that capture properties of the domain. Satisfying such re-
quirements usually needs a global perspective and meticu-
lous reasoning and thus does not suit a statistical iterative
approach to generation, even if done in large quantities.

A requirement on the neural sequential generation output
can often be formulated as a constraint satisfaction prob-
lem (CSP) (Brailsford, Potts, and Smith 1999). A CSP is
an NP-hard problem with the goal of finding values for vari-
ables to satisfy a finite number of declarative constraints. Ex-
amples of CSP paradigms include constraint programming
(CP) (Apt 2003), integer programming (IP) (Wolsey 2020),
and boolean satisfiability (SAT) (Gong and Zhou 2017).

We present a modular framework to combine neural se-
quence generation with a CSP requirement. Our approach
can be applied to any pre-trained unconstrained model and
guarantees requirement satisfaction. Although a new model
can be trained or fine-tuned towards satisfying require-
ments while optimizing the objective, such approach is time-
consuming, requires a large amount of specific data for each
singular or combination of requirements, and is not guaran-
teed to satisfy the requirement for each generated solution.

For the purposes of this paper, we focus on Vehicle Rout-
ing Problems (VRP) as a case study for our approach. Neu-
ral sequence models have been successful in solving VRPs
(Kool, van Hoof, and Welling 2018) but only integrate my-
opic constraints that do not require advanced reasoning. We
solve new VRP variants by combining the prediction model
of a simpler variant with requirements encoded as CSPs.

The contributions of this paper include the following:
1. We introduce beam search with cuts to solve neural se-

quence generation when solutions must adhere to a re-
quirement. Cuts prevent the expansion of partial solu-
tions that are incapable of satisfying the requirement.

2. We encode the requirement as a constraint satisfaction
problem. We introduce bin packing and regular language
acceptance as two types of requirements that find appli-
cation in multiple settings. We further show how they can

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

118

be implemented as cuts by enforcing adherence to a given
partial solution and solving the instances using IP or SAT.

3. We use beam search with cuts to solve three VRP vari-
ants. Specifically, we combine an existing pre-trained
neural model with our two requirement types.

4. We experimentally show that beam search with cuts en-
ables satisfaction of a requirement without significant
cost to quality in short runtime. Moreover, we show that
cuts allow us to satisfy significantly harder requirements
until infeasiblity is reached. Furthermore, we show that
beam search with cuts scales exponentially better when
increasing the solution length or the number of con-
straints. Lastly, we show that an incremental solving of
the CSP significantly lowers the time spent by the solver.

While our contributions are conveyed and evaluated in
the context of VRPs (an important application area), the
methodology for imposing requirements on solutions is gen-
eral and can be applied in a diversity of application settings.

2 Preliminaries
A neural sequence model generates solutions using a given
alphabet referred to as the tokens Σ. The set Σ∗ contains
all finite sequences of tokens and the set P(Σ) contains all
probability distributions over tokens.

2.1 Sequence Generation
The task of generating a solution sequentially is often car-
ried out by a local endeavour that selects and appends the
next token to an existing sequence called the partial solution
(Harshvardhan et al. 2020). The local expansion is guided
via a function that predicts the appearance of the next token.

Definition 1 (Next Token Prediction Function) Given
a set of tokens Σ and P(Σ) representing the set of all
probability distributions over Σ, a next token prediction
function p : Σ∗ → P(Σ) assigns probabilities to tokens for
occurring next after observing a sequence of existing tokens
as the partial solution.

Next token prediction is often accompanied by a filter-
ing function that maintains solution validity through decid-
ing what subset of tokens can appear next at each step. Only
solutions that respect the filtering function are considered
throughout the paper. We refer to a solution x as complete
when a given termination condition is met.

Definition 2 (Sequence Score) Given a set of tokens Σ and
a next token prediction function p, the score θp(.) of a par-
tial solution x = x1, x2, ..., xk ∈ Σ∗ is defined as the
joint probability of its tokens according to p, i.e., θp(x) =∏k−1

i=0 p(x1, ..., xi)[xi+1] where p(x)[xi+1] represents the
probability assigned to xi+1 in the distribution specified by
p(x).

Definition 3 (Sequential Decoder) Given a set of tokens Σ
and a next token prediction function p, a sequential decoder
ϕ aims to find a complete solution x ∈ Σ∗ with maximum
score by iteratively extending partial solutions through next
token prediction.

We hereafter refer to sequential decoders as simply de-
coders. A decoder ϕ can be implemented by using p to ran-
domly sample or select the maximum probability token at
each step to iteratively generate a sequence until a complete
solution is found. However, greedily constructing a single
solution is highly prone to getting stuck in local minima.

A more comprehensive way of searching the solution
space is to consider a set of alternatives simultaneously. The
beam search method aims to do so by keeping track of a set
of partial solutions at each step and considering their highest
scoring expansions for the next step (Cohen and Beck 2019).

Definition 4 (Beam Search) Given a set of tokens Σ and a
next token prediction function p modelled by a neural net-
work, a beam search decoder ϕbs of width w generates sets
of partial solutions Si at iteration i with i ≤ k. Sk only con-
tains complete solutions, S0 is the singular set containing
the empty string ϵ, and each Si with i > 0 contains at most w
solutions of length i and is recursively constructed using the
equation Si = argmax1:w({θp(x.a) |x ∈ Si−1, a ∈ Σ})
where argmax1:w selects the members corresponding to the
w highest scores. 1

Note that the solution length k is not necessarily prede-
termined and beam search is terminated when all generated
solutions are considered to be complete. Once the procedure
is finished, the highest-scoring solution from the set Sk is
chosen as the output. The sequence score can act as the main
objective of the problem or the proxy for another objective
that it aims to approximate. In the latter case, the final solu-
tion is selected based on the main objective instead.

2.2 Requirement
A requirement is a constraint on the solution space and a
complete solution satisfying the requirement is referred to
as feasible. A constrained decoder is required to find a solu-
tion that is feasible in addition to maximizing the prediction
score (Anderson et al. 2017; Cohen and Beck 2021).

Definition 5 (Constrained Sequential Decoder) Given a
set of tokens Σ, a next token prediction function p, and a
requirement R ⊆ Σ∗, a constrained sequential decoder ϕc

aims to find a complete feasible solution x ∈ R with maxi-
mum score by iteratively extending partial solutions through
next token prediction.

A naive approach to building constrained decoders is to
utilize beam search as before and exclude any complete so-
lutions that do not satisfy the requirement at the end. How-
ever, relying on beam search alone provides no guarantee to
find any feasible solutions.

2.3 Constraint Satisfaction Problems
A requirement R on the solution can be encoded into a Con-
straint Satisfaction Problem (CSP) on the sequence of to-
kens. A CSP consists of a finite set of variables with cor-
responding domains and a finite number of constraints over
the variables, with the goal of finding a satisfying assign-
ment (Brailsford, Potts, and Smith 1999). Well-known CSP

1The pseudo-code is presented in the supplementary material.

119

paradigms include Integer Programming (IP) (Wolsey 2020)
and Boolean Satisfiability (SAT) (Gong and Zhou 2017),
both are NP-hard problems, but come with efficient off-the-
shelf solvers. An instance of IP consists of integer vari-
ables and linear inequalities. Note that IP commonly in-
volves a linear objective as well. However, for our purposes,
the feasibility-only variation suffices. A SAT formula is a
conjunction of clauses where each clause is a disjunction of
literals (boolean variables or their negation). We consider an
extended variant of the SAT paradigm that has direct support
for cardinality clauses. A cardinality clause bounds the num-
ber of true literals in its given set. Furthermore, we use in-
cremental solving (Eén and Sörensson 2003) for successive
calls to a SAT solver. In an incremental approach, learned
details are carried over to improve the performance of future
steps. Each step in an incremental approach is distinguished
through a set of literals, called assumptions, that need to be
true in that particular step.

3 Vehicle Routing Problems
In this section, we discuss Vehicle Routing Problems (VRP)
and how neural sequence models have been used to solve
them in previous work. VRPs are a family of optimization
problems aimed at navigating a vehicle through a set of
nodes (locations) while potentially interacting with nodes
along the way through pickups, deliveries, or time-sensitive
tasks (Toth and Vigo 2014). The goal of a VRP is usually to
optimize the cost in terms of different aspects such as dis-
tance, duration, or the number of vehicles while respecting
capacity, time, or vehicular constraints. We focus our atten-
tion on an established variant of the Constrained Vehicle
Routing Problem (CVRP) alongside two variants based on
the Travelling Salesman Problem (TSP) that we introduce.

Problem 1 (CVRP with Maximum Tours (CVRPM))
Given a finite set of demand nodes as 2D coordinates
N = {ni |ni ∈ R× R}, a demand function D : N → N, a
depot node nd ∈ R× R, a capacity c ∈ N, and a maximum
number of tours m ∈ N, find a series of tours T partitioning
the nodes with |T | ≤ m and ∀x ∈ T :

∑
D(xi) ≤ c to

minimize the total distance covered starting from the depot∑
x∈T dis(nd.x) where xi is the i-th node in x and dis(x)

represents the total distance for traversing x from start to
finish and back to start.

Note that our CVRPM definition is commonly referred to
as CVRP in the exact methods literature (Uchoa et al. 2017;
Augerat et al. 1995). We do not include the maximum num-
ber of tours constraint in CVRP to remain consistent with
our baseline and make the distinction between the problem
that we solve and theirs (Kool, van Hoof, and Welling 2018).

Problem 2 (TSP with Demands (TSPD)) Given a finite
set of nodes as 2D coordinates N = {ni |ni ∈ R × R}, a
subset of supply nodes Nd ⊆ N , demands for non-supply
nodes D : N \Nd → N, and capacity c ∈ N, find a complete
permutation of nodes x with minimum total distance covered
dis(x) such that the sum of demands in any continuous se-
quence of non-supply nodes does not exceed the capacity.2

2Note that supply nodes from TSPD and the depot from

Problem 3 (TSP with Regular Specification (TSPR))
Given a finite set of nodes as 2D coordinates
N = {ni |ni ∈ R×R}, an alphabet mapping σ : N → ΣA,
and a regular language A of alphabet ΣA, find a complete
permutation of nodes x with minimum total distance covered
dis(x) such that σ(x) belongs to A, where σ(x) denotes
applying σ to each xi and concatenating the results.

A many-to-one alphabet mapping can indicate a division
of nodes based on properties such as containing region, type
of interaction, or corresponding party.

3.1 Sequential Solving of VRP
While traditionally solved by heuristic or exact methods,
modern deep learning has also enabled us to solve VRPs
(Wang and Tang 2021) through methods including iterative
improvement (Wu et al. 2021; Lu, Zhang, and Yang 2019)
and sequence generation (Kool, van Hoof, and Welling
2018; Nazari et al. 2018). We use the attention-based model
presented in Kool, van Hoof, and Welling (2018) both as
a non-constrained baseline and as a basis for implementing
our constrained sequential decoder.

The baseline utilizes a deep learning model based on at-
tention layers trained using REINFORCE (Williams 1992).
Their model uses nodes of a VRP instance as tokens, is
trained to minimize the total distance covered through next
token prediction, and guarantees solution validity through
filtering. They demonstrate support for multiple VRP vari-
ants including TSP and CVRP. The filtering function used
for TSP guarantees the validity of the solution by exclud-
ing the nodes that are already visited. The filtering function
used for CVRP guarantees the validity of the solution by ex-
cluding the non-depot nodes that are already visited and the
nodes whose addition would violate the capacity limit.

4 Beam Search with Cuts
In this section, we introduce a variation of the beam search
procedure called Beam Search with Cuts (BSC). Unlike or-
dinary beam search, BSC allows us to implement a con-
strained decoder (Definition 5) that is not agnostic of the de-
manded requirement. Instead, BSC performs explicit checks
at each step and cuts any partial solutions that cannot be ex-
tended to a complete one satisfying the requirement. As a
result, a constrained decoder utilizing BSC is guaranteed to
produce feasible solutions if they exist.

Definition 6 (Beam Search with Cuts) Given a set of to-
kens Σ, a next token prediction function p modelled by a
neural network, and a requirement R, a constrained decoder
ϕbsc of width w using beam search with cuts, generates sets
of partial solutions Si at iteration i with i ≤ k. Sk is empty
or only contains complete solutions, S0 is the singular set
containing the empty string ϵ and each Si with i > 0 con-
tains at most w solutions of length i and is recursively con-

CVRPM both act as providers. However, TSPD differs from
CVRPM given that supply nodes are each to be visited once, where
as the depot is a singular node that can be visited in multiple tours.

120

Algorithm 1: Beam Search with Cuts
Input: Set of tokens Σ, Next token prediction function p
modelled by a neural network, Requirement R
Parameter: Width w
Output: Solution x ∈ Σ∗ or ∅

1: S0 = {ϵ} {Add the empty string as the initial solution.}
2: i = 0
3: while Si contains non-complete solutions do
4: S′

i = {x.a|x ∈ Si, a ∈ Σ} {Consider all possible
expansions allowed by masking.}

5: Sort S′
i based on descending values of θp.

6: Si+1 = ∅
7: for all x ∈ S′

i do
8: feas = ∃x′ : x.x′ ∈ R ∧ x.x′is complete {Check

feasibility via solving the CSP.}
9: if feas then

10: Si+1 = Si+1 ∪ {x}
11: end if
12: if |Si+1| == w then
13: Break
14: end if
15: end for
16: end while
17: Sk = Si

18: return argmax({θp(x)|x ∈ Sk})

structed using the following equation:

Si = argmax1:w({θp(x.a) |x ∈ Si−1, a ∈ Σ,

∃x′ : x.a.x′ ∈ R ∧ [x.a.x′is complete]})

where argmax1:w selects the members corresponding to the
w highest scores. An expansion x.a is said to be cut if it is
removed from contention due to not satisfying ∃x′ : x.a.x′ ∈
R∧ [x.a.x′is complete]. If Sk is empty the decoding process
has failed and no feasible solutions are found.

Algorithm 1 presents the pseudo-code for beam search
with cuts. Underlined parts are additions that do not exist
in the pseudo-code for ordinary beam search (Definition 4).

CSP cuts. Since we use CSPs to specify solution require-
ments, we can implement a BSC decoder by extending beam
search with calls to a CSP solver acting as cuts. Specifically,
at each step we check partial solutions in decreasing order of
score, only add them to the next Si if they can be extended
to a feasible solution (i.e., they are not cut), and stop when
w solutions are added. We check whether a partial solution
needs to be cut by solving the CSP instance with the addi-
tional constraint that the assignment must match our current
partial solution up to the point that it has been decoded.

Incremental CSP Solving. Given a solution length of k
and width of w, at least kw cut decisions are made in a suc-
cessful run of beam search with cuts. Additionally, all of the
calls to the CSP solver share much in common as they are
solving the same requirement conditioned on different par-
tial solutions. The multitude and repetitive nature of the CSP

calls makes our approach amenable to employing incremen-
tal solving, a family of techniques aimed at improving the
performance through communication between calls. Previ-
ous work has utilized incremental CSP solving for pruning
infeasible partial solutions in problems such as preferential
subset selection (Brafman et al. 2006; Binshtok et al. 2009).
In Section 6, we demonstrate how incremental solving can
be applied to our SAT-based requirements.

Timeouts. Deciding a cut via solving a CSP instance is in-
herently difficult and can potentially take a long time. Thus,
we use a timeout limit to disrupt the solver if it does not
manage to find a feasible solution in time. A partial solution
leading to a timeout is still cut as it is not guaranteed to be
extendable to a complete feasible solution.

Completeness. A BSC decoder employing timeouts is not
guaranteed to produce a feasible solution, even if one exists.
This is because cuts due to timeouts might remove all of the
partial solutions that can be extended to complete feasible
ones. However, if no timeouts occur, a BSC decoder is guar-
anteed to produce feasible solutions if any exists.
Proposition 1 (BSC Completeness) For any width w and
CSP requirement R such that there exists complete solution
x ∈ R, a constrained decoder ϕbsc that is employing the
beam search with cuts procedure and is armed with the CSP
solver for R, is guaranteed to find a complete and feasible
solution given enough time.

In the next two sections, we introduce two types of re-
quirements that can be encoded as CSPs to be implemented
into a beam search with cuts decoder.

5 Bin Packing Requirements
In this section, we propose bin packing as our first type of
requirement. The aim of the bin packing problem is to parti-
tion items into a limited number of subsets while satisfying
a capacity constraint.
Requirement Type 1 (Bin Packing) Given a set of items I ,
their weights W : I → N, a bin capacity c ∈ N, and max-
imum number of bins m ∈ N, the goal of the bin pack-
ing problem is to find a partition B = {B1, B2, ..., Bm}
of items such that each bin respects the capacity constraint
∀Bi :

∑
i∈Bi

W (i) ≤ c.
Bin packing-based requirements can be utilized to solve

sequence generation tasks that involve partitioning elements
into subgroups. Such tasks include multiple VRP variants,
scheduling problems, or spatial reasoning challenges. As
two examples, we show how bin packing can be used to
solve CVRPM (Problem 1) and TSPD (Problem 2).

To solve CVRPM (TSPD) using beam search with cuts,
we combine the CVRP (TSP) model from the baseline us-
ing next token prediction function pcvrp (ptsp) with a re-
quirement Rbin enforcing that the solution corresponds to
a feasible bin packing. In solving CVRPM, the requirement
Rbin formulates the bin packing problem by seeing nodes
as items, tours as bins, demands as weights, and capacities
playing the same role. The bin packing is formulated the
same for solving TSPD, with the difference of bins being
segments of the solution divided by supply nodes.

121

5.1 Encoding
To have a constrained decoder satisfying Rbin, we need to be
able to solve a bin packing problem given a partial solution.
A partial solution, in CVRPM or TSPD, dictates fixed as-
signment of a subset of items to bins and a subset of bins
to be closed off from accepting more items. In CVRPM
(TSPD), if the partial solution has already generated tF tours
(supply visits), we have fixed assignments for bins [1, tF+1]
and bins [1, tF] have been closed off. We denote the bins
with fixed assignments as BF

1 , BF
2 , ..., BF

tF+1.
We present the following IP encoding to solve the prob-

lem of bin packing with the added constraint of conforming
to a partial solution. We use binary variables ai,j to represent
that item i is assigned to bin j. Constraints in Eq. (1) enforce
that each item is assigned to exactly one bin. Constraints in
Eq. (2) enforce that the sum of weights for items assigned to
a bin is less than the capacity. Constraints in Eq. (3) enforce
the bin packing to match the given fixed assignments based
on the partial solution. Lastly, constraints in Eq. (4) enforce
that the items yet to appear in the partial solution, are not
assigned to the bins that have been closed off.

∀i ∈ I :
∑

j
ai,j = 1 (1)

∀j ∈ [1,m] :
∑

i
ai,jW (i) ≤ c (2)

∀j ≤ tF + 1, i ∈ BF
j : ai,j = 1 (3)

∀j ≤ tF , i /∈
⋃

t
BF

t : ai,j = 0 (4)

6 Regular Language Requirements
In this section, we propose regular languages, which have
been used in multiple fields such as formal verification, syn-
thesis, and planning, as our second type of requirement.
They enable the support of a wide range of specifications
including safety, reachability, and grammatical ones. More-
over, modal logic paradigms such as finite linear temporal
logic (LTL-f) can be translated to regular languages (De Gi-
acomo and Favorito 2021). In Sections 7.3, 7.4, and 7.5, we
use several concrete regular language requirements to solve
VRP variants. Any regular language can be represented by a
Deterministic Finite Automata (DFA) and vice-versa. Thus,
a regular language requirement is equivalent to requiring the
solution’s acceptance by the corresponding DFA.
Requirement Type 2 (DFA Acceptance) Let A be a DFA
with alphabet ΣA and finite set of states QA, q0 ∈ QA an
initial state, QF

A ⊆ QA the accept states, δA : QA ×ΣA →
QA a transition function, and WA ⊆ Σ∗

A a set of strings
corresponding to complete solutions, find w ∈ WA such that
∆(q0, w) ∈ QF

A where ∆(., .) is recursively defined as:

∆(q, w) =

{
∆(δ(q, a), w′) a ∈ ΣA, w = a.w′

q w = ϵ

Note that we only consider complete solutions as candi-
dates to satisfy the requirement. Therefore, we integrate the
termination condition into Requirement Type 2 by setting
WA to represent the set of all complete solutions. Employ-
ing CSPs allows us to encode a wide array of termination
conditions represented as the w ∈ WA constraint.

To solve TSPR (Problem 3), we use beam search with cuts
by taking the next token prediction function ptsp from the
baseline model for TSP and extending it with a regular re-
quirement RA enforcing that the final complete solution is
accepted by the corresponding DFA. The requirement RA
uses alphabet mapping σ to construct the set of candidate
inputs WA. Specifically, WA contains all σ(x) sequences
where x is a permutation of all nodes in the problem.

6.1 Encoding
To have a constrained decoder satisfying a regular language
requirement RA, we need to be able solve a DFA acceptance
problem given a partial solution. Adherence to the partial
solution dictates that the input to A should start with a se-
quence wF of length lF that corresponds to the output of
applying the alphabet mapping to the partial solution. We
use the number of nodes |N | as the length of the input as a
complete TSP solution contains all nodes exactly once. To
guarantee that the input belongs to WA, for each member of
the input alphabet a ∈ ΣA we count the number of nodes
n such that σ(n) = a and denote the number as Wa. Note
that it suffices to enforce the number of appearances to make
sure that the input corresponds to a permutation of all nodes.

We present the following SAT encoding to solve the prob-
lem of DFA acceptance while adhering to a partial solution.
We use variables di,a to represent that wi = a and vari-
ables si,q to represent that the DFA is transitioned to state
q after observing w1, w2, ..., wi. Note that adherence to the
partial solution needs to be added as assumptions rather than
clauses, since it changes for each call to the solver. We spec-
ify cardinality clauses using the inequality symbol (≤), dis-
junctive clauses using parentheses, and assumptions using
brackets. Clauses in Eqs. (5) and (6) guarantee that exactly
one member of the alphabet is chosen at each step. Clauses
in Eqs. (7) and (8) guarantee that exactly Wa appearances
exist for each a ∈ ΣA. Clauses in Eqs. (9) and (10) guar-
antee that exactly one state is visited at each step. Clauses
in Eq. (11) guarantee that the first state visited after the ini-
tial one is according to the transition function, and clauses in
Eq. (12) enforce the same validity of transition for all of the
next steps. Clauses in Eq. (13) guarantee that the last state
visited is an accept state. Lastly, the assumptions in Eq. (14)
guarantee that the beginning of the solution match wF and
consequently the given partial solution.

∀i : (
∨

a
di,a) (5)

∀i :
∑

a
di,a ≤ 1 (6)

∀a :
∑

i
di,a ≤ Wa (7)

∀a :
∑

i
¬di,a ≤ |N | −Wa (8)

∀i : (
∨

q
si,q) (9)

∀i :
∑

q
si,q ≤ 1 (10)

∀a : (¬d1,a ∨ s1,δ(q0,a)) (11)
∀i > 1, q, a : (¬si−1,q ∨ ¬di,a ∨ si,δ(q,a)) (12)

(
∨

q∈QF
A
s|N|,q) (13)

∀i ≤ lF : [di,wF
i
] (14)

122

7 Experimental Results
7.1 Experimental Setup
Through our experiments, we investigate whether beam
search with cuts can effectively equip existing neural mod-
els with the ability to satisfy hard constraints. We focus our
attention on VRPs, a well-known family of problems that
involve hard constraints and have been heavily studied in
neural approaches to combinatorial problems. We use the
attention-based model (Kool, van Hoof, and Welling 2018)
with beam search decoding as our baseline. Furthermore, we
extend their implementation with requirements encoded as
CSPs to run beam search with cuts. We solve IP instances
using the Gurobi solver (Gurobi Optimization, LLC 2023)
version 10, and SAT instances using PySAT (Ignatiev, Mor-
gado, and Marques-Silva 2018) with Gluecard 4 solver (Eén
and Sörensson 2003). Both solvers are allocated a time limit
of 10 seconds for each call. Our results are produced on a
server with two 12-core Intel E5-2697v2 and 128G of RAM.

To cover a wide range of challenges, we use the dataset
proposed in Uchoa et al. (2017) but also synthesize our own
instances following the procedure described in the baseline
(Kool, van Hoof, and Welling 2018). All of our synthesized
instances are randomized using 10 different seeds and the
results are averaged over seeds unless noted otherwise.

7.2 Sequence Generation with Requirements
For our first experiment, we solve Problem 1 (CVRPM) for
instances in Uchoa et al. by enforcing a maximum number of
tours. The requirement is implemented through bin packing-
based cuts. We omitted instances with a maximum number
of tours larger than 20, as it would be too challenging to
solve the bin packing CSP for such instances.

We first ran the ordinary beam search decoder with a com-
paratively large width (8096) and observed that in 9 out of
27 instances, no generated solutions were able to satisfy the
maximum number of tours requirement. Table 1 contains
the BS and BSC results for the 9 unsatisfied cases3. We ran
beam search with cuts for the unsatisfied cases with signif-
icantly lower width (4) and were able to find feasible solu-
tions in all cases, indicating that requirement satisfaction in
BSC cannot simply be compensated for by using a higher
width value in BS. We report the required maximum num-
ber of tours m alongside the best value that each approach
was able to achieve. Additionally, we include the best total
distance amongst the solutions generated by BSC in relative
comparison against the best from BS (∆dis. (%)) with a neg-
ative value indicating an improvement. Our results show that
despite the lower width and the added benefit of satisfying
the requirement, BSC was able to achieve solutions of com-
parable total distance, with even significant improvement in
some cases. Furthermore, we observe that ordinary beam
search shows higher runtimes in the majority of cases, with
BSC taking longer only if a significant number of cuts are
needed to prune infeasible solutions. While the runtimes can
be further improved with parallelized or GPU-based meth-
ods, the results still indicate the intractability of simply in-
creasing the width to satisfy requirements.

3Remaining results are presented in the supplementary material.

Instance Beam Search Beam Search with Cuts
(|N |,m) Time (s) m Time (s) m ∆dis. Cuts

(134,13) 26.7 14 45.1 13 0.8% 168
(157,13) 35.7 14 14.9 13 -12.2% 17
(190,8) 49.3 11 14.4 8 -23.9% 52
(209,16) 60.7 17 28.3 16 2.0% 19
(214,11) 61.7 12 27.0 11 5.7% 92
(233,16) 73.4 17 384.6 16 20.1% 219
(256,16) 89.3 17 630.4 16 9.0% 408
(367,17) 185.6 18 84.4 17 -0.6% 6
(411,19) 236.7 22 116.7 19 -14.6% 44

Table 1: Beam search (width=8096) against beam search
with cuts (width=4) on select instances from Uchoa et al.

To better understand the effects of the width parameter on
beam search with cuts, we solve the same 9 instances with
BSC in three configurations: a beam width of 4, a larger
beam width of 64, and a hybrid approach where we use a
variation of our BSC algorithm that only guarantees a frac-
tion of the partial solutions to be extendable to complete
feasible ones. Specifically, we consider a sub-width (= 4)
in addition to width (= 64) and we solve the CSP problem
starting from the highest score as many times as needed in
order to fill the sub-width with solutions that can lead to fea-
sibility. The partial solutions shown to be infeasible will then
be disregarded and the remaining width will be filled with
untested ones. We report the same values as in Table 1 for the
three configurations in Table 2. Note that we omit reporting
the number of tours achieved as all approaches are able to
satisfy the given specification in all instances. As expected,
the approach with a width of 64 and the hybrid approach
are both able to produce solutions with better distance com-
pared to a width of 4 in all but one instance. Interestingly,
we observe that the hybrid approach is closer in runtime to
the lower width as opposed to the higher one.

7.3 Tightening Requirements
Next, our goal is to understand the limits of feasibility and
the trade-off between challenging requirements and solution
quality. Thus, we avoid fixing the requirement and instead
use incrementally tighter ones until no feasible solution ex-
ists. We use this approach to solve Problem 2 (TSPD) for
synthesized instances by enforcing a capacity constraint c
implemented through bin packing-based cuts. The demand
for each non-supply node is randomly selected from a uni-
form distribution. Moreover, we solve Problem 3 for synthe-
sized instances by enforcing a regular language requirement
Asi implemented through DFA acceptance-based cuts. The
requirement Asi states that in the TSPR solution x, there
cannot be i successive visits to nodes that all map to the same
member of the alphabet by σ. An equal number of nodes are
randomly mapped to each member of the alphabet. We first
run an ordinary beam search and observe the lowest c value
for TSPD or the lowest i value for TSPR out of all solu-
tions, to use as a starting point for iteratively tightening the
corresponding requirement. The TSPD results are presented
in Figure 1 (top) and the TSPR results in Figure 1 (bottom).

123

Instance Beam Search with Cuts
(|N |,m) Width Time (s) ∆dis. Cuts

(134,13)
64 918.5 -1.6% 7609

64-4 90.1 -0.6% 2397
4 45.1 0.8% 168

(157,13)
64 180.6 -12.7% 178

64-4 24.0 -12.7% 147
4 14.9 -12.2% 17

(190,8)
64 189.3 -24.1% 1136

64-4 56.4 -23.6% 2186
4 14.4 -23.9% 52

(209,16)
64 372.7 2.4% 192

64-4 40.2 0.2% 175
4 28.3 2.0% 19

(214,11)
64 405.2 0.8% 1126

64-4 40.5 0.5% 282
4 27.0 5.7% 92

(233,16)
64 4869.6 18.2% 4172

64-4 441.5 17.7% 3528
4 384.6 20.1% 219

(256,16)
64 8652.7 5.7% 6541

64-4 735.2 6.1% 1814
4 630.4 9.0% 408

(367,17)
64 1258.4 -1.5% 505

64-4 123.5 -1.5% 277
4 84.4 -0.6% 6

(411,19)
64 1700.4 -15.6% 466

64-4 251.6 -16.8% 1610
4 116.7 -14.6% 44

Table 2: BSC with different width and sub-width (indicated
by -) values on select instances from Uchoa et al.

The horizontal axes indicate how much tighter than the start-
ing point the requirement is. Hence, zero indicates using BS
(width=8096) while positive values indicate a tighter con-
straint (lower c for capacity or i for As

i) solved by BSC
(width=4). The vertical axes show the total distance and each
line represents an instance with a different seed.

The results show that BSC, even with lower width, is able
to reduce capacity by a margin of 10 to 30 across instances,
and the maximum number of successive visits by up to 5 on
some instances, with relatively minor impact on total dis-
tance. In both cases, we see that tightening the requirement
too much will result in a sudden jump in distance before
reaching infeasibility. In all instances, the infeasible runs
contain no timeouts, guaranteeing that there cannot exist any
solutions. In TSPD, we also see instability in distance for
highly challenging requirements that, alongside the decline
of quality, can be indicative of the fact that the search is too
constrained to explore solutions of high predictive scores.

7.4 Scaling Problem Size
Next, we study the impact of solution length and require-
ment strength on the ability of BS and BSC to produce fea-
sible solutions. We solve Problem 3 (TSPR) for synthesized

Figure 1: Iterative tightening of the requirement for TSPD
(top) and TSPR (bottom) against solution quality, from beam
search (∆ = 0, width=8096) to beam search with cuts
(∆ > 0, width=4) until infeasibility. Different colors rep-
resent different randomly-generated synthetic instances.

instances by enforcing a regular language requirement AP
i

implemented through DFA acceptance-based cuts. The re-
quirement Ap

i states that in the TSPR solution x, there can-
not be two successive nodes xj and xj+1 such that σ(xj) =
ai and σ(xj+1) = ai+1 with ai and ai+1 being the i-th and
i+1-th members of the alphabet. We use AP

i as a shorthand
for the combination of Ap

1 to Ap
i . Combining the require-

ments into one allows us to quantify and control the require-
ment strength. Note that we can implement the combination
of multiple DFA acceptance requirements by simply consid-
ering the DFA product. For synthesized instances, an equal
number of nodes are randomly mapped to each member of
an alphabet of size 6. Firstly, we use beam search to solve
instances of size 24 with AP

1 to AP
5 as requirements. We

start from a width of 1 and double the width every time BS
fails to generate a feasible solution. Secondly, we solve in-
stances of size 12, 24, and 36 with AP

3 as requirement and
double the width in case of infeasibility as before. For all
cases, we report the average logarithm of the lowest width
that was able to satisfy the requirement. For comparison, we
also solve each instance using BSC with a width of 4.

The results, provided in Table 3, show that with a linear
increase in the number of combined requirements, there is an
almost linear increase in the logarithm of the lowest width.
When the requirement is fixed, a similar linear relation ex-
ists between the length of the solution (number of nodes)
and the logarithm of the lowest width. The trends show that
the beam search decoder needs to produce an exponentially
larger number of solutions in order to satisfy a stronger re-
quirement or satisfy the same requirement for a longer solu-
tion. Beam search with cuts however, is able to satisfy com-

124

|N | R
Beam Search Beam Search with Cuts

log(w) Cuts Time (s)

24

P1 2.7 2.8 1.81
P2 4.4 6.4 1.79
P3 6.8 8.4 1.80
P4 8.9 12.4 1.78
P5 10.5 15.4 1.87

12
P3

1.2 3.5 1.73
24 6.4 8.4 1.80
36 11.1 16.7 1.95

Table 3: Minimum width required in log-scale for BS against
the number of cuts and time used by BSC (width=4).

bined requirements and produce longer solutions with an al-
most linear increase in cuts and negligible cost to runtime.

7.5 Incremental CSP Solving
Lastly, we investigate how incremental SAT solving can en-
hance the performance of beam search with cuts. Hence, we
solve Problem 3 (TSPR) for synthesized instances by en-
forcing a regular language requirement AW implemented
via SAT. The requirement AW states that within any win-
dow of length 8 in the solution, there should be at least one
appearance for every member of the alphabet through the
mapping σ. For synthesized instances, an equal number of
nodes are randomly mapped to each member of an alphabet
(ΣA) of size 4. We run the BSC algorithm for width val-
ues of 4 and 16 and different instance sizes, allowing the
solver to carry information forward for the incremental run,
and wiping the SAT solver’s slate clean after each call in the
non-incremental run. We report the total time that is purely
spent on solving SAT instances for comparison. Note that we
only report the number of cuts once as the two approaches
behave exactly the same with regard to cuts and produce the
exact same solutions since no timeouts are involved.

The results presented in Table 4 show that the incremental
approach is able to improve solve time in all cases. Further-
more, the relative difference in solve time grows monoton-
ically as we increase the size of the instance or the width.
The improvement is due to the highly repetitive nature of
CSP calls which is further exacerbated in higher widths.

8 Related Works
Recently, Lafleur, Chandar, and Pesant (2022) have at-
tempted to solve neural sequence generation with CSP-
based requirements by augmenting the predictive scores
with marginal probabilities that approximate the likelihood
that assignments participate in a feasible solution. This ap-
proach performs well in guiding the search towards feasible
solutions. However, there are shortcomings such as a lack of
guarantee to find feasible solutions, potential cost to quality
due to manipulation of scores, and the need for a CSP solver
capable of computing these marginal probabilities.

Another approach to tackle CSP-based requirements for
neural sequence generation is to use beam search and dou-

|N | Width Cuts Solve Time (s)
Non-Inc. Inc.

12 4 1.2 1.59 0.45
16 4 6.00 1.56

24 4 14.5 13.95 2.45
16 64.5 57.00 7.62

36 4 40.9 39.58 5.59
16 143.7 147.59 14.94

48 4 66 89.65 10.94
16 233.4 345.05 32.09

60 4 94.9 150.17 15.28
16 332.1 565.47 33.92

Table 4: Solve time of incremental and non-incremental SAT
solving for beam search with cuts.

ble the number of solutions produced at each run until a sat-
isfying solution appears. This approach is agnostic of the
requirement and has been shown in recent work to exhibit
heavy-tailed behavior which can be successfully mitigated
by utilizing randomness (Cohen and Beck 2021).

Constrained beam search with lexical constraints is a
common approach to neural sequence generation with re-
quirements. Lexical constraints require a set of phrases to
appear in the output and are significantly less expressive than
requirements encoded as CSPs. Constrained beam search
is commonly achieved by dividing the partial solutions in
each iteration based on their number of satisfied constraints
(Hokamp and Liu 2017; Post and Vilar 2018), or their state
in a finite-state machine encoding the constraints as a whole
(Anderson et al. 2017). Alternative approaches to satisfying
lexical constraints include augmenting the predictive scores
to lean towards the target words (Pascual et al. 2020), and
modifying the output through stochastic sampling (Miao
et al. 2019) or gradient-guided (Sha 2020) edits.

9 Conclusion
We have presented beam search with cuts that allows us
to combine neural sequence models with requirements en-
coded in CSP towards constrained decoding. We have im-
plemented two types of requirements and used them to solve
multiple VRP variants. Through our experiments, we have
shown that cuts in beam search enable satisfaction of tight
requirements with negligible impact on quality.

Our approach can be developed in multiple interesting di-
rections. Feasibility results can be cached and queried using
equivalency, e.g., two partial TSPD solutions that have vis-
ited the same nodes in different orders are equivalent. Equiv-
alency checks can also cut solutions that are of lower quality
in order to improve the search or increase the diversity of
the results. Furthermore, our approach can be extended with
new types of requirements or application to other neural se-
quence models in areas such as planning or program syn-
thesis. Lastly, cuts can be added to the Beam-Stack search
procedure (Zhou and Hansen 2005) to mitigate the impact
of requirements guiding the search to a sub-optimal space.

125

Acknowledgements
The authors gratefully acknowledge funding from NSERC
and the Canada CIFAR AI Chairs program (Vector Institute
for Artificial Intelligence).

References
Anderson, P.; Fernando, B.; Johnson, M.; and Gould, S.
2017. Guided Open Vocabulary Image Captioning with
Constrained Beam Search. In EMNLP, 936–945.
Apt, K. 2003. Principles of constraint programming. Cam-
bridge university press.
Augerat, P.; Belenguer, J.; Benavent, E.; Corberán, A.; Nad-
def, D.; and Rinaldi, G. 1995. Computational results with a
branch and cut code for the capacitated vehicle routing prob-
lem research. Universite Joseph Fourier, Grenoble, France,
949–M.
Bahdanau, D.; Cho, K. H.; and Bengio, Y. 2015. Neural
machine translation by jointly learning to align and translate.
In ICLR.
Bello, I.; Pham, H.; Le, Q. V.; Norouzi, M.; and Bengio,
S. 2016. Neural combinatorial optimization with reinforce-
ment learning. arXiv preprint arXiv:1611.09940.
Binshtok, M.; Brafman, R. I.; Domshlak, C.; and Shiomony,
S. 2009. Generic preferences over subsets of structured ob-
jects. JAIR, 34: 133–164.
Brafman, R. I.; Domshlak, C.; Shimony, S. E.; and Silver, Y.
2006. Preferences over sets. In AAAI, volume 6, 1101–1106.
Brailsford, S. C.; Potts, C. N.; and Smith, B. M. 1999. Con-
straint satisfaction problems: Algorithms and applications.
EJOR, 119(3): 557–581.
Cohen, E.; and Beck, C. 2019. Empirical analysis of beam
search performance degradation in neural sequence models.
In ICML, 1290–1299. PMLR.
Cohen, E.; and Beck, J. C. 2021. Heavy-Tails and Random-
ized Restarting Beam Search in Goal-Oriented Neural Se-
quence Decoding. In CPAIOR, 115–132. Springer.
De Giacomo, G.; and Favorito, M. 2021. Compositional ap-
proach to translate LTLf/LDLf into deterministic finite au-
tomata. In ICAPS, volume 31, 122–130.
Eén, N.; and Sörensson, N. 2003. An extensible SAT-solver.
In SAT, 502–518. Springer.
Freitag, M.; and Al-Onaizan, Y. 2017. Beam Search Strate-
gies for Neural Machine Translation. In Luong, T.; Birch,
A.; Neubig, G.; and Finch, A., eds., WNMT, 56–60.
Gong, W.; and Zhou, X. 2017. A survey of SAT solver. In
AIP Conference Proceedings, volume 1836. AIP Publishing.
Gurobi Optimization, LLC. 2023. Gurobi Optimizer Refer-
ence Manual.
Harshvardhan, G.; Gourisaria, M. K.; Pandey, M.; and
Rautaray, S. S. 2020. A comprehensive survey and anal-
ysis of generative models in machine learning. Computer
Science Review, 38: 100285.
Hokamp, C.; and Liu, Q. 2017. Lexically Constrained De-
coding for Sequence Generation Using Grid Beam Search.
In ACL, volume 1, 1535–1546.

Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018.
PySAT: A Python Toolkit for Prototyping with SAT Oracles.
In SAT, 428–437.
Kool, W.; van Hoof, H.; and Welling, M. 2018. Attention,
Learn to Solve Routing Problems! In ICLR.
Lafleur, D.; Chandar, S.; and Pesant, G. 2022. Combining
Reinforcement Learning and Constraint Programming for
Sequence-Generation Tasks with Hard Constraints. In CP,
30:1–30:16.
Lu, H.; Zhang, X.; and Yang, S. 2019. A learning-based
iterative method for solving vehicle routing problems. In
ICLR.
Medsker, L. R.; and Jain, L. 2001. Recurrent neural net-
works. Design and Applications, 5(64-67): 2.
Miao, N.; Zhou, H.; Mou, L.; Yan, R.; and Li, L. 2019.
Cgmh: Constrained sentence generation by metropolis-
hastings sampling. In AAAI, volume 33, 6834–6842.
Nazari, M.; Oroojlooy, A.; Snyder, L. V.; and Takác, M.
2018. Reinforcement Learning for Solving the Vehicle
Routing Problem. In NeurIPS, 9861–9871.
Pascual, D.; Egressy, B.; Bolli, F.; and Wattenhofer, R. 2020.
Directed beam search: Plug-and-play lexically constrained
language generation. arXiv preprint arXiv:2012.15416.
Post, M.; and Vilar, D. 2018. Fast Lexically Constrained De-
coding with Dynamic Beam Allocation for Neural Machine
Translation. In NAACL, 1314–1324.
Sha, L. 2020. Gradient-guided unsupervised lexically con-
strained text generation. In EMNLP, 8692–8703.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to Sequence Learning with Neural Networks. In NeurIPS,
3104–3112.
Toth, P.; and Vigo, D. 2014. Vehicle routing: problems,
methods, and applications. SIAM.
Uchoa, E.; Pecin, D.; Pessoa, A.; Poggi, M.; Vidal, T.; and
Subramanian, A. 2017. New benchmark instances for the
capacitated vehicle routing problem. EJOR, 257(3): 845–
858.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In NeurIPS, 5998–6008.
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer Net-
works. In NeurIPS, 2692–2700.
Wang, Q.; and Tang, C. 2021. Deep reinforcement learn-
ing for transportation network combinatorial optimization:
A survey. Knowledge-Based Systems, 233: 107526.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning, 8: 229–256.
Wolsey, L. A. 2020. Integer programming. John Wiley &
Sons.
Wu, Y.; Song, W.; Cao, Z.; Zhang, J.; and Lim, A. 2021.
Learning improvement heuristics for solving routing prob-
lems. IEEE transactions on neural networks and learning
systems, 33(9): 5057–5069.
Zhou, R.; and Hansen, E. A. 2005. Beam-Stack Search: Inte-
grating Backtracking with Beam Search. In ICAPS, 90–98.

126

