
Optimised Variants of Polynomial Compilation for Conditional Effects in Classical
Planning

Francesco Percassi1*, Enrico Scala2, Alfonso Emilio Gerevini2

1School of Computing and Engineering, University of Huddersfield, United Kingdom
2Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Italy

f.percassi@hud.ac.uk,enrico.scala@unibs.it,alfonso.gerevini@unibs.it

Abstract

Conditional effects are a key feature in classical planning, en-
abling the description of actions whose outcomes are state-
dependent. It is well known that removing conditional effects
in a polynomial way necessarily increases the size of a valid
plan by a polynomial factor. However, preserving the exact
plan size requires encoding the problem exponentially.
The paper proposes and empirically evaluates optimisations
for existing polynomial compilations. These optimisations
aim to make the resulting compilations more suitable for
planners while limiting the increase in plan size, which is
inevitable if we want to keep the compilation polynomial.
Specifically, the paper introduces a polynomial compilation
technique that expands conditional effects when their number
is below a certain threshold and sequentialises them other-
wise. Additionally, the paper demonstrates that even straight-
forward optimisations can have a notable impact.

Introduction
Automated planning involves generating sequences of ac-
tions to achieve predefined goals, starting from an initial
state and based on a specified model. Over time, various
planning formalisms have been developed to represent plan-
ning problems concisely and improve modelling capabili-
ties. This study focuses on classical planning with condi-
tional effects (Pednault 1989), a feature allowing actions to
have state-dependent outcomes. Intuitively, a conditional ef-
fect is an action’s effect that occurs if an additional condition
is satisfied when the action is applied. Listing 1 provides a
simple example of a PDDL action using conditional effects.
This action allows the movement of a rover from one loca-
tion to another. Additionally, if the rover carries a tool, it will
be contextually moved.

Conditional effects have proven to be an expressive lan-
guage feature with significant modelling capabilities. In-
deed, they have been widely employed in various works to
encode planning problems beyond the classical paradigm.
These studies include planning subject to soft and hard state-
trajectory constraints (Wright, Mattmüller, and Nebel 2018;
Percassi and Gerevini 2019; Bonassi et al. 2021, 2023), plan-
ning under uncertainty (Palacios and Geffner 2009; Grastien

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Listing 1: PDDL action with a conditional effect.
1 (:action move_rover

2 :parameters (?r - rover ?l1 ?l2 - loc ?t - tool)

3 :precondition (at ?r ?l1)

4 :effect (and (not (at ?r ?l1)) (at ?r ?l2)

5 (when

6 (and (carrying ?r ?t) (at ?t ?l1))

7 (and (not (at ?t ?l1)) (at ?t ?l2)))))

and Scala 2017), deriving finite-state controllers (Bonet,
Palacios, and Geffner 2009) and matrix multiplication as
planning (Speck et al. 2023). From a theoretical perspective,
conditional effects exhibit interesting properties, as they are
related to state-dependent action costs and numeric planning
(Mattmüller et al. 2018; Gigante and Scala 2023).

Notably, a wide range of well-performing planners rely
on forward state-space heuristic search (e.g., Helmert 2006;
Richter and Westphal 2010; Katz and Hoffmann 2014), with
some notable exceptions (e.g., Gerevini, Saetti, and Serina
2003; Wehrle and Rintanen 2007; Lipovetzky and Geffner
2017; Speck, Mattmüller, and Nebel 2020). For this reason,
extensive efforts have been undertaken to enable existing
heuristics to support conditional effects (Keyder, Hoffmann,
and Haslum 2012; Röger, Pommerening, and Helmert 2014;
Domshlak, Hoffmann, and Katz 2015).

An appealing method for handling conditional effects is
compilation. In this approach, the problem with conditional
effects is transformed into an equivalent one without them,
enabling the usage of several planning systems designed for
simpler formalisms. However, there is a drawback to con-
sider. According to Nebel (2000), the polynomial compila-
tion of conditional effects leads to a polynomial increase in
the plan size, negatively impacting planning systems perfor-
mance, especially those based on heuristic search. As a side-
effect of this finding, Nebel (2000) provides an upper-bound
polynomial compilation. Conversely, it is possible to exactly
preserve the plan size when transitioning from one formal-
ism to another, albeit resulting in an exponential increase in
the resulting problem (Gazen and Knoblock 1997). Between
these two extremes, Gerevini, Percassi, and Scala (2024) re-
cently introduced a polynomial compilation, COCOA, which
leverages the interferences among conditional effects to re-
duce the plan size increase.

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

100

In this article, we propose and empirically evaluate some
optimisations of existing polynomial compilations of con-
ditional effects to enhance their practical usage. As a main
contribution, we introduce a new hybrid polynomial compi-
lation method, leveraging the strengths of both COCOA and
the exponential scheme while addressing their drawbacks.
Furthermore, we outline some straightforward optimisations
for COCOA to illustrate how specific design choices can
significantly impact the efficiency of solving the compiled
problem. Lastly, we propose a practical variant of Nebel’s
compilation to establish a more robust baseline.

Preliminaries
This section provides an overview of the syntax and seman-
tics of classical planning with conditional effects (CEs). Fur-
thermore, it presents the existing polynomial compilations.

A classical planning problem Π with CEs is the tuple
⟨F,A, I,G⟩, where F is a set of atoms, A is a set of ac-
tions, I is a set of atoms such that I ⊆ F , and G is
a set of literals over F . Each action a ∈ A is a pair
⟨pre(a), post(a)⟩, where pre(a) is a set of literals over F ,
and post(a) is a set of CEs. A CE e of an action a is a
pair ⟨cond(e), eff(e)⟩, where cond(e) and eff(e) are both sets
of literals over F . If cond(e) = ∅, e is called simple ef-
fect. If an action a has only simple effects, it is also termed
simple action. A plan π for a planning problem Π is a se-
quence ⟨a1, . . . , an⟩ of actions in A. The cost of a plan π
is defined as cost(π) =

∑
a∈π cost(a), where cost(a) is a

non-negative rational value defining the cost of action a. For
convenience, let L be some set of literals, we superscript L
with “+” or “−” to extract the positive and negative liter-
als in a set, respectively. For example, if L = {p,¬q}, then
L+ = {p} and L− = {q}. With atoms(L) we access the set
of atoms in L (e.g., atoms({p,¬q}) = {p, q}).

The semantics of a planning problem Π = ⟨F,A, I,G⟩ is
as follows. A state s assigns a truth value to each atom in F ;
we represent states as subsets of F using the closed-world
assumption, i.e., if f ∈ s, then f is true in s, otherwise,
f is false. The state space of Π is 2F , and I is the initial
state. Let L be a set of literals, s |= L iff for all f ∈ L+

(f ′ ∈ L−) we have that f (f ′) is true (false) in s. An ac-
tion a = ⟨pre(a), post(a)⟩ of Π is applicable in a state s
iff s |= pre(a) and all active CEs of a do not conflict, i.e.,⋃
e,e′∈post(a)s.t.e̸=e′

{eff(e)+∩eff(e′)− | s |= cond(e)∪cond(e′)} = ∅.

The application of an action a to a state s generates a suc-
cessor state, denoted as s[a], such that f ∈ s[a] iff at least
one of the following conditions holds: (i) in post(a) there
exists an effect ⟨C,L⟩ such that f ∈ L+ and s |= C; (ii)
f ∈ s and in post(a) there exists no effect ⟨C,L⟩ such that
f ∈ L− and s |= C. In the following, we assume that each
action has no conflicting CEs.

A plan π = ⟨a1, . . . , an⟩ is applicable in a state s0 if a1
is applicable in s0 and, for i ∈ {1, . . . , n}, every action ai
is applicable in s[ai−1]; a plan π is a solution for Π if π
is applicable in state sI and s[an] |= G; Π is solvable if it
admits a solution; an optimal solution for Π is a solution of
Π that has minimal cost.

Nebel’s Compilation (NCOMP)
The polynomial compilation proposed by Nebel (2000),
hereafter referred to as NCOMP, prevents the exponential
blow-up of the encoding by sequencing the execution of the
CEs of an action instead of evaluating them in parallel. Be-
fore delving into details, it is important to recall that NCOMP
expects that the effects of CEs have singleton structure, i.e.,
⟨C, {l}⟩, where l is f or ¬f and f ∈ F . Moreover, given an
action a, κa = |post(a)| denotes its number of CEs.

Given an action ai, NCOMP generates a set of simple ac-
tions which are structured to be executed as follows:1

⟨apre
i ⟩ ⊕

κai
actions︷ ︸︸ ︷

eval-phase⊕⟨aei ⟩ ⊕
κ′∈{0,...,κai

} actions︷ ︸︸ ︷
exec-phase ⊕⟨ac⟩. (1)

Referring to the previous sequence, apre
i initialises the exe-

cution of the action and can be applied if the preconditions
of ai are satisfied. The eval-phase sequence, which stands
for evaluation phase, includes κai

actions, one for each
CE of ai, aiming to evaluate which CE have been activated
when apre

i is applied. Specifically, for each activated CE,
the compilation tracks which atoms must be modified and
how (added or deleted). Once all CEs have been evaluated,
aei is executed, initiating the exec-phase (executive phase).
During this phase, the original problem atoms are added or
deleted to the state based on the outcome of the evaluation
phase. Specifically, for each atom f ∈ F , there are three
possible actions: af+ (to add f), af− (to delete f), and af# (to
lead to a dead-end when some conflicting CEs are activated
together). It is worth noting that exec-phase encompasses a
variable number of actions ranging in κ′ ∈ {0, . . . , κai},
whose length depends on which atoms are affected by the
entailed CEs. If no CEs are activated during the evaluation
phase, then κ′ = 0, while if all atoms are involved, then
κ′ = κai

. Once all necessary state modifications have been
carried out, the execution of the action is concluded with ac.

COCOA Compilation
COCOA also sequences the execution of the CEs. However,
the key difference with NCOMP lies in the fact that COCOA
looks at the structure of the CEs for generating a more com-
pact encoding and inducing shorter sequences of actions in
which the evaluation and executive phases are blended.

Before illustrating the compilation, let us introduce some
key concepts. A CE e interferes with another one e′ (written
e ▷ e′) iff atoms(eff(e)) ∩ atoms(cond(e′)) ̸= ∅. Given an
action a, the effect interference graph is defined as Ga =
⟨V,E⟩ where V = {ve | e ∈ post(a)} and E = {(ve, ve′) |
e, e′ ∈ post(a), e ̸= e′, and e ▷ e′}.

Given an action a, COCOA constructs the effect interfer-
ence graph Ga, and by reversing its edges, obtains the trans-
pose graph GT

a . If GT
a is acyclic, any of its topological order-

ings will produce an interference-free sequence of effects.
This sequence can be used to generate pairs of mutually ex-
clusive actions: one executed when the corresponding CE is
activated, which modifies the state, and the other executed

1We use ⊕ for representing the chaining of sequences of ac-
tions, e.g., ⟨a1⟩ ⊕ ⟨a2, a3⟩ = ⟨a1, a2, a3⟩

101

when it is not, acting transparently. The interference-free na-
ture of this sequence preserves the parallel semantics of CEs.
This contrasts with the NCOMP approach, which achieved
this by decoupling the evaluation and execution of CEs.

However, if GT
a contains cycles, a preprocessing step is

needed to make it acyclic. This involves identifying the
smallest set of atoms such that their removal yields an
acyclic graph. This set is denoted as the minimum feedback
propositional set of a (MFPS(a)), and it is computed using
a sub-optimal approach. All atoms in MFPS(a) are added to
the compiled problem as twin atoms. Next, the action a is di-
vided into two sequential actions. The first one, asetup, copies
all atoms from MFPS(a) to their respective twins. The sec-
ond one, i.e., arun, includes all the original CEs but with any
atom from MFPS(a) appearing in the condition of a CE re-
placed by its respective twin atom. This separation prevents
interference between CEs.

These two steps of the compilation are handled mod-
ularly in COCOA. Specifically, given a planning problem
with cyclic CEs Π, the module τCP

AP produces a problem
with acyclic CEs, denoted as Π′ = τCP

AP (Π). Then, after the
problem has been made acyclic through τCP

AP , it is passed
to the τAP

SP module. Given a planning problem with acyclic
CEs Π′ as input, τAP

SP produces one without CEs, denoted as
Π′′ = τAP

SP (Π
′). The composition of these two modules, de-

noted by τ , constitutes the COCOA compilation process. Be-
low, the two modules are formalised.

Module τAP
SP Given Π = ⟨F,A, I,G⟩, τAP

SP produces the
problem τAP

SP (Π) = ⟨F ′, A′, I, G′⟩ where:

F ′ = F ∪
⋃
a∈A

{di,a | i ∈ {0, . . . , κa}} ∪ {pause}

A′ = Astart ∪Aend ∪ACE+ ∪ACE−

Astart =
⋃
a∈A

{astart = ⟨pre(a) ∪ {¬pause}, {⟨∅, {d0,a, pause}⟩}⟩}

Aend =
⋃
a∈A

{aend = ⟨{dκa,a}, {⟨∅, {¬dκa,a,¬pause}⟩}⟩}

ACE+ =
⋃
a∈A

ACE+
a ACE− =

⋃
a∈A

ACE−
a G′ = G ∪ {¬pause}.

Referring to ACE+ and ACE−, consider an action a ∈ A
and let ⟨ve1 , . . . , veκa

⟩ be a topological ordering of the κa

vertices of GT
a (where vei denotes a CE ei of a). ACE+

a has
an action a+ei for each vertex vei of GT

a such that

a+
ei = ⟨cond(ei) ∪ {di−1,a}, {⟨∅, eff(ei) ∪ {di,a,¬di−1,a}⟩}⟩.

ACE−
a contains the set of actions {alei | l ∈ cond(ei)}, one

for each literal, such that vei is a vertex of GT
a and

al
ei = ⟨{di−1,a,¬l}, {⟨∅, {di,a,¬di−1,a}⟩}⟩.

Module τCP
AP Given Π = ⟨F,A, I,G⟩, τCP

AP produces
τCP

AP (Π) = ⟨F ′, A′, I, G′⟩ where:

F ′ = F ∪
⋃
a∈A

{tp | p ∈ MFPS(a)} ∪
⋃
a∈A

{runa} ∪ {set}

A′ = {asetup | a ∈ A} ∪ {arun | a ∈ A}

G′ = G ∪ {¬set} ∪ {¬runa | a ∈ A}
pre(asetup) = pre(a) ∪ {¬set}

eff(asetup) =
⋃

p∈MFPS(a)

{⟨{p}, {tp}⟩, ⟨{¬p}, {¬tp}⟩}∪{⟨∅, {runa, set}⟩}

pre(arun) = {runa}

eff(arun) =
⋃

e∈post(a)

{⟨S(cond(e), a), eff(e)⟩} ∪ {⟨∅, {¬runa,¬set}⟩}

where S(C, a) is a function substituting in a set of literals
C each atom p ∈ MFPS(a) with the twin atom tp.

Enhancing Polynomial Compilations
This section discusses enhancements for existing polyno-
mial compilations. We introduce a new hybrid compilation,
merging the advantages of COCOA and the exponential ap-
proach by Gazen and Knoblock (1997) (hereafter referred
to as GKCOMP) while mitigating their weaknesses. Addi-
tionally, we explore the underlying optimisations of COCOA
focused on minimising the increase in plan size. These op-
timisations are examined to assess their impact from an ex-
perimental point of view later, providing a more precise de-
piction of the existing COCOA implementation. Regarding
NCOMP, being a theoretical compilation, we discuss a prac-
tical variant to establish a stronger baseline for comparison
with COCOA. This aims to better contextualise COCOA com-
pared to NCOMP and emphasise the structural differences
between the two compilations.

Hybrid Polynomial Compilation
The rationale behind the hybrid compilation is to develop a
scheme where a single action is compiled differently based
on its number of CEs, rather than applying the same trans-
formation to each action in the problem.

Let a be an action, and κa = |post(a)| its number of CEs.
Let K be a natural number serving as a discriminating fac-
tor between GKCOMP and COCOA. Intuitively, if an action
has many CEs (say κa > K), making GKCOMP infeasible,
it will be compiled polynomially using COCOA. Conversely,
if the action has a moderate number of CEs (say κa ≤ K),
it will be compiled exponentially using GKCOMP, thereby
avoiding unnecessary plan lengthening. Below we formalise
this compilation, but to facilitate the exposition, we intro-
duce an alternative notation for compactly representing the
compilation τ , borrowed from the one used by Nebel (2000).

Let Π = ⟨F,A, I,G⟩ be a planning problem with CEs.
The compilation τ associated with COCOA can be repre-
sented as a tuple of functions ⟨τF, τA, τI, τG⟩ such that

Π′ = τ(Π) = ⟨τF(F,A), τA(A), τI(I), τG(G)⟩,

where each function of the tuple refers to and acts upon, each
element of Π. For example, the function for manipulating
the atoms F is defined by combining the atoms generated
by τCP

AP and τAP
SP executed in sequence:

τF(F,A) =F ∪
⋃
a∈A

(
{tp | p ∈ MFPS(a)} ∪ {runa}

∪ {di,a | i ∈ {0, . . . , κa}}
)
∪ {set, pause}.

102

A similar methodology can be followed to define τA. As
for the initial state and the goal state, we have that τI = I
and τG = G ∪ {¬pause,¬set} ∪ {¬runa | a ∈ A}.

Furthermore, let η represent the GKCOMP compila-
tion. η is structured as a tuple of functions given by
⟨F, ηA(A), I, G⟩, where F , I and G are unchanged, while
ηA generates a set of actions, potentially exponential in the
worst-case scenario, following GKCOMP. (Intuitively, GK-
COMP compiles each action by generating all combinations
in which CEs can activate simultaneously.)

Now we define the hybrid compilation denoted by τK ,
incorporating elements from both COCOA and GKCOMP.
Given a planning problem Π = ⟨F,A, I,G⟩, we cate-
gorise the actions based on their number of CEs, resulting
in A = A≤K ∪ A>K , where A≤K = {a ∈ A | κa ≤ K}
and A>K = A \ A≤K . The translation τK comprises the
following tuple of functions:

Π′ = ⟨τF(F,A>K), η′A(A≤K) ∪ τA(A>K), τI(I), τG(G)⟩.

During the compilation process, the additional atoms are
generated only for actions having more than K CEs
(τF(F,A>K)). Actions are polynomially compiled if they
have more than K CEs (τA(A>K)). Conversely, actions with
K or fewer CEs are compiled exponentially according to
η′A(A≤K) = {⟨pre(a) ∪ {¬pause,¬set}, post(a)⟩ | a ∈
ηA(A≤K)}. The initial and goal states remain unchanged
relative to τ .

Despite including a module for exponential action compi-
lation, τK remains a polynomial scheme. This is because ηA
is only applied to actions with no more than K CEs. Con-
sequently, as the maximum number of CEs in A per single
action, denoted as nmax, increases, the size of Π′ = τK(Π)
grows polynomially in relation to nmax. This implementation
of τK will be called HCOCOAK .

COCOA Optimisations
In this section, we outline some native optimisations within
COCOA. These optimisations regard handling simple actions
(actions without CEs) and simple effects (CEs where the con-
dition is ∅). Further, we propose a new optimisation to han-
dle mutually exclusive CEs generated by the τCP

AP module.

Handling Simple Actions The verbatim version of
COCOA does not distinguish between simple actions and ac-
tions with CEs. Therefore, each action is compiled sequen-
tially even if it is simple. This redundant treatment of ac-
tions can be easily avoided by restricting the set of actions
to be compiled. Specifically, we partition the actions A as
Asim ∪ ACE, where Asim contains only the simple actions of
A and ACE the remaining ones. Now we can redefine τ as
τsimple = ⟨τF(F,ACE), τA(ACE) ∪ A′

sim, τI(I), τG(G)⟩ where
A′

sim = {⟨pre(a) ∪ {¬pause,¬set}, post(a)⟩ | a ∈ Asim}.

Avoiding Simple Effects Compilation In many domains,
it is common to have actions where both CEs and sim-
ple effects coexist. In such cases, we can further shorten
the compiled actions sequence. Specifically, without loss
of generality, let us assume that actions are normalised

in a standard form, i.e., all CEs sharing the same condi-
tion, empty or not, are grouped together; then, we can re-
shape a = ⟨pre(a), post(a)⟩ into a = ⟨pre(a), postCE(a) ∪
{⟨∅, effsimple(a)⟩}⟩. Let κa now be defined as κa =

|postCE(a)|. The compilation τAP
SP can be easily revised with

some adjustments. Specifically, the interference graph of
each action should be constructed using only postCE(a),
thus ignoring the simple effects. Since no CEs can inter-
fere with simple effects, they can be safely added to the
last action of the sequence associated with a, i.e., aend =
⟨{dκa,a}, {⟨∅, {¬dκa,a,¬pause} ∪ effsimple(a)⟩}⟩.

Mutexes Conditional Effects The τCP
AP module, as cur-

rently presented, may unnecessarily lengthen plans when
pipelined with τAP

SP . Specifically, let us consider an action a
that induces a cyclic graph GT

a . For each atom p ∈ MFPS(a),
the action asetup generated by τCP

AP encompasses two CEs
of the form e = ⟨{p}, {tp}⟩ and e′ = ⟨{¬p}, {¬tp}⟩
used to setup the twin atom tp. When asetup is compiled
by the τAP

SP module, four actions are generated for han-
dling p: {a+e , a+e′}, which are used when e and e′ are en-
tailed, and {ape, a

¬p
e′ }, which are used when they are not.

However, e and e′ are mutually exclusive. Therefore, if
a+e (a+e′) is applied, the only applicable action for e′ (e)
is a¬p

e′ (ape). By making τAP
SP aware that the CEs generated

by τCP
AP are mutually exclusive, it is possible to generate

a pair of actions for handling p instead of four. Namely,
a+p = ⟨{p, di−1,a}, {⟨∅, {tp,¬di−1,a, di,a}⟩}⟩ and a−p =
⟨{¬p, di−1,a}, {⟨∅, {¬tp,¬di−1,a, di,a}⟩}⟩. This improve-
ment can significantly impact the plan size in highly cyclic
problems that generate numerous twin atoms, halving the
length of the setup sequence induced by τAP

SP .
In the following, we will refer to the system without the

discussed enhancements as VANILLA, and we will denote
the fully equipped system with all optimisations as COCOA.
Example 1 (HCOCOAK Compilation). Consider the hybrid
compilation with K = 2, i.e., τ2. Let a1 be an action having
two CEs, i.e., post(a1) = {⟨{p1}, {p2}⟩, ⟨{p3}, {¬p4}⟩}.
Since κa1

≤ K, a1 undergoes the GKCOMP compilation,
generating the following four actions:

a11 = ⟨pre(a1) ∪ {p1, p3,¬pause,¬set}, {⟨∅, {p2,¬p4}⟩}⟩
a12 = ⟨pre(a1) ∪ {p1,¬p3,¬pause,¬set}, {⟨∅, {p2}⟩}⟩
a13 = ⟨pre(a1) ∪ {¬p1, p3,¬pause,¬set}, {⟨∅, {¬p4}⟩}⟩
a14 = ⟨pre(a1) ∪ {¬p1,¬p3,¬pause,¬set}, {⟨∅, ∅⟩}⟩.

Let a2 be an action having three CEs, i.e.,
post(a2) = {e1, e2, e3} where e1 = ⟨{p1}, {p2}⟩,
e2 = ⟨{p3,¬p2}, {p4,¬p1}⟩ and e3 = ⟨{p5}, {¬p3}⟩.
Since κa2 > K, a2 undergoes the COCOA compilation.
By using the definition of effect interference, we get that
e1 ▷ e2, e2 ▷ e1 and e3 ▷ e2. The first two graphs on the left
of Figure 1 show Ga2

and GT
a2

. Since GT
a2

is cyclic, it must
be preprocessed by τCP

AP and the minimum set of atoms to be
removed to make it acyclic is MFPS(a2) = {p1}. Therefore,
τCP

AP introduces the twin atom tp1
of p1 and splits a2 into

the actions {asetup
2 , arun

2 }. The action asetup
2 either adds or

deletes tp1
depending on the value of p1, using the new CEs

103

e3 e1

e2 e3 e′1

e2

e4 e5

e3 e1

e2

interferes

Ga2 GT
a2

GT
a

setup
2

GT
arun
2

Figure 1: Overview of the compilation process of a2. (left)
Ga2

, (center) GT
a2

, (right) Gasetup
2

and Garun
2

. The arrow be-
tween two vertices in Ga2

represents effect-interference.
The last two graphs are connected as the two actions must
be executed sequentially.

e4 and e5. This happens before the execution of arun
2 . The

definition of this action is:

asetup
2 =⟨pre(a2) ∪ {¬set}, {e4, e5, ⟨∅, {runa2 , set}⟩}⟩,

where e4 = ⟨{p1}, {tp1
}⟩ and e5 = ⟨{¬p1}, {¬tp1

}⟩.
The action arun

2 is responsible for evaluating and execut-
ing the CEs of a2. It is defined as:

arun
2 =⟨{runa2

, set}, {e′1, e2, e3, ⟨∅, {¬runa2
,¬set}⟩}⟩,

where e2 and e3 remain unchanged and e1 is replaced by
e′1 = ⟨{tp1}, {p2}⟩.

Once acyclicity has been achieved, the CEs can be com-
piled using τAP

SP . In particular, the last two graphs on
the right in Figure 1 depict GT

asetup
2

and GT
arun
2

. From these
graphs the interference-free topological orderings ⟨e4, e5⟩
and ⟨e2, e3, e′1⟩ are extracted. For brevity, we show how
⟨e2, e3, e′1⟩ is used to generate the compiled actions for arun

2
(for simplicity relabelled as a):

astart = ⟨{runa, set,¬pause}, {⟨∅, {d0,a, pause}⟩}⟩
a+e2 = ⟨{p3,¬p2, d0,a}, {⟨∅, {p4,¬p1,¬d0,a, d1,a}⟩}⟩
ap3
e2 = ⟨{¬p3, d0,a}, {⟨∅, {¬d0,a, d1,a}⟩}⟩

a¬p2
e2 = ⟨{p2, d0,a}, {⟨∅, {¬d0,a, d1,a}⟩}⟩
a+e3 = ⟨{p5, d1,a}, {⟨∅, {¬p3,¬d1,a, d2,a}⟩}⟩
ap5
e3 = ⟨{¬p5, d1,a}, {⟨∅, {¬d1,a, d2,a}⟩}⟩
a+e′1

= ⟨{tp1
, d2,a}, {⟨∅, {p2,¬d2,a, d3,a}⟩}⟩

a
tp1
e′1

= ⟨{¬tp1 , d2,a}, {⟨∅, {¬d2,a, d3,a}⟩}⟩

aend = ⟨{d3,a}, {⟨∅, {¬d3,a,¬runa,¬set,¬pause}⟩}⟩.

According to the optimisation concerning mutexes CEs gen-
erated by τCP

AP , e4 and e5 are compiled into two mutexes ac-
tions instead of four. Note that the simple effects of arun

2 have
been appended to the end of the sequence in the aend action.

A Practical Implementation of NCOMP
NCOMP is a theoretical compilation provided as a side-effect
for demonstrating that a problem with CEs can be compiled
in polynomial time while preserving plan size polynomially

(Nebel 2000, Theorems 20-22). Therefore, NCOMP should
be considered a theoretical construct rather than a practical
compilation tool. This section describes how NCOMP can
be adapted for practical application. The resulting scheme is
referred to as NCOMP⋆.

Size of the Encoding NCOMP uses several additional
atoms that must be deleted every time a sequence associated
with an action is concluded. Specifically, they are deleted
both in apre

i and ac. Since there is an action apre
i for each

action in the input problem, this results in an inflation of
the resulting problem. Therefore, the atoms deletion can be
moved to ac, producing a lightweight problem.

Parallelisation of the CEs Evaluation NCOMP assumes
that the CEs have the form ⟨C, {l}⟩. As a result, if there
is a CE ⟨C,L⟩, where L is not a singleton, the evalua-
tion phase will contain one action for each literal in L. In-
stead, NCOMP⋆ handles the evaluation of the CEs in parallel.
Therefore, in the case of non-singleton effects, there will be
only one action in exec-phase instead of |L|.

Enforcing an Ordering The action sequence outlined in
Equation 1 allows for various orderings while achieving the
same state outcome. Specifically, the actions within the eval-
uation and execution phases can be reordered. Given that the
separation of evaluation and executive phases eliminates the
possibility of interferences between CEs, it is possible to en-
force an absolute and arbitrary ordering for the actions in
the eval-phase. However, this is impossible for the execu-
tive phase due to its variable length.

Experimental Analysis
The experimental section is structured in two parts. The
first part evaluates the impact of the proposed optimisations.
In particular, the behaviour of HCOCOAK is studied as K
varies. Next, we evaluate the impact of the optimisations
implemented in COCOA and NCOMP. In the second part,
we systematically compare the native and compilation-based
approaches, considering all the discussed compilations.

Similar to the approach by Gerevini, Percassi, and Scala
(2024), the focus is on the optimal setting, as in this con-
text CEs are less supported. Moreover, we utilised the
same benchmark suite, which includes domains collected
from various sources: the Fast Downward benchmark col-
lection (https://github.com/aibasel/downward-benchmarks)
and problems generated by conformant-to-classical plan-
ning compilations (Palacios and Geffner 2009; Grastien
and Scala 2017), identified by the prefixes T0 and CPCES.
Moreover, the domains used by Röger, Pommerening, and
Helmert (2014) are included.

Each test run in our experiment involves a planner, a com-
pilation method, and a planning problem from the bench-
mark suite. Each run first compiles the problem and then
sends the output to an off-the-shelf planner. If a problem is
given directly to a planner without compilation, it is labelled
as PLAIN. We allocated a runtime budget of 1,800 seconds
(compilation plus solving), 8 GB of memory, and 2 GB
of disk space. The experiments ran on an Intel Xeon Gold

104

2 4 6 8

K

0.31

0.32

0.33

0.34

0.35

C
ov

er
ag

e
(%

)
A⋆(hmax)

2 4 6 8

K

0.375

0.400

0.425

0.450

0.475

0.500

C
ov

er
ag

e
(%

)

A⋆(hLM-cut)

HCOCOAK

COCOA

GKCOMP

Figure 2: Percentage of problems solved by HCOCOAK as
K varies in {2, 4, 8}, COCOA and GKCOMP, considering
A⋆(hmax) and A⋆(hLM-cut).

6140M CPU at 2.30 GHz. The compilation tool is available
at https://gitlab.com/EdmondDantes/cocoa2.0.

Rational Behind the Planners Choice We considered
two classes of optimal planners. The first class comprises
A⋆ (Hart, Nilsson, and Raphael 1968) run either with hLM-cut

(Helmert and Domshlak 2009), i.e., A⋆(hLM-cut), or with
hmax (Haslum and Geffner 2000), i.e., A⋆(hmax). These sys-
tems are employed in the first part of the experimental eval-
uation, concerning the optimisation assessment, aiming to
maintain a controlled setting. Notably, hmax natively sup-
ports CEs while, regarding hLM-cut, we utilised the CEs-aware
variant when PLAIN problems are addressed (Röger, Pom-
merening, and Helmert 2014).

In the planning systems comparison, we selected two
planners to favour both the compilation-based and native
approaches. For the compilation-based approach, we chose
METIS2 (Domshlak, Katz, and Shleyfman 2012; Alkhazraji
et al. 2014; Shleyfman et al. 2015; Sievers and Katz 2018)
because it has demonstrated effectively handling compiled
problems, regardless of the scheme used (Gerevini, Percassi,
and Scala 2024) On the native side instead, we opted for
SYMK (Speck et al. 2019; Speck, Mattmüller, and Nebel
2020; Speck 2023), a top-k planner based on symbolic
search that natively supports a wide range of planning fea-
tures, including CEs. As recommended by the authors, we
utilised the bidirectional symbolic search configuration to
find a single optimal plan. All the systems considered so far
are based on Fast Downward (Helmert 2006).

Enhancements Evaluation
Hybrid COCOA This section evaluates the performance
of HCOCOAK by varying the parameter K to find the
threshold that maximises its behaviour. We examined K ∈
{2, 4, 8}. Figure 2 shows the percentage of problems solved
as K changes. To highlight the benefits of hybrid com-
pilation, we compared HCOCOAK with its components,
COCOA and GKCOMP. In all cases, HCOCOAK outper-
formed its individual compilations, especially when paired
with A⋆(hLM-cut). The curve’s trend varies with the heuristic,
but the optimal value for K seems to be between two and
four.

COCOA

V
A

N
IL

L
A

Expanded Nodes - log10

A⋆(hmax)

A⋆(hLM-cut)

100 101 102 103

COCOA

100

101

102

103

Runtime (seconds) - log10

100 101 102 103

COCOA

100

101

102

103

Runtime (seconds) - log10

Figure 3: Comparison between VANILLA and COCOA re-
garding expanded nodes and runtime, considering A⋆(hmax)
and A⋆(hLM-cut). Points above the bisector favour COCOA,
and points on the edges correspond to unsolved instances.
The first two figures refer to the default run obtained with
Fast Downward, while the third one refers to the run where
invariant generation has been disabled.

COCOA In this section, we assess the impact of the opti-
misations in COCOA compared to its verbatim implementa-
tion, VANILLA. The first two plots on the left side of Fig-
ure 3 compare the two compilations paired with A⋆, focus-
ing on the expanded nodes and runtime. As expected, the
optimisations integrated into COCOA yield favourable re-
sults regarding expanded nodes, with most data points posi-
tioned above the bisector. However, the runtime plot reveals
a mixed scenario, with VANILLA often exhibiting faster per-
formance. Further investigation into the logs revealed that
this difference originates from the invariant generation pro-
cess in Fast Downward. While this process is generally use-
ful (Alcázar and Torralba 2015), it produces too many candi-
dates in grounded instances like the ones being considered.

To delve deeper, we disabled the invariant generation and
experimented again. The runtime comparison without in-
variant generation is shown in the third plot on the right in
Figure 3. The results indicate that, in this benchmark, invari-
ant generation does not improve performance and may even
hinder it. Notably, the system’s coverage slightly decreases
when computing invariants, such as in A⋆(hmax), in which it
drops from 544 to 529.

NCOMP⋆ In this section, we evaluate the benefits of the
optimised variant NCOMP⋆ compared to its original imple-
mentation. We consider various aspects influenced by the
discussed enhancements: encoding size, plan size, expanded
nodes, and runtime.

Figure 4 summarises the results obtained through scatter
plots and a box plot. For encoding size, we analysed all com-
monly compiled instances. Regarding the plan size, we fo-
cused on instances commonly solved by A⋆(hLM-cut) to avoid
redundancy.

The optimisations introduced by NCOMP⋆ significantly
impact all the considered metrics. For example, encoding
size for the largest cases can decrease by as much as two
orders of magnitude. Regarding plan size, evaluating CEs
in parallel reduces it by an average of 35%. In the worst
case, NCOMP produces a plan of around 3,000 actions, while
NCOMP⋆ plan has only 158 actions. Similar trends are ob-
servable for expanded nodes and runtime.

105

Figure 2: Percentage of problems solved by HCOCOAK as
K varies in {2, 4, 8}, COCOA and GKCOMP, considering
A⋆(hmax) and A⋆(hLM-cut).

METIS2 (????) because it has demonstrated effectively han-
dling compiled problems, regardless of the scheme used (?)
On the native side instead, we opted for SYMK (???), a top-
k planner based on symbolic search that natively supports a
wide range of planning features, including CEs. As recom-
mended by the authors, we utilised the bidirectional sym-
bolic search configuration to find a single optimal plan. All
the systems considered so far are based on Fast Downward
(?).

Enhancements Evaluation
Hybrid COCOA This section evaluates the performance
of HCOCOAK by varying the parameter K to find the
threshold that maximises its performance. We examined
K ∈ {2, 4, 8}. Figure 2 shows the percentage of prob-
lems solved as K changes. To highlight the benefits of hy-
brid compilation, we compared HCOCOAK with its com-
ponents, COCOA and GKCOMP. In all cases, HCOCOAK

outperformed its individual compilations, especially when
paired with A⋆(hLM-cut). The curve’s trend varies with the
heuristic, but the optimal value for K seems to be between
two and four.

COCOA In this section, we assess the impact of the opti-
misations in COCOA compared to its verbatim implementa-
tion VANILLA. The first two plots on the left side of Figure
3 compare the two compilations paired with A⋆, focusing on
the number of expanded nodes and runtime. As expected, the
optimisations integrated into COCOA yield favourable re-
sults regarding expanded nodes, with most data points posi-
tioned above the bisector. However, the runtime plot reveals
a mixed scenario, with VANILLA often exhibiting faster per-
formance. Further investigation into the logs revealed that
this difference originates from the invariant generation pro-
cess within Fast Downward. This process, useful in general
(?), generates too many candidates in grounded instances
like the ones under consideration.

For a deeper analysis, we disabled the invariant genera-
tion and experimented again. The runtime comparison with-
out invariant generation is shown in the third plot on the
right in Figure 3. The results indicate that, for this bench-
mark, invariant generation does not improve performance
and may even hinder it. Notably, the coverage of systems
slightly decreases with the computation of invariants, such
as in A⋆(hmax), where it decreases from 544 to 529.

NCOMP⋆ In this section, we evaluate the benefits of the
optimised variant NCOMP⋆ compared to its original imple-
mentation. We consider various dimensions affected by the
discussed enhancements: encoding size, plan size, expanded
nodes, and runtime.

Figure 4 summarises the results obtained through scatter
plots and a whisker plot. Regarding the encoding size, we
analysed all instances commonly compiled. Regarding the

Figure 3: Comparison between VANILLA and COCOA re-
garding expanded nodes and runtime, considering A⋆(hmax)
and A⋆(hLM-cut). Points above the bisector favour COCOA,
and points on the edges correspond to unsolved instances.
The first two figures refer to the default run obtained with
Fast Downward, while the third one refers to the run where
invariant generation has been disabled.

10−3 10−2 10−1 100 101 102 103

NCOMP⋆

10−3

10−2

10−1

100

101

102

103

N
C

O
M

P
Encoding Size (MB) - log10

NCOMP⋆ NCOMP

0

200

400

600

800
Plan Size

100 101 102 103 104 105 106

NCOMP⋆

100

101

102

103

104

105

106

N
C

O
M

P

Expanded Nodes - log10

A⋆(hLM-cut)

A⋆(hmax)

100 101 102 103

NCOMP⋆

100

101

102

103

N
C

O
M

P
Runtime (seconds) - log10

Figure 4: Comparison between NCOMP⋆ and NCOMP re-
garding encoding size (top-left), plan length (top-right), ex-
panded nodes (bottom-left), and runtime (bottom-right) for
A⋆(hmax) and A⋆(hLM-cut). Points above the bisector favour
NCOMP⋆, and points on the edges correspond to unsolved
instances.

plan length, we focused on instances commonly solved by
A⋆(hLM-cut) to avoid redundancy. The optimisations intro-
duced by NCOMP⋆ significantly impact all the considered
metrics. For example, the encoding size for the largest cases
can decrease by as much as two orders of magnitude. Re-
garding the plan size, evaluating CEs in parallel reduces plan
length on average by 35%. In the worst case, NCOMP gener-
ates a plan of around 3,000 actions, while NCOMP⋆’s plan is
only 158 actions. Similar trends are observable concerning
the expanded nodes and runtime.

Planning Systems Comparison
In this section, we compare the compilation-based ap-
proach with those that natively support CEs (referred to as
PLAIN) across two full-fledged planning systems. Regarding
HCOCOAK , we included two variants based on κ ∈ {2, 3}
as suggested by the previous experiments. It is worth re-
membering that, in our experiments, A⋆(hLM-cut) achieved
good coverage on the PLAIN formulation, although lower

Figure 4: Comparison between NCOMP⋆ and NCOMP re-
garding encoding size (top-left), plan size (top-right), ex-
panded nodes (bottom-left), and runtime (bottom-right) for
A⋆(hmax) and A⋆(hLM-cut). Points above the bisector favour
NCOMP⋆, and points on the edges correspond to unsolved
instances.

Planning Systems Comparison
This section compares the compilation-based approach with
those that natively support CEs, referred to as PLAIN, across
two full-fledged planning systems. For HCOCOAK , we in-
cluded two variants with K ∈ {2, 3}, as suggested by pre-
vious experiments. Notably, according to our experiments,
A⋆(hLM-cut) achieved good coverage on the PLAIN formu-
lation, though lower than that achieved by SYMK (828 vs.
892). Therefore, it was not included in this analysis.

Table 1 shows the coverage achieved by each system with
a given problem formulation.2 The first notable result is that
the combined use of HCOCOA2 with METIS2 achieves per-
formance comparable to that of SYMK on PLAIN problems,
with a coverage of 905 compared to 892.

The scatter plot in Figure 5 (left) illustrates the runtime
between the two systems and highlights a significant de-
gree of complementarity. Specifically, METIS2 ◦ HCOCOA2

solves 105 problems that SYMK◦PLAIN fails to solve, while
SYMK ◦ PLAIN solves 98 cases that METIS2 ◦ HCOCOA2

does not. Interestingly, despite the drawback of polynomial
compilation, which is partially mitigated by the GKCOMP
module, HCOCOA2 exhibits slightly better runtime perfor-
mance, as indicated by the data points that tend to lie above
the bisector. Regarding METIS2, HCOCOA2 seems faster
than PLAIN as it achieves higher coverage. However, PLAIN

2All the plans generated on the compiled problems are validated
against the original formulation.

10−1 100 101 102 103

METIS2◦HCOCOA2

10−1

100

101

102

103

S
Y

M
K
◦P

L
A

IN

Runtime (seconds) - log10

10−1 100 101 102 103

HCOCOA2

10−1

100

101

102

103

P
L

A
IN

Runtime (seconds) - log10
METIS2
SYMK

Figure 5: Runtime comparison between METIS2 ◦
HCOCOA2 and SYMK ◦ PLAIN (left). Runtime comparison
between HCOCOA2 and SYMK for METIS2 and PLAIN
(right). Points above the bisector favour the approach on
the x-axis, while points on the edges indicate unsolved
instances.

is hindered by Fast Downward’s preprocessing issue. Ob-
serving the scatter plot in Figure 5 (right), which shows the
runtime for HCOCOA2 and PLAIN combined with METIS2,
it appears that the native approach tends to be faster. Gen-
erally speaking, when using the same planning system, the
native approach outperforms the polynomial compilation, as
the latter bears the burden of lengthened plans. Indeed, the
same trend is observed when comparing the performance of
SYMK with PLAIN and HCOCOA2.

The results obtained within the polynomial schemes align
with the discussions in previous sections. Regarding hybrid
compilation, the choice of K that maximises coverage varies
depending on the system. Furthermore, upon closer exami-
nation of the results, it can be observed that varying K can
lead to higher coverage in certain domains while reducing it
in others. For instance, when using METIS2 with K = 3,
10 additional instances are solved in CPCES-UTS compared
to K = 2, though coverage decreases in other domains.
This lack of dominance suggests room for smarter, instance-
specific strategies for selecting K.

Moreover, regardless of the planner used, HCOCOAK im-
proves the performance of COCOA. The improvement is
more pronounced in SYMK (around +12% coverage) than
in METIS2 (around +5% coverage). There are also interest-
ing observations regarding NCOMP⋆ versus NCOMP. Specif-
ically, both planners show notable improvement, increasing
coverage by +80% for SYMK and +36% for METIS2.

However, despite the significant increase in coverage,
these gains are not enough to compete with COCOA-based
approaches, GKCOMP, and native methods. This finding re-
inforces the idea that COCOA-based approaches have char-
acteristics that go beyond simple optimisations of NCOMP,
allowing polynomial compilations to remain competitive.

Finally, Figure 6 illustrates the coverage over time for
METIS2 combined with all the discussed compilations and
the system SYMK ◦ PLAIN. The VBS (Virtual Best Solver)
was achieved by combining the best of both the compiled
and native approaches, specifically METIS2◦HCOCOA2 and
SYMK◦PLAIN, to demonstrate the complementarity of these

106

Domain (no. of instances) SYMK METIS2
V C H2 H3 N N⋆ G P V C H2 H3 N N⋆ G P

AIRPORT (50) 17 20 20 20 0 2 3 20 25 27 27 27 7 14 3 0
ASSEMBLY (30) 11 16 17 17 0 0 17 12 4 4 4 4 0 0 4 0
BRIEFCASE (50) 6 7 7 6 3 2 7 8 6 6 6 6 6 2 7 9
CALD-OPT (20) 8 8 12 12 0 4 12 9 11 13 16 16 4 6 16 15
CALD-SAT (20) 2 2 4 4 0 0 4 2 4 4 6 6 0 0 6 5
CALD-SPLIT-OPT (20) 8 14 14 14 0 0 14 11 9 11 11 10 2 4 11 11
CALD-SPLIT-SAT (20) 2 5 6 6 0 0 6 6 2 3 3 3 0 0 4 4
CITYCAR-OPT (20) 10 18 18 17 0 0 17 18 15 13 13 9 2 8 18 18
CITYCAR-SAT (20) 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 3
MICONIC (150) 79 141 150 150 27 43 150 150 132 142 143 143 45 77 144 144
NURIKABE-OPT (20) 10 10 10 10 0 1 10 12 10 10 10 10 2 4 10 12
NURIKABE-SAT (20) 4 5 4 4 0 0 3 7 4 5 5 5 0 0 5 6
SCHEDULE (150) 22 14 15 21 0 5 7 45 26 26 23 18 17 12 13 44
T0-COINS (30) 10 11 15 15 5 5 17 17 0 13 12 13 12 12 15 15
T0-COMM (25) 6 7 7 7 2 0 14 15 0 3 4 4 3 0 6 6
T0-GRID-DISPOSE (15) 1 1 1 1 0 0 0 2 2 3 1 1 2 0 0 0
T0-GRID-PUSH (5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T0-SORTNET-ALT (6) 3 3 3 3 1 1 1 2 1 3 3 3 1 1 0 1
T0-UTS (29) 5 5 5 5 3 4 4 6 0 5 5 5 4 3 4 6
CPCES-BLOCKS (47) 15 15 15 16 6 8 16 12 18 18 18 17 11 11 13 0
CPCES-BOMB (180) 113 130 160 160 8 21 102 170 136 161 180 180 51 69 102 89
CPCES-COINS (94) 53 56 64 66 9 18 71 76 66 66 69 71 37 34 66 60
CPCES-DISP (190) 128 141 147 152 6 19 103 156 167 178 180 176 40 63 103 94
CPCES-ONE-DISP (181) 91 95 96 97 18 32 78 102 115 118 118 110 48 53 57 54
CPCES-UTS (216) 25 25 34 35 12 15 35 33 28 28 48 58 22 22 79 0

Σ (1608) 629 750 825 839 100 180 692 892 782 860 905 895 316 395 687 596

Table 1: Coverage for all planners under different problem formulations. V stands for VANILLA, C for COCOA, HK for
HCOCOAK , N for NCOMP, N⋆ for NCOMP⋆, G for GKCOMP, and P for PLAIN. Bold indicates the best result in a given
planning system, while underlined bold represents the best result across all planning systems and problem formulations.

two methods. This visualisation depicts the dominance hier-
archy among the compilations, from NCOMP to HCOCOAK ,
and highlights the degree of complementarity between the
top-performing planning systems.

Summary
The experimental analysis yielded the following findings in
optimal planning with CEs. (i) Simple optimisations of poly-
nomial compilations can have significant experimental im-
pacts. (ii) METIS2 ◦ HCOCOA2 achieves performance com-
parable to SYMK, a versatile planner that robustly supports
CEs. (iii) The optimised variant of NCOMP is still not com-
petitive compared to COCOA-based approaches, indicating
that leveraging the structure of CEs is crucial for achieving
good performance.

Conclusions
In this article, we proposed and empirically assessed opti-
mised variants of existing polynomial compilation for con-
ditional effects. Specifically, we introduced a novel hybrid
compilation approach that combines the strengths of COCOA
and GKCOMP. This scheme selectively applies GKCOMP
to actions with a limited number of conditional effects,
avoiding unnecessary increases in plan size. Conversely, ac-
tions with several conditional effects undergo polynomial
compilation, avoiding the exponential blowup. The result-
ing scheme remains polynomial because an input parameter
bounds the exponential module.

0 500 1000 1500
Time (seconds)

0

200

400

600

800

1000

C
ov

er
ag

e

MET2◦HCOCOA2

MET2◦HCOCOA3

MET2◦COCOA

MET2◦VANILLA

MET2◦GKCOMP

MET2◦NCOMP⋆

MET2◦NCOMP

SYMK◦PLAIN

VBS

Figure 6: Coverage over time for all compilations combined
with METIS2 and SYMK ◦ PLAIN. The VBS (Virtual Best
Solver) is achieved by combining METIS2 ◦ COCOA2 and
SYMK ◦ PLAIN.

The hybrid compilation also outperforms its stand-alone
modules and competes with a state-of-the-art planning sys-
tem that natively handles conditional effects. We discuss
enhancements to COCOA, showing how minor tweaks can
significantly boost the compilation, suggesting potential for
even more advanced techniques. Additionally, we present a
practical version of Nebel’s compilation to provide clearer
insights into COCOA’s unique features. In future work, we
plan to extend COCOA to handle conflicting conditional ef-
fects and explore the satisficing context experimentally.

107

Acknowledgments
Francesco Percassi was supported by a UKRI Future Lead-
ers Fellowship [grant number MR/T041196/1]. Enrico Scala
and Alfonso Gerevini were supported by Climate Change
AI project (No. IG-2023-174), EU H2020377 project AI-
Plan4EU (No. 101016442), and MUR PRIN project RIPER
(No. 20203FFYLK). Alfonso Gerevini was also supported
by EU ICT-48 2020 project TAILOR (No. 952215).

References
Alcázar, V.; and Torralba, A. 2015. A Reminder About the
Importance of Computing and Exploiting Invariants in Plan-
ning. In Proc. of ICAPS, volume 25, 2–6.
Alkhazraji, Y.; Katz, M.; Matmüller, R.; Pommerening, F.;
Shleyfman, A.; and Wehrle, M. 2014. Metis: Arming Fast
Downward with Pruning and Incremental Computation. IPC
2014 Planner Abstracts, 88–92.
Bonassi, L.; De Giacomo, G.; Favorito, M.; Fuggitti, F.;
Gerevini, A. E.; and Scala, E. 2023. FOND Planning for
Pure-Past Linear Temporal Logic Goals. In ECAI 2023,
279–286.
Bonassi, L.; Gerevini, A. E.; Percassi, F.; and Scala, E. 2021.
On Planning with Qualitative State-Trajectory Constraints in
PDDL3 by Compiling them Away. In Proc. of ICAPS, 46–
50.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
Derivation of Memoryless Policies and Finite-State Con-
trollers Using Classical Planners. In Proc. of ICAPS, 34–41.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-black
planning: A new systematic approach to partial delete relax-
ation. Artif. Intell., 221: 73–114.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. Enhanced
Symmetry Breaking in Cost-Optimal Planning as Forward
Search. In Proc. of ICAPS.
Gazen, B. C.; and Knoblock, C. A. 1997. Combining the
Expressivity of UCPOP with the Efficiency of Graphplan.
In Proc. of ECP, 221–233.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
Through Stochastic Local Search and Temporal Action
Graphs in LPG. J. Artif. Intell. Res., 20: 239–290.
Gerevini, A. E.; Percassi, F.; and Scala, E. 2024. An Effec-
tive Polynomial Technique for Compiling Conditional Ef-
fects Away. In Proc. of AAAI, 20104–20112.
Gigante, N.; and Scala, E. 2023. On the Compilability of
Bounded Numeric Planning. In Proc. of IJCAI, 5341–5349.
Grastien, A.; and Scala, E. 2017. Intelligent Belief State
Sampling for Conformant Planning. In Proc. of IJCAI,
4317–4323.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Trans. Syst. Cybern., 4(2): 100–107.
Haslum, P.; and Geffner, H. 2000. Admissible Heuristics for
Optimal Planning. In Proc. of AIPS, 140–149.
Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res., 26: 191–246.

Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proc. of ICAPS, volume 19, 162–169.
Katz, M.; and Hoffmann, J. 2014. Mercury Planner: Pushing
the Limits of Partial Delete Relaxation. IPC 2014 Planner
Abstracts, 43–47.
Keyder, E. R.; Hoffmann, J.; and Haslum, P. 2012. Semi-
Relaxed Plan Heuristics. In Proc. of AAAI, 128–136.
Lipovetzky, N.; and Geffner, H. 2017. Best-First Width
Search: Exploration and Exploitation in Classical Planning.
In Proc. of AAAI, 3590–3596.
Mattmüller, R.; Geißer, F.; Wright, B.; and Nebel, B. 2018.
On the Relationship Between State-Dependent Action Costs
and Conditional Effects in Planning. In Proc. of AAAI,
6237–6245.
Nebel, B. 2000. On the Compilability and Expressive Power
of Propositional Planning Formalisms. J. Artif. Intell. Res.,
12: 271–315.
Palacios, H.; and Geffner, H. 2009. Compiling Uncertainty
Away in Conformant Planning Problems with Bounded
Width. J. Artif. Intell. Res., 35: 623–675.
Pednault, E. P. D. 1989. ADL: Exploring the Middle Ground
Between STRIPS and the Situation Calculus. In Proc. of KR,
324–332.
Percassi, F.; and Gerevini, A. E. 2019. On Compiling
Away PDDL3 Soft Trajectory Constraints without Using
Automata. In Proc. of ICAPS, 320–328.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks. J.
Artif. Intell. Res., 39: 127–177.
Röger, G.; Pommerening, F.; and Helmert, M. 2014. Op-
timal Planning in the Presence of Conditional Effects: Ex-
tending LM-Cut with Context Splitting. In Proc. of ECAI,
765–770.
Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and
Wehrle, M. 2015. Heuristics and Symmetries in Classical
Planning. In Proc. of AAAI, 3371–3377.
Sievers, S.; and Katz, M. 2018. Metis 2018. IPC 2018 Plan-
ner Abstracts, 83–84.
Speck, D. 2023. SymK–A Versatile Symbolic Search Plan-
ner. IPC 2023 Planner Abstracts.
Speck, D.; Geißer, F.; Mattmüller, R.; and Torralba, Á. 2019.
Symbolic Planning with Axioms. In Proc. of ICAPS, 464–
472.
Speck, D.; Höft, P.; Gnad, D.; and Seipp, J. 2023. Finding
Matrix Multiplication Algorithms with Classical Planning.
In Proc. of ICAPS, 411–416.
Speck, D.; Mattmüller, R.; and Nebel, B. 2020. Symbolic
Top-k Planning. In Proc. of AAAI, 9967–9974.
Wehrle, M.; and Rintanen, J. 2007. Planning as Satisfiabil-
ity with Relaxed $-Step Plans. In Australian Conference on
Artificial Intelligence, volume 4830, 244–253.
Wright, B.; Mattmüller, R.; and Nebel, B. 2018. Compiling
Away Soft Trajectory Constraints in Planning. In Proc. of
KR, 474–483.

108

