
Curriculum Generation for Learning Guiding Functions
in State-Space Search Algorithms

Sumedh Pendurkar1, Levi H.S. Lelis2, 3, Nathan R. Sturtevant2, 3, Guni Sharon1

1Department of Computer Science and Engineering, Texas A&M University
2Department of Computing Science, University of Alberta

3 Alberta Machine Intelligence Institute (Amii)
sumedhpendurkar@tamu.edu, levi.lelis@ualberta.ca, nathanst@ualberta.ca, guni@tamu.edu

Abstract

This paper investigates methods for training parameterized
functions for guiding state-space search algorithms. Exist-
ing work commonly generates data for training such guiding
functions by solving problem instances while leveraging the
current version of the guiding function. As a result, as train-
ing progresses, the guided search algorithm can solve more
difficult instances that are, in turn, used to further train the
guiding function. These methods assume that a set of prob-
lem instances of varied difficulty is provided. Since previous
work was not designed to distinguish the instances that the
search algorithm can solve from those that cannot be solved
with the current guiding function, the training method com-
monly wastes time attempting and failing to solve many of
these instances. In this paper, we improve upon these training
methods by generating a curriculum for learning the guiding
function that directly addresses this issue. Namely, we pro-
pose and evaluate a Teacher-Student Curriculum (TSC) ap-
proach where the teacher is an evolutionary strategy that at-
tempts to generate problem instances of “correct difficulty”
and the student is a guided search algorithm utilizing the cur-
rent guiding function. The student attempts to solve the prob-
lem instances generated by the teacher. We conclude with
experiments demonstrating that TSC outperforms the current
state-of-the-art Bootstrap Learning method in three represen-
tative benchmark domains with respect to the time required
to solve all instances of the test set.

1 Introduction
This paper considers deterministic single-agent state-space
search problems (referred to as search problems). Specifi-
cally, we focus on state-space search algorithms (referred to
as search algorithms) which are guided by a function, de-
noted guiding function. This function is designed to guide
a search algorithm to efficiently find a start-to-goal path in
a given search space (e.g., a heuristic function). Existing
work (Agostinelli et al. 2019; Orseau and Lelis 2021) uses
machine learning based methods to train a parameterized
guiding function and couple them with search algorithms.
We refer to such algorithms as guided search algorithms.

Guided search algorithms have demonstrated state-of-the-
art performance in several domains (Agostinelli et al. 2019;

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Orseau and Lelis 2021). Such algorithms can be roughly di-
vided into two categories, namely, heuristic-based (Arfaee,
Zilles, and Holte 2010; McAleer et al. 2018; Agostinelli
et al. 2019, 2021) and policy-based (Orseau et al. 2018).
Another way to characterize existing work is based on how
the training/learning is performed. Learning is performed of-
fline if the trained function is not used to obtain new training
data (McAleer et al. 2018; Agostinelli et al. 2019, 2021).
Similarly, learning is performed online if the training is a
progressive procedure that interleaves between solving new
instances and using the results to further train the func-
tion (Arfaee, Zilles, and Holte 2010; Orseau and Lelis 2021).

Previous online guided search algorithms commonly rely
on a learning method referred to as Bootstrap Learning in-
troduced by Arfaee, Zilles, and Holte (2010). This learning
method requires a set of problem instances provided by the
user. The set of problem instances should be varied in diffi-
culty, that is, it should contain problem instances that range
from “easy” to solve by the search algorithm to “difficult”
to solve. However, attempting to solve “difficult” instances
with a guided search algorithm when the guiding function
is not well trained might not be feasible. Consequently, at-
tempting to solve difficult instances using a poorly trained
guiding function often fails, and thus does not produce train-
ing data to further train the guiding function. Additionally, it
might also significantly slow the training process. As such,
providing an ordered set of problem instances of “correct
difficulty” can potentially help speed up the training process.

The aim of this paper is to improve the Bootstrap Learn-
ing method by introducing curriculum generation methods
that address the gap discussed above. Specifically, we pro-
pose a learning method referred to as Teacher-Student Cur-
riculum (TSC) inspired by similar methods in the reinforce-
ment learning literature (Matiisen et al. 2019; Narvekar et al.
2020). The objective of the teacher is to generate “eas-
ier” instances at early training stages, and gradually gen-
erate “more difficult” instances following improved perfor-
mance of the guided search algorithm. We use the num-
ber of random steps (i.e., length of random walk) from the
goal as a proxy of the resulting search problem instance dif-
ficulty. Our experimental results show that TSC achieves
7.5 to 31 times faster training compared to the state-of-
the-art Bootstrap Learning method when coupled with three
guided search algorithms in three representative benchmark

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

91

domains. We also provide a scaling study that demonstrates
a clear advantage for using our TSC approach as the com-
plexity of search problems scales upwards. 1

2 Preliminaries
First, we formally describe the state-space search problem
along with the definitions related to the search algorithms.
Next, we define the formal objective of the learning meth-
ods. Finally, we describe the existing Bootstrap Learning
method and an enhanced version of a random walk based
learning method.

2.1 State-Space Search Terminology
A state-space search problem Q is given by ⟨S,A, T ⟩ and
a problem instance P is a (s0, g) pair that is coupled with a
search problem Q where

• S is the discrete state space
• A is the discrete action space
• T : S × A → S is a deterministic transition function.
T (s, a) is the state that is a result of taking action a from
state s.

• s0 is the initial state, s0 ∈ S

• g is the goal state, g ∈ S

A solution is a sequence of state-action pairs
{(si, ai)}i∈[0...n] such that T (si, ai) = si+1 and
T (sn, an) = g. The solution length is the number of
state-action (s, a) pairs in the solution.2 A state, s, is said
to be expanded if T (s, a) is queried for all valid a ∈ A.
We consider heuristic functions and policies as guiding
functions. The heuristic function h : S → R is used to guide
a search algorithm, where h(s) is an estimate of the minimal
solution length from the given state s. A policy is defined
as π : S × A → [0, 1] where π(s, a) is the probability of
taking action a from state s, such that

∑
a∈A′ π(s, a) = 1

where A′ is the set of all valid actions from state s.
We denote a guided search algorithm by SAθ where SA is

the search algorithm and θ are the parameters of the guiding
function. The task of a search algorithm, SA, given a prob-
lem instance, P , is to find a solution that either minimizes
the solution length or the number of expansions. The spe-
cific objective depends on the search algorithms e.g., Levin
Tree Search (Orseau and Lelis 2021) minimizes the number
of expansions while A∗ (Hart, Nilsson, and Raphael 1968)
can be viewed to find an optimal solution (i.e., minimize the
solution length).3 The expansion budget denotes the maxi-
mum number of states that can be expanded by the search
algorithm per problem instance. Such a constraint on the
number of expansions might be crucial for time sensitive
applications. A training set D = {P1, P2, ..., Pn} is a set
of problem instances of a search problem used to train the

1Code is available here: https://github.com/Pi-Star-Lab/TSC-
search-problems

2We expect all learning methods discussed in the paper to gen-
eralize to cases where the cost of taking an action is not the same.

3A∗ is optimal under the assumption of an admissible heuristic
function.

Algorithm 1 Bootstrap Learning Method

1: Input: maximum expansion budget b, initial expansion
budget t, guided search algorithm SAθ, test set T , train-
ing set D

2: Output: SAθ∗ ▷ SA with updated parameters of
guiding function

3: while SAθ cannot solve 100% of T within b do
4: results← SAθ.search(D, t)
5: θ ← SAθ.update(results.solutions)
6: if number of unsolved instances ≤ threshold then
7: t← t× 2
8: end if
9: D ← unsolved

10: end while

guiding function. Similarly, a test set T = {P ′
1, P

′
2,, P

′
n}

is a set of problem instances of a search problem that are
used to evaluate the performance of the guided search algo-
rithm.

2.2 Problem Definition
The task of a learning algorithm L is to be able to efficiently
(in terms of training time) solve 100% of the test set. That is,
given a guided search algorithm SAθ, test set, and an expan-
sion budget, solve 100% of the test set within the given ex-
pansion budget while being as efficient as possible in terms
of training time. Our paper focuses on developing a learning
algorithm that achieves better efficiency.

2.3 Bootstrap Learning Method (BL)
A generalized version of the BL is described in the Algo-
rithm 1. BL starts with a fixed training set, a guided search
algorithm (SAθ), an initial expansion budget (per instance),
and a maximum expansion budget on the number of ex-
pansions (per instance). It attempts to solve the training set
within the expansion budget (initially assigned to be the ini-
tial expansion budget). It uses the solutions of the instances
that could be solved within the expansion budget to update
the parameters of the guiding function θ. If the guided search
algorithm is not able to solve a certain number of problem
instances (threshold), then it doubles the expansion budget.
Finally, the BL method removes the solved instances from
the training set. This process is continued in a loop until the
guided search algorithm can solve 100% of the test set.

TSC differs from BL in two ways (in addition to using a
teacher-student curriculum).

1. Instead of requiring fixed training data, TSC generates
new training instances at each iteration. Consequently,
TSC does not store the unsolved problems (unlike line 9
in Algorithm 1).

2. As the curriculum is generated by TSC, it does not re-
quire changing expansion budgets to filter out difficult
problem instances. Therefore, TSC uses the same expan-
sion budget for each run of the search algorithm and thus
eliminates the need for lines 6, 7, and 8 in Algorithm 1.
This also reduces a hyperparameter that requires tuning.

92

2.4 Enhanced Random Walk (RW+)

Algorithm 2 in (Arfaee, Zilles, and Holte 2010), referred
to as RW, was proposed as a solution when BL fails to
solve a minimum threshold of problem instances from the
training set. RW generates problem instances by perform-
ing random walks from the goal state so that the new in-
stances can be solved with BL. RW increases the length of
the random walks at each iteration by performing two steps:
(1) a breadth first search from the goal state until the ex-
pansion budget is exceeded, and (2) Performing 5,000 ran-
dom walks from the goal until a state that is not visited in
(1) is encountered. We empirically observed that such in-
crements led to unstable learning i.e., for some domains, it
could solve all instances, for others, it could not solve 100%
of the test set (see Subsection 5.6 for details). We suspect
this occurs as RW does not take into account the current
performance of the guided search algorithm when increasing
the length of random walks which in turn leads to instabil-
ity. Note that RW is designed to produce training instances
of progressive difficulties, however, it does not specifically
target computational efficiency (which is our main objec-
tive as proposed in Subsection 2.2). Consequently, we adapt
RW to achieve improved training times by presenting a com-
putationally lighter and stable version denoted RW+. RW+
employs a simple strategy to increase the length of random
walks by 1 if the guided search algorithm can solve 75% (a
tuned hyperparameter) of the problem instances generated.
Note that the increase by 1 might still lead to slower learning
for some search problems. This is because, an increase by 1
might still generate easier samples, where the guided search
algorithm might benefit more from difficult instances, thus
wasting computing resources. This drawback is addressed
by our novel TSC method (presented in Section 4). Further-
more, at each iteration, RW+ only generates a small num-
ber of problem instances (equal to the batch size used for
the guided search algorithms). This is because we observed
faster learning initially, thus solving a fewer number of easy
instances saves training time. As the curriculum is generated
by RW+, the expansion budget does not need to be changed
(unlike BL) reducing a hyperparameter. RW+ is outlined in
Algorithm 2.

Algorithm 2 Enhanced Random Walk (RW+)

1: Input: maximum expansion budget b, guided search al-
gorithm SAθ, test set T

2: Output: SAθ∗ ▷ SA with updated parameters of
guiding function

3: len← 4 ▷ a hyper parameter
4: while SAθ cannot solve 100% of T within b do
5: D ← random walk(len)
6: results← SAθ.search(D, b)
7: θ ← SAθ.update(results.solutions)
8: if SAθ can solve 75% of the problems in D then
9: len += 1

10: end if
11: end while

3 Related Work
First, we discuss the recent advances in learning guiding
functions for guided search algorithms, concluding with a
brief list of guided search algorithms that can be used with
our TSC approach. Following, we discuss curriculum gen-
eration and learning methods while discussing their applica-
bility to online guided search algorithms.

3.1 State-Space Search and Machine Learning
Bootstrap Learning of heuristic functions (BLH) (Arfaee,
Zilles, and Holte 2010) was one of the initial approaches,
that proposed learning a heuristic function for the A∗

algorithm (Hart, Nilsson, and Raphael 1968). Follow-
ing, McAleer et al. (2018) proposed the DeepCube method
that learns the heuristic function with reinforcement learning
to solve Rubik’s cube instances. They proposed generating
the training problem instances from previously solved in-
stances and using the temporal difference method for learn-
ing. The more advanced DeepCubeA (Agostinelli et al.
2019) builds upon DeepCube. DeepCubeA performs tem-
poral difference updates for all the states along the random
walk performed from goal states. Recent work also investi-
gates learning a heuristic function for classical planning al-
gorithms (Shen, Trevizan, and Thiébaux 2020; Gehring et al.
2022).

Orseau et al. (2018) proposed a novel search algorithm
that is guided by a trained policy represented by a neural
network referred to as Levin Tree Search (LTS). Orseau and
Lelis (2021) combined both, policy and heuristic function
learning, resulting in a new algorithm referred to as Policy-
guided Heuristic Search (PHS).

BLH, LTS, PHS, and PHS∗ (a variant of PHS proposed
by Orseau and Lelis (2021)) are online learning search al-
gorithms and use the bootstrap method (Arfaee, Zilles, and
Holte 2010) as their learning procedure. In this work, we im-
prove upon the Bootstrap Learning method by introducing a
curriculum generation method.

3.2 Curriculum Generation
Curriculum generation and learning is a widely studied topic
in the field of reinforcement learning (Narvekar et al. 2020).
Such approaches can be divided into several categories. The
teacher-guided curriculum involves a teacher who guides
the student or the reinforcement learning algorithm by in-
creasing the difficulty of the problem with the improving
performance of the student (Matiisen et al. 2019; Porte-
las et al. 2020). Our TSC method is motivated by such
methods, where we order the tasks based on the number
of random steps taken from the goal as a proxy for an in-
stance difficulty. Another class of algorithms involves gen-
erating achievable sub-goals for the student. Florensa et al.
(2018) proposed one such approach that involves a Goal
Generative Adversarial Network. Other classes include di-
viding the tasks into specific skills and learning them indi-
vidually (Jabri et al. 2019) and self-play based curriculum
generation (Sukhbaatar et al. 2018). However, these meth-
ods are not desirable for online search algorithms, as most

93

of such methods assume no access to the transition func-
tion, and thus use relatively complex mechanisms to gener-
ate curricula (e.g., using a neural network to generate ini-
tial states). Consequently, curriculum generation with such
methods is time inefficient in problems where the transition
function is assumed to be known. Recent work has high-
lighted the advantages of using curriculum generation meth-
ods for combinatorial optimization (Lisicki, Afkanpour, and
Taylor 2020; Iklassov et al. 2023). Lelis et al. (2022) used
the Bootstrap Learning method to generate a curriculum for
humans in the ‘Sokoban’ domain where random walks from
goal were not meaningful. Ferber et al. (2022) propose two
enhancements to the Bootstrap Learning method within the
FDR planning framework where (variant 1, Bootstrapping a
Goal-Distance Estimator) introduces a unique approach for
performing random walks in partial assignment spaces, and
(variant 2, Bootstrapping a Search-Space-Size Estimator) re-
places the common heuristic value target (cost-to-goal) with
a search-space size estimation. These enhancements are or-
thogonal to the learning method and can thus potentially be
incorporated into our teacher-student learning method in the
future. Torralba, Seipp, and Sievers (2021) introduced “Au-
toscale” tool to generate problem instances of progressive
difficulty for evaluating planners. Although Torralba, Seipp,
and Sievers (2021) and our paper attempt to generate prob-
lem instances of progressive difficulty, the primary objective
vastly differs. Torralba, Seipp, and Sievers (2021) generate
progressively difficult instances so that all the planners can
be evaluated. Our objective, by contrast, targets generating
a curriculum for a student (a specific search algorithm) en-
abling faster training.

4 Teacher-Student Curriculum
In this section, we describe our Teacher-Student Curricu-
lum (TSC) method to address the shortcomings of BL and
RW/RW+. First, we describe the TSC method procedurally.
Second, we describe and justify a suitable optimization ob-
jective for the teacher in TSC. Next, we provide details on
the choice of optimizer for the teacher. Finally, we discuss an
issue of non-stationarity with the teacher due to improving
student’s performance and provide a workaround.

4.1 TSC Method
Our TSC approach for training a guiding function is out-
lined in Algorithm 3. TSC follows an iterative loop similar
to BL and RW+. First, the teacher is initialized (Line 3).
At each iteration, a batch of integers, representing the dif-
ficulty of the training problem instances, is sampled from
the teacher (Line 5). Following (Arfaee, Zilles, and Holte
2010; Orseau and Lelis 2021), we use the number of random
steps taken from the goal as an estimate of the difficulty of
the problem. Problem instances are generated by performing
random walks from the goal state; the final state in the ran-
dom walk is stored in a problem instance buffer D (Line 6).
The student (guided search algorithm, SAθ) is used to solve
all problem instances in D (Line 7). The solution paths of
the solved problems from D are used as training data to up-
date the parameters of the parameterized guiding function

Algorithm 3 Teacher Student Curriculum (TSC)

1: Input: maximum expansion budget b, guided search al-
gorithm SAθ, test set T

2: Output: SAθ∗ ▷ SA with updated parameters of
guiding function

3: teacher← Initialize Teacher algorithm
4: while SAθ cannot solve 100% of T within b do
5: random steps← teacher.sample()
6: D ← random walk(random steps)
7: results← SAθ.search(D, b)
8: θ ← SAθ.update(results.solutions)
9: costs← Follow Equation 1

10: update teacher using costs
11: end while

(Line 8). Finally, the teacher is updated based on the perfor-
mance of SAθ (the student) (Lines 9 and 10). The details on
the teacher’s implementation are discussed in Subsection 4.3
and Subsection 4.4. This process continues until SAθ can
solve all problems in T (Line 4).

4.2 Teacher’s Objective
As briefly discussed in Section 1, the objective of the teacher
is to generate problem instances such that they are easy
enough to be solved within the expansion budget, while be-
ing difficult enough so that the training data is valuable for
achieving a better guiding function. To achieve this, we pro-
pose to use Equation 1 as the cost function for the teacher.
The objective of the teacher is to minimize this cost function.

C(expansions) =
{
−expansions, if instance is solved
0, otherwise

(1)
The rationale behind the cost function stems from the ob-

servation that the goal of the teacher is to generate the most
difficult solvable (by the constrained student) problem in-
stances. Difficult instances usually require the student to ex-
pand a larger number of states. Thus, the cost function in-
versely correlates to the number of expanded states. Fur-
thermore, the cost function assigns the highest cost of 0 (as
the number of expansions is a non-negative number) to in-
stances that could not be solved within the expansion budget
as they cannot be used as training data. Consequently, the
teacher attempts to produce instances requiring the maxi-
mal number of expansions that is still below the budget b.
Solving such problem instances of intermediate difficulty
improves efficiency in training time by providing valuable
training data while exploring difficult problems.

4.3 CMA-ES as Teacher
We represent the teacher as a univariate Gaussian distribu-
tion which is parameterized by initial mean µ0 and initial
standard deviation σ0. To update these parameters, we use
the Covariance Matrix Adaptation - Evolutionary Strategy
(CMA-ES) (Hansen 2006) which is a widely used black-
box optimizer. CMA-ES is an iterative evolutionary strategy

94

where at each iteration i we sample a batch of real numbers
from the Gaussian distribution. These numbers denote the
length of random walks (after rounding) in our case. Prob-
lem instances are generated by performing backward ran-
dom walks. These instances are evaluated using SAθ and the
results (number of expansions) are used to calculate the cost
incurred by the teacher (Equation 1). A fraction of the batch
that are best-performing numbers (based on the cost) are re-
ferred to as the “fittest”. The fittest numbers of the iteration
are used to update the µi and σi of the Gaussian distribu-
tion. Specifically, the mean is updated with weighted averag-
ing of fittest numbers and the standard deviation is updated
by using ‘rank-µ-updates’ and ‘cumulation’ (see Equation 3
and 22 in Hansen (2006) for details). CMA-ES optimization
is considered to be converged once the standard deviation
drops below a certain threshold value. Empirically, CMA-
ES was shown to converge on a wide variety of optimization
objectives (Hansen et al. 2010). We choose CMA-ES as it
does not require tedious hyperparameter tuning. In addition,
the choice of using CMA-ES updates is motivated by the
results presented by Hansen et al. (2010) where CMA-ES
and its variants were shown to outperform other methods
on complex non-convex functions. The initial mean and the
initial standard deviation (µ0, σ0) are hyperparameters pro-
vided by the user. Typically, the values of the initial mean
should be low, as problem instances generated during initial
iterations should be easy for the guided search algorithms.
On the other hand, σ0 should be high enough that it encour-
ages exploration of various problem difficulties while being
not very high to avoid sampling of problem instances that
are too difficult early in the learning process.

4.4 Addressing Non-Stationarity
One problem with implementing the teacher as a CMA-ES
optimizer is the fact that it was designed to optimize station-
ary objective functions, i.e., functions that do not change
over time. However, the objective of the teacher is a non-
stationary function as the guiding function is updated at each
iteration, and the performance of the student changes with
time. To address this issue, we propose to reset all parame-
ters of CMA-ES, apart from the mean, if the standard devia-
tion is reduced below a small threshold. This enables a pre-
maturely converged teacher to explore again by generating
more difficult problem instances once the guiding function
is good enough and thus, avoid premature convergence.

5 Experiments
In this section, we first describe the experimental setup that
includes domain descriptions, baseline learning methods,
and guided search algorithms. Then, we show a compari-
son of the learning methods with respect to the training time
required to reach a point where all of the instances in the
test set can be solved. This is the main result as improving
computational efficiency is the primary objective of the pa-
per. Following, we show a comparison in terms of solution
length and number of expansions of the guided search algo-
rithms after training the guiding function for a fixed amount
of time. These results highlight the advantages of RW+ and

TSC over BL and RW. Next, we present a study of how
these learning methods scale for harder search problems.
This study highlights the limitations of RW+ with the in-
creasing complexity of search problems.

5.1 Domains
We use 3 representative benchmark domains namely Pan-
cake Sorting, Sliding Tile Puzzle, and 4-peg Towers of
Hanoi (Pendurkar et al. 2023, 2022; Orseau and Lelis 2021;
Arfaee, Zilles, and Holte 2010). Note, we do not include
results for Witness Puzzle and Sokoban Puzzle reported
by (Orseau and Lelis 2021) as (1) random walks are not
applicable to Witness Puzzle.4 and (2) generating meaning-
ful problem instances for Sokoban with random walks is an
open challenge (Bento, Pereira, and Lelis 2019). Extending
TSC to such domains is left as future work.

We refer to a Pancake Sorting problem with ‘n’ pancakes
as ‘n Pancake’ problem. Similarly, we refer to a n× n Slid-
ing Tile Puzzle as ‘n STP’, and 4-peg Towers of Hanoi with
n disks as ‘n TOH’. Details on state encoding for neural
networks, and test set generation for the domains are in Ap-
pendix A.

5.2 Baselines
We use BL, RW and RW+ as the baseline learning methods.

Bootstrap Learning (BL) (Arfaee, Zilles, and Holte
2010): The training set for all domains was generated by
taking random steps from the goal as suggested by Orseau
and Lelis (2021) for the STP puzzle. The number of random
steps to be taken from the goal was chosen uniformly be-
tween 1-100, 50-1000, and 5-1000 for Pancake, STP, and
TOH respectively. The size of the training set was set to
2048, 10000, and 2048 for Pancake, STP, and TOH respec-
tively. The initial expansion budget for the BL method for
each of the guided search algorithms was set to 1/4 times
the maximum expansion budget for Pancake and STP and
1/8 for TOH. These parameters were tuned until BL was
able to solve at least a single problem instance of the train-
ing set within the initial expansion budget.

Random Walk (RW) (Arfaee, Zilles, and Holte 2010):
The length was incremented at each iteration following the
recommendation by Arfaee, Zilles, and Holte (2010). The
initial expansion budget was set to be the same as BL. At
each iteration, we sample 32 problem instances - the same
as TSC and RW+.

Enhanced Random Walk (RW+): RW+ is implemented
as presented in Section 2.4.

5.3 Guided Search Algorithms
We test the learning methods using three guided search algo-
rithms, namely Levin Tree Search, Policy-Guided Heuristic
Search, and Weighted A∗.

4Instead of random walks, Sturtevant (2019) used procedural
content generation based techniques.

95

Levin Tree Search (LTS): LTS is a policy based search al-
gorithm, where the policy is used to guide the search (Orseau
et al. 2018). The policy is represented by a neural network.

Policy-Guided Heuristic Search (PHS∗): PHS∗ is one of
the variants proposed by Orseau and Lelis (2021), that uses
both policy and heuristic function to guide the search. For
experiments, we use a two-headed neural network as used
by Orseau and Lelis (2021). One head represents the policy
and the other one represents the heuristic function.

Weighted A∗(WA∗): WA∗ is a widely used representative
heuristic search algorithm (Pohl 1973). WA∗ is guided by a
heuristic function which we represent with a neural network.
We use a weight of 1.5 for all experiments.

5.4 Evaluation
All learning methods use the same domain-specific test set
of 256 problem instances for all cases. We evaluate all meth-
ods with two metrics.
• Metric 1: We measure the time required for the learning

methods to train the guiding function such that the guided
search algorithm can solve all instances in the test set.
The time includes the wall clock time required to perform
the search, update the parameters of the guiding func-
tion, and update the parameters of the learning method
(e.g., updating the teacher in TSC). The wall clock time
required for test set evaluation is not considered part of
the reported training time. These experiments were per-
formed with 5 random seeds and the training time is av-
eraged across these runs. We report the standard error
following common practices (Orseau and Lelis 2021).
Note, we do not perform a specific statistical test (which
requires extra assumptions) and usually require a higher
number of seeds (e.g.,≥ 30 seeds) which is computation-
ally expensive in our case.

• Metric 2: We run the learning methods for a fixed
amount of wall clock time and compare the performance
of the guided search algorithm with the guiding function
obtained when the time expires on the test set. Specifi-
cally, we compare the percentage of test set solved, the
average solution length, and the average number of ex-
pansions. These experiments were performed with 5 ran-
dom seeds and the ‘best’ performing run was reported.
The run with the highest percentage of test set solved
is said to be the best run. In case of a tie, the run with
the lowest number of expansions (amongst the solved in-
stances in the test set) is said to be the best. The best
runs are reported as aggregating runs is not meaning-
ful when different problem instances of the test set are
solved (Similar to Table 1 in (Orseau and Lelis 2021)).

5.5 Other Experimental Setup Details
Our codebase is built upon the one provided by Orseau and
Lelis (2021), thus we share the same hyperparameters un-
less stated otherwise. The batch size (number of problem
instances generated at each iteration) for TSC and RW+ is
set to 32 following the recommendation (Orseau and Lelis
2021). The expansion budgets used for Pancake, STP, and

TOH are 5000, 6000, and 3000 respectively unless stated
otherwise. The ‘random steps’ in Algorithm 3 was set to
zero if the teacher provided a negative value. For CMA-ES
we use the benchmark python package by Shibata (2023).
The initial mean of the teacher (Gaussian) was set to 4 for
all experiments and the initial standard deviation σ0 was
set to 4 for Pancake and STP and 100 for TOH unless
stated otherwise. CMA-ES was restarted if the standard de-
viation drops below 0.01. The experiments were performed
on a single computer with Intel(R) Core(TM) i9-10900X
CPU 3.70GHz, with two 8 GiB synchronous (2666MHz)
RAM. Linux Mint 20.1 was used as the OS with kernel ver-
sion 5.4.0-70-generic. Note that only one thread/process was
used for one run, and no GPU was used. For details on the
neural network architecture, please refer to Appendix A.

5.6 Training Time Comparison
First, we investigate the time required for the learning meth-
ods to train the guiding function, as this is the primary task.
For this investigation, we continue training the guiding func-
tion until the guided search algorithm can solve all problems
in the test set and measure the time required for training (i.e.,
Metric 1). Table 1 shows the training time required across
the three domains and the three guided search algorithms.
The results show that the BL method performs worst across
all domains and guided search algorithms. Specifically, BL
is approximately 7.5 to 31 times slower to train as compared
to TSC, across the search problems and search algorithms.
On the other hand, RW+ is competitive with TSC. RW+ has
the edge over TSC with WA∗ for 4 STP. In all other cases,
TSC outperforms RW+, where the best results are obtained
for TOH with WA∗ where TSC is around 4 times faster.
Note that the standard error across runs is similar for TSC
and RW+ for all domains and guided search algorithms and
is significantly lower than the BL method. We suspect the
standard error is higher for BL because we resample a new
training set at each run, highlighting the importance of se-
lecting appropriate problem instances for training. On the
other hand, RW could only solve all instances of the test set
for 9 TOH and 16 Pancake with only PHS∗ algorithm result-
ing in an unstable performance as opposed to other learning
methods. RW is competitive with TSC for 9 TOH. For 16
Pancake and PHS∗, RW is 4.9 times slower as compared to
TSC.

Given the improvements in training time, we examined
whether the improved training time comes at the cost of a
lower-quality guiding function. In order to address this ques-
tion, we run all of the learning methods for a fixed amount
of time and evaluate the guided search algorithms on the test
set after the time expires (Metric 2).5 Table 2 shows the aver-
age solution length and average number of expansions per-
formed for all the learning methods and the guided search
algorithms for 4 STP. The results suggest that TSC out-
performs BL with PHS∗and LTS algorithms where the re-
sults are comparable to BL when WA∗ is used as the guided
search algorithm. Further, we observe that TSC results in

5we exclude RW as it could not solve all instances of the test
set for most of the domains, guided search algorithms

96

Domain Method Training time required to solve all problems in test set (in seconds)
PHS∗ LTS WA∗

16 Pancake
TSC 3,366 (1,079) 2,607 (218) 7,882 (677)
RW+ 3,757 (1,975) 3,761 (421) 8,451 (1,156)
RW 16,496 (6,515) NA (NA) NA (NA)
BL 38,417 (5,245) 47,901 (9,550) 94,364 (14,712)

4 STP
TSC 3,871 (963) 5,349 (938) 3,745 (1,151)
RW+ 5,929 (787) 9,449 (2,534) 3,513 (1,166)
RW NA (NA) NA (NA) NA (NA)
BL 110,629 (32,155) 164,100 (71,406) 96,605 (33,593)

9 TOH
TSC 1,876 (106) 1,406 (60) 8,456 (4,074)
RW+ 2,460 (180) 1,647 (464) 34,050 (20,007)
RW 1,903 (37) 1,453 (85) 9,720 (628)
BL 17,860 (649) 10,747 (1,860) 136,886 (NA)*

Table 1: A performance comparison of the learning methods across three domains and three guided search algorithms. The
training time reported is averaged across 5 random seeds. The value to the left (outside the bracket) is the mean and the value
to the right (inside the bracket) is the standard error across the runs. BL with WA∗ for 9 TOH could not solve all instances in
the test set for 4/5 runs (marked with ‘*’).

Method PHS∗ LTS WA∗

Length Expansions Length Expansions Length Expansions
TSC 65.98 899.8 65.80 896.2 59.27 918.4
RW+ 79.91 1,104.4 68.82 934.9 59.27 918.4
BL 71.14 978.7 84.00 1,153.0 60.41 934.6

Table 2: Performance of guided search algorithms for 4 STP on the test set after training for a time of 50,000 seconds. The
guided search algorithms solved all problems in the test set for all of the cases. The Length and the Expansions columns are
averaged over solutions of all the instances in the test set. These results are for the best run out of the 5 runs of the experiment
following Metric 2.

better performance within the time limit than RW+ for LTS
and PHS∗. We suspect the worse performance of RW+ and
BL in certain cases is because the guiding function has not
yet converged. This implies that on training for longer (at the
limit), all of the learning methods might result in a similar
performance for the guided search algorithms. This further
supports our claim that TSC is a faster method as it results
in quicker convergence. Note, similar trends were observed
for 16 Pancake and 9 TOH and the results are reported in
Appendix B.

5.7 Scaling to Harder Search Problems
In this section, we study how well the performance of the
learning methods scales to harder search problems. For this
study, we use Metric 2, i.e., we run the learning method for
a fixed time and then evaluate the guided search algorithms
on the test set. The results on 5 STP, 24 Pancake, and 12
TOH are shown in Table 3. Note that, we exclude BL and
RW from this study as BL could not solve any instances
from the test set within the time budget and RW failed to
solve all instances of the test set for several domains, guided
search algorithms (see Subsection 5.6). From the results we

see in cases where both TSC and RW+ can solve 100% of
the test set, TSC returns better solutions in terms of either the
average length of solution, number of expansions, or both.
In cases where TSC or RW+ could not solve 100% of the
test set, we see that TSC can solve more instances from the
test set (e.g., 12 TOH where TSC solves a higher fraction of
problem instances from the test set across all guided search
algorithms). Note that, in such cases, the solution quality
cannot be directly compared as TSC could be solving dif-
ficult problem instances resulting in higher solution lengths
and number of expansions (or vice versa). WA∗ on 24 Pan-
cake is the exception where both TSC and RW+ fail to solve
any instance of the test set. The biggest advantage for TSC
is observed for LTS and 5 STP, where TSC can solve all
problem instances in the test set as opposed to RW+ which
could not even solve a single instance. Note, these results
align with the results presented in (Orseau and Lelis 2021)
where LTS could solve 0.9% of the test set by training it for
6 times longer and without a fixed expansion budget with
BL (on the test set).

These results show a wider gap between the performance
of TSC and RW+ as compared to the one discussed in Sub-

97

24 Pancake

Method PHS∗ LTS WA∗

Solved Length Expansions Solved Length Expansions Solved Length Expansions
TSC 100% 115.96 234.46 100% 122.19 245.5 0% - -
RW+ 100% 136.45 276.77 100% 135.69 273.0 0% - -

5 STP

Method PHS∗ LTS WA∗

Solved Length Expansions Solved Length Expansions Solved Length Expansions
TSC 100% 251.62 3,231.7 100% 173.91 2,362.7 100% 150.03 2,936.1
RW+ 100% 301.27 3,902.3 0% - - 100% 161.20 2,880.0

12 TOH

Method PHS∗ LTS WA∗

Solved Length Expansions Solved Length Expansions Solved Length Expansions
TSC 37% 64.25 2,075.9 75% 93.05 3,756.6 11% 43.75 2,529.9
RW+ 30% 72.89 1,337.2 48% 76.70 4,227.5 3% 37.75 6,390.5

Table 3: A comparison of the performance of the learning methods for harder search problems. The Length and the Expansions
columns are averaged over solutions of all the instances that could be solved from the test set. Hence, if 100% instances are
not solved, appropriate comparison with respect to Lengths and Expansions is not feasible. The budget used for Pancake, STP,
and TOH is 25,000, 50,000, and 20,000 respectively. The time limit used for Pancake, STP, and TOH is 100,000, 200,000, and
100,000 respectively. These results are for the best run out of the 5 runs of the experiment.

section 5.6. This is because, higher lengths of random walks
might result in loops (i.e., revisiting previously seen states),
thus increasing the length by 1 at each iteration might not
be sufficient. The results and understandings suggest that
TSC might scale better with the increasing complexity of
the search problems as opposed to RW+.

6 Summary

This paper tackles the problem of generating a curriculum
of problem instances for training guided search algorithms
to improve computational efficiency. First, we present an en-
hanced version of an existing method referred to as RW+
that specifically attempts to improve the computational ef-
ficiency and stability of the RW method. Following, we
propose a curriculum based learning method referred to as
Teacher Student Curriculum (TSC). TSC consists of two
components (1) teacher: the task of the teacher is to generate
problem instances of “correct difficulty”, and (2) student: the
student is any search algorithm guided by a parameterized
function. Experiments performed across three search prob-
lems and three guided search algorithms suggest that TSC
is 7.5 to 31 times faster than the state-of-the-art Bootstrap
Learning method. We also present results for harder search
problems that highlight the scalability of TSC over RW+.
Future work will explore extensions to TSC so that it can be
applied to domains where backward random walks cannot
be used (e.g., the Sokoban and Witness domains).

Acknowledgements
This research was partially supported by Canada’s NSERC
and the CIFAR AI Chairs program, and enabled in part
by support provided by the Digital Research Alliance of
Canada. A part of the research has taken place in the PiStar
AI and Optimization Lab at Texas A&M University. PiS-
tar is supported in part by NSF (IIS-2238979) and BSF
(2022191).

References
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s Cube with Deep Reinforcement
Learning and Search. Nature Machine Intelligence, 1(8).
Agostinelli, F.; McAleer, S.; Shmakov, A.; Fox, R.; Valtorta,
M.; Srivastava, B.; and Baldi, P. 2021. Obtaining Approx-
imately Admissible Heuristic Functions through Deep Re-
inforcement Learning and A* Search. Bridging the Gap
between AI Planning and Reinforcement Learning work-
shop at International Conference on Automated Planning
and Scheduling.
Arfaee, S. J.; Zilles, S.; and Holte, R. 2010. Bootstrap learn-
ing of heuristic functions. In Annual Symposium on Combi-
natorial Search, 52–60.
Bento, D. S.; Pereira, A. G.; and Lelis, L. H. 2019. Procedu-
ral generation of initial states of sokoban. In Proceedings of
the 28th International Joint Conference on Artificial Intelli-
gence, 4651–4657.
Ferber, P.; Geißer, F.; Trevizan, F.; Helmert, M.; and Hoff-
mann, J. 2022. Neural network heuristic functions for classi-

98

cal planning: Bootstrapping and comparison to other meth-
ods. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling, volume 32, 583–587.

Florensa, C.; Held, D.; Geng, X.; and Abbeel, P. 2018. Au-
tomatic goal generation for reinforcement learning agents.
In International Conference on Machine Learning, 1515–
1528. PMLR.

Gehring, C.; Asai, M.; Chitnis, R.; Silver, T.; Kaelbling, L.;
Sohrabi, S.; and Katz, M. 2022. Reinforcement learning for
classical planning: Viewing heuristics as dense reward gen-
erators. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 32, 588–596.

Hansen, N. 2006. The CMA evolution strategy: a comparing
review. Towards a new evolutionary computation: Advances
in the estimation of distribution algorithms, 75–102.

Hansen, N.; Auger, A.; Ros, R.; Finck, S.; and Pošı́k, P.
2010. Comparing results of 31 algorithms from the black-
box optimization benchmarking BBOB-2009. In Proceed-
ings of the conference companion on Genetic and evolution-
ary computation, 1689–1696.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.

Iklassov, Z.; Medvedev, D.; De Retana, R. S. O.; and Takac,
M. 2023. On the study of curriculum learning for inferring
dispatching policies on the job shop scheduling. In Proceed-
ings of the Thirty-Second International Joint Conference on
Artificial Intelligence, 5350–5358.

Jabri, A.; Hsu, K.; Gupta, A.; Eysenbach, B.; Levine, S.;
and Finn, C. 2019. Unsupervised curricula for visual meta-
reinforcement learning. Advances in Neural Information
Processing Systems, 32: 10519–10531.

Lelis, L. H. S.; ao G. G. V. Nova, J.; Chen, E.; Sturtevant,
N. R.; Epp, C. D.; and Bowling, M. 2022. Learning Cur-
ricula for Humans: An Empirical Study with Puzzles from
The Witness. International Joint Conference on Artificial
Intelligence (IJCAI).

Li, T.; Chen, R.; Mavrin, B.; Sturtevant, N. R.; Nadav, D.;
and Felner, A. 2022. Optimal Search with Neural Networks:
Challenges and Approaches. In Proceedings of the Inter-
national Symposium on Combinatorial Search, volume 15,
109–117.

Lisicki, M.; Afkanpour, A.; and Taylor, G. W. 2020. Evaluat-
ing Curriculum Learning Strategies in Neural Combinatorial
Optimization. In Learning Meets Combinatorial Algorithms
Workshop at Neural Information Processing Systems.

Matiisen, T.; Oliver, A.; Cohen, T.; and Schulman, J. 2019.
Teacher–student curriculum learning. IEEE Transactions on
Neural Networks and Learning Systems, 31(9): 3732–3740.

McAleer, S.; Agostinelli, F.; Shmakov, A.; and Baldi, P.
2018. Solving the Rubik’s Cube with Approximate Policy
Iteration. In International Conference on Learning Repre-
sentations.

Narvekar, S.; Peng, B.; Leonetti, M.; Sinapov, J.; Taylor,
M. E.; and Stone, P. 2020. Curriculum Learning for Re-
inforcement Learning Domains: A Framework and Survey.
Journal of Machine Learning Research, 21(181): 1–50.
Orseau, L.; Lelis, L.; Lattimore, T.; and Weber, T. 2018.
Single-agent policy tree search with guarantees. Advances
in Neural Information Processing Systems.
Orseau, L.; and Lelis, L. H. 2021. Policy-guided heuristic
search with guarantees. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, 12382–12390.
Pendurkar, S.; Huang, T.; Juba, B.; Zhang, J.; Koenig, S.;
and Sharon, G. 2023. The (Un)Scalability of Informed
Heuristic Function Estimation in NP-Hard Search Problems.
Transactions on Machine Learning Research.
Pendurkar, S.; Huang, T.; Koenig, S.; and Sharon, G. 2022.
A discussion on the scalability of heuristic approximators.
In Proceedings of the International Symposium on Combi-
natorial Search, volume 15, 311–313.
Pohl, I. 1973. The avoidance of (relative) catastrophe,
heuristic competence, genuine dynamic weighting and com-
putational issues in heuristic problem solving. In Proceed-
ings of the 3rd International Joint Conference on Artificial
Intelligence, 12–17.
Portelas, R.; Colas, C.; Hofmann, K.; and Oudeyer, P.-Y.
2020. Teacher algorithms for curriculum learning of deep
rl in continuously parameterized environments. In Confer-
ence on Robot Learning, 835–853. PMLR.
Shen, W.; Trevizan, F.; and Thiébaux, S. 2020. Learning
domain-independent planning heuristics with hypergraph
networks. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 30, 574–
584.
Shibata, M. 2023. Lightweight Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES) implementation for
Python 3. URL: https://pypi.org/project/cmaes/.
Sturtevant, N. R. 2019. Exploring EPCG in The Witness. In
Knowledge Extraction from Games (AAAI workshop), 58–
63.
Sukhbaatar, S.; Lin, Z.; Kostrikov, I.; Synnaeve, G.; Szlam,
A.; and Fergus, R. 2018. Intrinsic Motivation and Automatic
Curricula via Asymmetric Self-Play. In International Con-
ference on Learning Representations.
Torralba, A.; Seipp, J.; and Sievers, S. 2021. Automatic in-
stance generation for classical planning. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 31, 376–384.

99

