
Prioritised Planning with Guarantees

Jonathan Morag1,2, Yue Zhang2, Daniel Koyfman1, Zhe Chen2,
Ariel Felner1, Daniel Harabor2, Roni Stern1

1Ben-Gurion University of the Negev
2Monash University

moragj@post.bgu.ac.il, Yue.Zhang@monash.edu, koyfdan@post.bgu.ac.il, zhe.chen@monash.edu,
felner@bgu.ac.il, Daniel.Harabor@monash.edu, roni.stern@gmail.com

Abstract

Prioritised Planning (PP) is a family of incomplete and sub-
optimal algorithms for multi-agent and multi-robot naviga-
tion. In PP, agents compute collision-free paths in a fixed or-
der, one at a time. Although fast and usually effective, PP
can still fail, leaving users without explanation or recourse.
In this work, we give a theoretical and empirical basis for
better understanding the underlying problem solved by PP,
which we call Priority Constrained MAPF (PC-MAPF). We
first investigate the complexity of PC-MAPF and show that
the decision problem is NP-hard. We then develop Priority
Constrained Search (PCS), a new algorithm that is both com-
plete and optimal with respect to a fixed priority ordering. We
experiment with PCS in a range of settings, including com-
parisons with existing PP baselines, and we give first-known
results for optimal PC-MAPF on a popular benchmark set.

Introduction
Prioritised Planning (PP) (Erdmann and Lozano-Pérez
1986) is a family of related algorithms that are popularly ap-
plied in Robotics and AI; e.g., for coordinating the motion
and for navigating multiple moving agents (Van Den Berg
and Overmars 2005; Silver 2005). In PP algorithms each
agent is planned in turn, following a fixed priority order
P = {a1 ≺ a2 ≺ . . . ≺ ak}. Each agent ai attempts to
reach its target as efficiently as possible, but lower-priority
agents aj must avoid the previously planned paths of higher-
priority agents; i.e., ai ≺ aj . PP algorithms are usually fast
and scalable (Li et al. 2021), since each agent is only planned
once. Moreover, the quality of solutions found by PP can be
close to optimal (Ma et al. 2019) as each agent always takes
a shortest available path to reach its target.

There are two main drawbacks to PP: (i) computed so-
lutions have no quality guarantees and; (ii) planning agents
in priority order may cause deadlock failures. Figure 1(a)
shows an example using the agent ordering P = {a1 ≺
a2 ≺ a3}. Notice that agent a2 can select among several
equivalent-cost paths to reach its target while avoiding the
path of a1. The option of waiting at vertex s2 and then mov-
ing to v3 or s3 minimises the sum-of-(path)-costs for all
agents (which is 13). Alternatively, a2 could move directly

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: (a) A PC-MAPF problem with three agents and
priority ordering P = {a1 ≺ a2 ≺ a3}. Vertices si and ti
indicate the start and target positions of agent i. (b-d) The
minimal MDD of each agent. (e) MDD of a2 with +1 depth.

to v3, which causes additional waiting (+1) for agent a3. Fi-
nally, a2 could move directly to s3, which produces a dead-
lock failure (since a3 is left without recourse). Thus, it is
not clear how to interpret the results from PP. If a solution is
found, could its cost be improved? If the result is a deadlock,
is the given instance not solvable using priority order P?

One idea to mitigate the drawbacks of PP involves gener-
ating a different priority ordering P ′, e.g., at random (Ben-
newitz, Burgard, and Thrun 2002; Li et al. 2021) or fol-
lowing rule-of-thumb heuristics (Van Den Berg and Over-
mars 2005; Silver 2005), and then planning new paths for all
agents. However, each P ′ may suffer the same weaknesses
as P . Even enumerating all k! possible orderings (pro-
hibitive, except for small k) is insufficient to settle the op-
timality or solvability questions. Moreover, important real-
world applications can demand coordinated plans which re-
spect a given priority ordering, such as construction-crane
planning (Zhang 2010; Zhang and Hammad 2012) or au-
tonomous intersection management (Li et al. 2023), where
safety, cost, and task precedence determine movement or-
derings. Another strategy involves modifying the problem
settings to allow agents to safely wait at their start or target
locations (Čáp et al. 2015). This eliminates the possibility of
deadlocks and ensures that PP always succeeds. However,
such modifications are not suitable for all applications.

In this work, we investigate the underlying problem
solved by PP, which we call PC-MAPF. We give a first the-
oretical analysis of the problem and show that computing
feasible plans with respect to a given priority ordering P is
NP-hard. We then propose a new algorithm, Priority Con-
strained Search (PCS), which computes optimal solutions to

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

82

PC-MAPF problems, and returns failure if no such solution
exists. PCS is the first prioritised algorithm to have these
guarantees. We also propose a simple and sub-optimal algo-
rithm, PPR∗, which uses randomisation to sample the space
of feasible PC-MAPF solutions. In an empirical analysis, we
compare PCS, PPR∗, and PP in terms of performance and
success rate. We show that our proposed methods can suc-
ceed where PP fails, and we report first optimal solutions for
a wide range of PC-MAPF problems from recent literature.

Background and Definitions
In this work, we consider a popular simplified Multi-Agent
Path Finding (MAPF) model from Stern et al. (2019). The
input of a MAPF problem is a graph G = (V,E) and a set of
k agents. Each agent ai has an associated start location si ∈
V and target location ti ∈ V . Time is discretised into time
steps. At each time step an agent can move to an adjacent
location in the graph (provided there exists an appropriate
edge) or wait at its current location. A path is a sequence of
moves and waits that transition an agent ai from si to ti, and
its cost is the number of time steps required to traverse it. A
conflict occurs when two agents ai and aj attempt to occupy
the same vertex v ∈ V at the same time t, called vertex
conflict (denoted as ⟨ai, aj , v, t⟩) or traverse the same edge
(u, v) ∈ E at the same time t, called edge conflict (denoted
as ⟨ai, aj , u, v, t⟩). A solution π to the MAPF problem is a
set of k paths, one for each agent. We say that a solution is
valid if the paths are conflict-free. The cost of a solution is
defined as the Sum-of-Costs (SOC), which is the sum of path
cost for each agent; i.e.,

∑k
i=1 cost(πi). A solution is called

optimal if it has the lowest SOC of all valid solutions.
Some MAPF algorithms work by imposing constraints on

the agents, limiting their choice of paths. A positive con-
straint ⟨ai, v, t⟩ says that agent ai must use vertex v at time
step t. Similarly, the constraint ⟨ai, u, v, t⟩ says that agent
ai must use edge (u, v) at time step t. Their negated forms,
¬ ⟨ai, v, t⟩ and ¬ ⟨ai, u, v, t⟩, indicate a prohibition (ai must
not be at v or use (u, v) at time t), and are known as negative
constraints. Naturally, a positive constraint on agent ai di-
rectly adds a negative constraint on all other agents aj ̸= ai.

Prioritised Planning (PP) (Erdmann and Lozano-Pérez
1986; Silver 2005) is a general problem-solving technique
popularly used to tackle MAPF and other similar coordi-
nation problems. PP assumes a total order over the agents,
and then proceeds to compute paths for the agents, one by
one, in the specified order. Each agent, in its turn, is given
an individually optimal path that avoids the paths of pre-
ceding (equiv., higher-priority) agents. Note that it does not
matter whether the order is given as input or revealed on
the fly, so long as each agent knows the paths of the agents
that preceded it in the order. PP does not provide any com-
pleteness or optimality/sub-optimality guarantees. Among
all MAPF problems that have feasible solutions, only a sub-
set is solvable using PP. Moreover, when PP fails, it is un-
known whether a feasible solution exists that satisfies the
given priority order, or any other order (Ma et al. 2019).

When planning a single agent, PP may discover that there
exist multiple equivalent-cost paths to the target. The deci-

sion of which path to choose is handled by tie-breaking dur-
ing search, often arbitrarily, such that one path is selected.

Multi-Valued Decision Diagrams (MDDs) are used by
algorithms that need to reason over the set of all equiva-
lent paths of a given cost z (Sharon et al. 2013). An MDD
for a given agent, subject to constraints, is a directed acyclic
graph. It has a source node, corresponding to the agent’s start
location, and a sink node, corresponding to the agent’s target
location. Internal nodes of the MDD are the set of all graph
vertices that appear on a path of cost z (called the depth of
the MDD) from source to sink that satisfies the given con-
straints. An MDD that has a minimal depth while satisfying
the agent’s constraints is called optimal or minimal. In Fig-
ure 1, (b-d) shows the minimal (assuming no constraints)
MDDs for the three agents in the problem shown in (a). (e)
shows an MDD for agent a2, with a depth of 3 instead of 2.
Note how only one node has to be used for v2 at depth 2,
even though two possible paths pass through it. To build an
optimal MDD, a single-agent search is invoked to find paths
for the given agent subject to the given constraints. Once all
optimal paths are found, each location v reached at time step
t on any optimal path is added as an MDD node v at depth t.

Priority Constrained MAPF
The Priority Constrained MAPF (PC-MAPF) problem is de-
fined by a tuple ⟨G, k, s, t,P⟩ where G is a graph; k is the
number of agents; s and t are the source and target functions,
mapping each agent to its initial and final location in G; P
is a total order (priority) over the set of agents, and thus for
any pair of agents i and j, either i ≺ j or j ≺ i. We say that
agent i has a higher priority than agent j if i ≺ j.

A solution π to the PC-MAPF problem is a set of paths,
one for each agent. The path of agent ai induces a set of
edge and vertex constraints on all other agents; i.e., no two
agents can use a resource at the same time. We call a so-
lution priority-constrained (equiv. consistent w.r.t. P (Ma
et al. 2019)) if for every agent ai, removing the paths of
all lower-priority agents {aj |ai ≺ aj} does not enable to
assign ai a lower-cost path (while still avoiding the paths of
higher-priority agents). A solution to a PC-MAPF problem
is called priority-optimal if it has the smallest cost among
all priority-constrained solutions. If no priority-constrained
solution exists we consider the problem as unsolvable. An
algorithm is called priority-complete if, given a PC-MAPF
problem, it guarantees to find a priority-constrained solution
if one exists or return no solution if no such solution exists.

It is easy to see that for every PC-MAPF problem there
exists an analogous MAPF problem where the input is iden-
tical, but the returned paths may not be priority-constrained.
Hence, for any priority-optimal solution, there exists a cor-
responding optimal MAPF solution with an equal or smaller
cost. Similarly, if a MAPF problem is unsolvable, then the
corresponding PC-MAPF problem is unsolvable. However,
the reverse is not true; i.e., for an unsolvable PC-MAPF
problem there may exist a valid MAPF solution. The fol-
lowing theorem proves the equivalence of solutions to PC-
MAPF problems and solutions that may be computed by PP
to the equivalent MAPF problems.

83

Theorem 1. A MAPF problem can be solved by PP iff the
corresponding PC-MAPF problem is solvable.

Proof. (→) PP plans agents one by one, from highest pri-
ority to lowest priority, as specified by P . Each agent aj
takes an individually optimal path but must avoid the pre-
viously planned paths of higher-priority agents ai. Remov-
ing the path of aj cannot improve the arrival time of any
ai ≺P aj , since the path of each ai is a shortest path com-
puted independently of aj . Thus the path of each ai and aj
is valid and priority-constrained. (←) A PC-MAPF solution
is a collection of shortest priority-constrained paths. By def-
inition of priority-constrained, the path of agent ai is inde-
pendent of any constraints introduced by aj . In other words,
the path appears as an individually optimal path for ai when
that agent is planned by PP.

Theorem 1 shows that PP has the potential to find any one
of the priority-constrained solutions. However, when plan-
ning an agent with multiple optimal paths to its target, PP
algorithms make arbitrary choices, and these decisions can
produce a deadlock. Reasoning about the causes of PP fail-
ure is challenging as: (i) the root cause is unclear and; (ii)
changing the paths of higher-priority agents, to restore fea-
sibility in case of deadlock, can affect the paths of all sub-
sequent agents, leading to yet more failures. For example, in
Figure 1(a), PP produces deadlock failure if a2 is assigned a
path that proceeds directly to s3. Yet a2 may not be responsi-
ble for the deadlock; its choice of paths is in turn constrained
by the path choices of a1. Thus, replanning the last success-
ful agent (here a2) may not be sufficient to avoid failure in
general (although in this example, it is).

We summarise the situation as follows: when PP fails we
do not know if the failure is due to the choice of paths or if
the problem is unsolvable. Similarly, when PP succeeds, the
solution is guaranteed to be priority-constrained, but it may
not be priority-optimal. Despite several decades of research
on the topic, no previous study has been able to improve
the theoretical properties of PP in general. The following
theorem may help to explain why. We show that deciding
whether a priority-constrained solution exists is at least as
hard as MAPF in general. Moreover, it is potentially harder
on undirected graphs, as the decision problem for those is
polynomial for MAPF (Daniel Kornhauser 1984).
Theorem 2. The decision problem of whether a priority-
constrained solution exists is NP-hard on undirected graphs.

Proof. We prove this theorem by a reduction from the 3SAT
problem. 3SAT is an NP-complete problem that receives a
formula F and outputs whether or not the formula is satis-
fiable. The formula F is a conjunctive normal form (CNF)
consisting of n variables xi and m clauses cj such that each
clause has exactly three literals. Each literal in the clauses
can be a negated or unnegated form of a variable.

We create a corresponding PC-MAPF problem with 2n+
m agents on an undirected graph G. The set of agents is:

A = {x1, . . . , xn, c1, . . . , cm, f1, . . . , fn}
The xi agents are called variable agents, the cj agents are
called clause agents, and the fi’s are called filler agents. We

Figure 2: Reduction from 3SAT to PC-MAPF for the in-
stance ⟨{x1, x2, x3, x4}, {(x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨
¬x4)∧ (¬x2 ∨x3 ∨x4)}⟩. The red vertices are the start ver-
tices and the blue are the targets.

construct the graph exactly like Yu and LaValle (2013) and
expand upon it to prove our theorem. First, we construct a
simple gadget for each variable xi called a mouse gadget.
For xi, we create a vertex vxi that represents its start vertex.
We connect two paths of length m + 2 to the start vertex,
and join their ends such that the target is at the end vertex
v′xi

. The agent can traverse along either of the two paths to
reach its target in m + 2 steps. Let these two paths be the
i-th upper and lower paths. This section of the gadget is the
body of the mouse. We create an additional path of length
m + 2 (the tail of the mouse) such that the last node of the
path is vxi . We add a filler agent fi to the first vertex of that
path and call it vfi . The target vertex of fi is vxi .

Next, for each clause, we add a clause agent cj that starts
at vertex vcj . This vertex is connected to three paths that
represent the literals in the clause of cj . If a literal is un-
negated (resp., negated), then vcj is connected to the i-th
upper (resp., lower) path at a vertex of distance j from vxi

.
The target vertices for the clause agents are created as fol-
lows: A path of length m is added where one end of the path
is connected to the start vertex vxi

. The connected vertex
is the target vertex of agent cm (v′cm) followed by the tar-
get vertex of agent cm−1 (v′cm−1

) and so on, until the end of
the path where the target vertex of agent c1 (v′c1) is located.
Lastly, we define the total order over the set of agents A:

P = {f1 ≺ . . . ≺ fn ≺ x1 ≺ . . . ≺ xn ≺ c1 ≺ . . . ≺ cm}
Note that agent f1 has the highest priority and agent cm has
the lowest priority. All filler agents must arrive at time step
m+2 to their target as they have higher priority over clause
and variable agents.

Figure 2 shows the complete graph for the PC-
MAPF problem constructed from the 3SAT instance
⟨{x1, x2, x3, x4}, {(x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧
(¬x2 ∨ x3 ∨ x4)}⟩. A red vertex represents the start vertex
of an agent and a blue vertex is the target vertex. Note that
vxi

is both red and blue as it the start vertex of agent xi and
the target vertex of agent fi.

If the 3SAT instance is satisfiable, each variable xi re-
ceives an assignment of truth value x̃i. If x̃i is true (resp.,

84

false), then let agent xi take the lower (resp., upper) path of
the body of the mouse gadget. The path that was not chosen
is free to transit for the clause agents corresponding to the
xi variable. This means that all variable agents and clause
agents can start moving at time step zero and arrive at their
targets at time step m+2. Thus, vertices vxi

are free at time
step m+2 for all agents fi to arrive at their target. Since all
agents can reach their targets within their individually opti-
mal time, they do not violate the total order P .

If PC-MAPF has a solution, then all clause agents have
an optimal path to their target. Since the filler agents must
reach their targets at time step m + 2 then agent cm has to
be at its vertex target v′cm at time step m+2 and at time step
m + 1 at one of the vertices vxi

. Any delay in the arrival of
a clause agent cm would prevent it from arriving at vertex
v′cm at time step m + 2, and thus agent cm will be blocked
by the filler agents. Variable agents xi also cannot delay the
path of the clause agents and so they need to choose the
opposite path to the clause agents’ path in the body of the
mouse gadget. If agent xi uses the lower (resp. upper) path,
let x̃i = true (resp. false). Thus the resulting assignment
satisfies the 3SAT instance.

Observation 1. The decision problem of PC-MAPF in di-
rected graphs and the optimization problems both in di-
rected and undirected graphs are NP-hard.

Prioritised Planning with Randomised A∗

A popular approach to extend PP for MAPF is by repeat-
edly randomising the priority order of the agents (Ben-
newitz, Burgard, and Thrun 2002). This randomisation is
performed whenever PP fails, but can also be applied to
find better-quality solutions when excess planning time re-
mains. This approach can not be used for PC-MAPF, since
the priority order is fixed. As an alternative, we suggest to
randomise the tie-breaking used by the single-agent plan-
ner in order to choose between different paths with equal
costs. We call this simple and scalable algorithm Prioritised
Planning with Randomised A∗ (PPR∗). The main advantage
is that PPR∗ repeatedly samples from the space of possible
priority-constrained solutions, while PP considers only one.
Both PP and PPR∗ are incomplete, and neither provides any
guarantees on the quality of returned solutions.

Priority Constrained Search (PCS)
A straightforward approach for optimal PC-MAPF is to find
all optimal constrained paths for the current priority agent,
create a child node for each path, and then add the next
agent in each of these child nodes. If the nodes are expanded
in best-first order (smallest SOC) this approach guarantees
to eventually find a priority-optimal solution and eventually
terminate if no such solution exists. The main disadvantage
is a potentially large branching factor, as many individually-
optimal paths can exist for a given agent. In this section, we
introduce a new and more effective optimal algorithm for
PC-MAPF called Priority Constrained Search (PCS).

PCS is a two-level search algorithm, similar in broad
strokes to CBS (Sharon et al. 2015), a popular approach

for optimal MAPF. The high-level of PCS explores a binary
tree, searching over the space of possible conflicts, similar to
CBS. The low-level of PCS resolves conflicts by replanning
agents one at a time, each time subject to new constraints,
again akin to CBS. Yet PCS differs in a few important ways:

1. CBS stores a single path for each agent, that satisfies its
relevant constraints. PCS uses MDDs instead of paths.

2. CBS generates paths for all agents in the root node. PCS
starts with the highest-priority agent and gradually adds
agents (MDDs) as the search progresses.

3. To resolve a conflict, CBS constrains and replans affected
agents, potentially increasing their individual costs. By
contrast, PCS favours high-priority agents, and it never
generates nodes where the cost of these agents increases.

4. CBS creates constraints only when splitting, and stores
them on the search tree branches. PCS has two distinct
ways that constraints are created and stored. Constraints
on high-priority agents are directly created through splits.
Constraints on low-priority agents are gradually created
on the fly while generating a search node.

We next provide full details on PCS.

High-level Search
At the high-level, PCS conducts a best-first search based on
the cost function f(n) = g(n)+h(n) (detailed below), over
a Priority-Constrained Tree (PCT); a binary tree where each
node n has the following fields:

• n.c - The index of the current agent; i.e., agent ac is
the agent currently being planned. We note that ac might
gradually change inside node n to be the next agent in
the order of P (if no conflicts are found, see below).

• n.M - a list of MDDs stored by this node. We store one
MDD for each agent ai with priority ai ⪯P ac. The
MDDs of higher-priority agents, M [i] are disjoint (no
shared vertices/edges at the same time; i.e., no conflicts).
These MDDs might be modified in PCT nodes below n
but their depth must not increase. The MDD for the cur-
rent agent, M [c], may be replaced by an MDD with larger
depth in response to newly added constraints at node n.

• n.constraints - a set of constraints relevant for node n.
Each node inherits the constraints of its parent. New con-
straints are added to node n to resolve or prevent con-
flicts, based on the MDDs of preceding agents.

• n.conflict - a tuple comprising two agents and a con-
tested resource; e.g., a vertex conflict ⟨ahi, ac, v, t⟩. One
agent is always the current agent, ac; the other agent is al-
ways a higher-priority agent ahi ≺P ac. The conflicting
resource (vertex or edge) appears in the MDDs of both.

• n.g - cost of the plan thus far, n, derived by summing the
depths of all MDDs in n.M .

• n.h - an estimate of the remaining plan cost.

Algorithm 1 shows the pseudo code for the high-level. We
use a priority queue, OPEN to determine the order of node
expansions. We pop nodes from OPEN with minimum f -
value, where f(n) = n.g + n.h (line 5). Let n denote the

85

Algorithm 1: PCS
Input: a problem instance ⟨G, k, s, t, O⟩, a heuristic function H

1: OPEN ← min-heap
2: root ← Generate(null ,null ,null)
3: OPEN .insert(root)
4: while OPEN not empty do
5: n ← OPEN .pop()
6: if isGoal(n) then
7: return solution from n.M
8: // Expand
9: ahi ← n.conflict .ahi

10: r ← ⟨ahi, n.conflict .v, n.conflict .t⟩
11: OPEN .insert(Generate(n, r , ahi))
12: OPEN .insert(Generate(n,¬r , ahi))
13: return no-solution

Algorithm 2: Generate
Input: parent node p, constraint r , constrained agent
hi
1: n← an empty PCT node
2: if p is not null then
3: n← a copy of node p
4: n.M [hi].Restrict(r)
5: Add all new critical resources of n.M [hi] to n.constraints

as constraints
6: n.M [c]← lowLevel(ac, constraints)
7: if n.M [c] = null then
8: Return null
9: n.conflict ← conflict with another MDD if one exists

10: while n.conflict = null ∧ |n.M | < k do
11: n.c← next agent according to P
12: n.M [c]← lowLevel(ac, constraints)
13: if n.M [c] = null then
14: Return null
15: else if exists conflict between n.M [c] and another MDD

then
16: n.conflict ← conflict with another MDD
17: else
18: Add all critical resources of n.M [c] to n.constraints
19: Return n

most recently popped node. If n is conflict-free then it is a
goal, and the search is done (line 7). That is, node n contains
disjoint MDDs, one for each agent, i.e., each agent can reach
its target by following any individually optimal path without
any collisions. Otherwise, as a best-first search, PCS uses
the regular expand and generate functions described next.

Expand If n contains a conflict (assume vertex conflict
for simplicity) between the current agent ac and some other
higher priority agent ahi, then we expand the node (lines 8-
12). This procedure branches at the current node n and pro-
duces two child nodes to resolve the current conflict. The left
child will have a positive constraint ⟨ahi, v, t⟩, which says
ahi must occupy vertex v at time t; i.e., MDDhi[t] = {v}
(line 11). The right child will have a negative constraint
¬ ⟨ahi, v, t⟩, which says that ahi must not occupy vertex v
at time t; i.e., v ̸∈ MDDhi[t] (line 12). This operation is
known as disjoint splitting (Li et al. 2019) for CBS.

Generate Generate is invoked at the start of Algorithm 1
to create the root node (when it is called with null-valued

parameters, line 3), or as a consequence of expanding (split-
ting) a parent node p (lines 11–12). Generate is the primary
step of PCS and its pseudo code is given in Algorithm 2.
Generate receives as input a constraint r and enforces r on
the MDD of the high-priority agent, M [hi], using the Re-
strict function (line 4, Alg. 2) as follows. If r is a negative
constraint ¬(ahi, v, t) (similarly for an edge conflict) then v
is removed from M [hi]. Then, as a result, any vertex that is
not pointing to, or is not pointed to, by any other vertex is
iteratively removed. If r is a positive constraint ⟨a, v, t⟩, we
want a sub-graph that only contains paths that satisfy r. This
is done by taking the sub-graph that is rooted at (v, t) and
connecting it to all paths from the root that lead to (v, t) (by
searching back from (v, t) to the MDD’s root). Other paths
are deleted from the MDD.

The main difference between CBS and PCS is that in PCS
we do not allow a higher-priority agent to increase its cost.
This is enforced as follows. Critical resources are single
nodes or edges of the MDD, the removal of which would
introduce a cut. In particular, the agent’s target at any time
past the depth of the MDD (the MDD’s sink) is a critical
resource, since agents stay at their targets indefinitely. Dur-
ing the restrict operation (line 4), if critical resources are
identified, then we preemptively constrain all lower-priority
agents from conflicting with these critical resources (line 5).
We also do this when we are done with the current agent
(line 18). This ensures that a conflict with a critical resource
of a high-priority agent will never occur.

Next, the Generate function calls the low-level search to
update/find M [c] (the MDD of the current agent), satisfying
the new constraints (line 6). Finally, the Generate function
checks for further conflicts between M [c] and the MDDs
of preceding agents. When there are multiple conflicts, we
pick the earliest one. If a conflict is found, it will be han-
dled when this node is expanded, so the Generate function
returns. Otherwise, if no conflicts are found, (lines 10-18),1
Generate adds the next agent according to the priority order.
This agent becomes the current agent and we compute its
MDD by calling the low-level search. This is repeated un-
til all agents are added or until a conflict is detected. The
root node is generated similarly (adding agents until con-
flicts arise).

Low-Level Search
The low-level search for PCS generates MDDs. This search
is required to return the MDD representing all shortest paths
for an agent to reach its target while obeying given con-
straints. This can be done using A∗ to search the space of
vertices and time, while avoiding constraints by not gener-
ating nodes that do not satisfy them. This is a typical way to
plan paths in MAPF. However, instead of stopping as soon
as a goal node is found, as is sufficient when searching for
a single path, we must continue searching until all search
nodes with f(n) = c∗ (optimal cost) are expanded. Dur-
ing this search, we keep track of all parents of each node, to

1We can pause generating a node n when its cost lower bound
(f(n)) exceeds the current lower bound on the cost of the solution,
insert it to OPEN , and continue once it is popped.

86

Figure 3: Part of the PCT for the problem in Figure 1(a).

maintain all equivalent length paths to each node.

PCS Example
Figure 3 shows part of the PCT for the problem in Fig-
ure 1(a). The full tree is available in the supplementary ma-
terials.2 The figure only shows new or changed MDDs and
new constraints at each node, and we limit our focus to ver-
tex constraints. Generated nodes have a solid border, while
invalid nodes that were not generated have a dashed bor-
der. The goal node is marked with a star. Generating the
root node is illustrated in three stages (a-c). In (a), M [1],
the minimal (and unconstrained) MDD for a1 is added. All
vertices in M [1] are critical resources, as removing any one
of them would introduce a cut to the MDD. Thus, nega-
tive constraints on all lower-priority agents are now added
to constraints, preventing any conflicts with these vertices.
Next, we are done with M [1], so we add M [2], the minimal
MDD for a2 that obeys the current constraints. We check
for conflicts with M [1] and find that there are none, so we
are done with M [2], and so we add constraints for its only
critical resource, ⟨a2, t2, 5+⟩. Next, we build M [3] while
obeying the current constraints, and detect that it has mul-
tiple conflicts with M [2] (not shown). We choose the con-
flict ⟨a2, a3, v2, 1⟩ (other choices are possible). We finish
generating the root, both because we have detected a con-
flict, and because all agents have been added. We expand
the root, generating two child nodes. The left child (d) re-
ceives the positive constraint ⟨a2, v2, 1⟩. This constraint is
applied to M [2] removing any path that does not include
vertex v2 at time 1. This introduces a new critical resource,

so we add the constraint ⟨a2, v2, 1⟩, and update M [3] to ac-
commodate it, resulting in a cost (g) of 14. We insert (d) into
OPEN . The right child (e) receives the negative constraint
¬ ⟨a2, v2, 1⟩. M [2] is restricted accordingly, new critical re-
sources are detected, and their corresponding constraints are
added. M [3] remains unchanged since the new constraints
do not affect any resource that it uses. (e) is inserted to
OPEN , and immediately popped, as its cost is 13, mak-
ing it the current minimum. We expand (e), generating (f)
and (g), but (f) is pruned since the constraints it adds re-
sult in a deadlock where it is impossible for a3 to reach
its target. Next, (g) is popped from OPEN , and since it
contains no conflicts (the MDDs are disjoint), it is consid-
ered a goal node. We return the path [s1, v1, s2, v2, t2, t1] for
a1, [s3, v2, t2, t3] for a3, and arbitrarily choose between the
paths [s2, s2, v2, s3, v2, t2] and [s2, s2, v2, t2, t3, t2] for a2.

Note that had the problem contained some other agent a4,
(g) would not have been a goal node yet. Instead, we would
have continued generating (g) by closing M [3] and building
an MDD M [4], checking for conflicts, etc.

PCS Properties
Theorem 3. PCS is priority-complete

Proof by induction. A solution is permitted by a PCT node
n if its paths obey all constraints in n.constraints . The fol-
lowing proof will show that two properties are maintained
throughout the search - no priority-constrained solutions are
lost (all are permitted by at least one leaf node), and all rep-
resented solutions (or parts thereof) are priority-constrained.
Step 1 is the base case of the induction; step 2 is the in-
duction hypothesis; steps 3 and 4 are two separate induction
steps, for the two primary functions of PCS, adding agents
(Generate) and splitting on conflicts (Expand), respectively.

(1) At the start of the root node’s generation, before any
MDD is added, the constraints set is empty. Therefore, all
priority-constrained solutions are permitted at this point.
Additionally, since no solution is explicitly represented yet,
all represented solutions are priority-constrained.

(2) Assume a PCT node that contains m disjoint MDDs.
Any set of paths (one for each agent) derived from the
MDDs is part of a priority-constrained solution.

(3) When the m+1th MDD is added, this property is
maintained: The new MDD is built to have the minimal pos-
sible depth while avoiding existing constraints, all of which
are critical resources of some existing MDD. No priority-
constrained solutions are lost, because the MDD represents
all paths of that depth that obey the constraints.

(4) When the MDD of a higher-priority agent (not M [c])
is constrained, no priority-constrained solutions are lost. Ob-
serve the set of paths covered by the MDD before constrain-
ing it - any path either uses the constrained resource, or does
not use it. Therefore, the union of the sets of paths repre-
sented by the negatively and positively constrained versions
of the MDD is equal to the set of paths represented by the
original MDD. Thus, any path permitted in a parent node is
also permitted in one of its child nodes. Additionally, when
the current MDD (M [c]) is updated to obey new constraints

87

(avoid new critical resources), the priority-constrained prop-
erty is maintained just as it is maintained when it is first
generated (see (3)). Thus, both the addition of new MDDs
and the addition of new constraints maintain the priority-
constrained property for each node and never eliminates any
priority-constrained solutions from the PCT. In particular,
goal nodes also represent priority-constrained solutions.

Theorem 4. PCS is priority-optimal

Proof. Assume a heuristic function that always returns 0.
The cost function (n.g) is monotonically non-decreasing:

When generating a node, we constrain the MDD of one of
the higher-priority agents, however, the depth of that MDD
may not decrease. If new critical resources arise as a result,
the current MDD may only increase in depth, as it was al-
ready minimal given the parent’s constraints. We may also
add more MDDs for more agents that are not covered by
the parent node. This action only increases the cost of the
node. Thus, we see that by always expanding the node with
the minimal g from OPEN in a best-first-search manner, the
first goal node we expand will have minimal cost.

Heuristic Functions
We propose two heuristic functions for PCS.

H1 is a simple heuristic that sums the lengths of the short-
est path (while ignoring constraints) of each agent not yet in
the node (

∑
i>|M | cost(minPath(i))). This information can

be cached, and then quickly retrieved.
Lemma 1. H1 is admissible: H1 sums the minimal depths of
the MDDs of agents not represented in the node, so the real
cost accrued when adding each agent may not be smaller.

H2 uses a single-agent search algorithm to find the
shortest path (while considering constraints but ignor-
ing other agents) for each agent not yet in the node
(
∑

i>|M | cost(minPath(i , constraints))). These single-
agent searches may be done efficiently using modern al-
gorithms such as SIPP (Phillips and Likhachev 2011) or
JPST (Hu et al. 2022). We used SIPP in our implementa-
tion. Another advantage of this heuristic is that it can detect
cases where, given the current constraints in the node, it is
already impossible to find a path for one of the upcoming
agents. In this case, we prune the node.
Lemma 2. H2 is admissible: H2 finds the minimal depth
that an MDD for an agent may have given current con-
straints. Adding more constraints may only increase this
cost. Thus, when each agent is eventually added, the cost
of its MDD will not be smaller than the cost found by H2.

Experimental Results
We implemented PCS with H1 and H2, PPR∗, and PP.2
The first iteration for PPR∗ was made to run identically to
PP. We experimented using a grid-based MAPF benchmark
from Stern et al. (2019). For each map, we used 25 differ-
ent scenarios, each with 7 PC-MAPF problem instances. In
each instance, we varied the number of agents from 10 to

2github.com/J-morag/MAPF/releases/tag/24.SoCS.PPwG

0 20 40 60 80 100 120 140 160
0

15

30

45

60

Ru
nt

im
e(

s)

empty-8-8

0 25 50 75 100 125 150 175
0

15

30

45

60

Ru
nt

im
e(

s)

random-64-64-20

0 20 40 60 80 100 120 140
0

15

30

45

60

Ru
nt

im
e(

s)

room-32-32-4

0 20 40 60 80 100 120 140 160
0

15

30

45

60

Ru
nt

im
e(

s)

room-64-64-8

0 20 40 60 80 100 120
0

15

30

45

60

Ru
nt

im
e(

s)

maze-32-32-4

0 20 40 60 80 100 120 140
0

15

30

45

60

Ru
nt

im
e(

s)

maze-128-128-1

0 25 50 75 100 125 150 175
0

15

30

45

60

Ru
nt

im
e(

s)

warehouse-10-20-10-2-1

0 25 50 75 100 125 150 175
0

15

30

45

60

Ru
nt

im
e(

s)

lt_gallowstemplar_n

Figure 4: Max runtime per instance, as a factor of coverage.

40, increasing by 5. We present results on 8 diverse maps
from the benchmark, and provide full results in the supple-
mentary materials.2 We ran our experiments on a cluster of
AMD EPYC 7702P CPUs, with 16GB RAM each.
Coverage up to runtime limit: Figure 4 shows the max-
imal runtime of each algorithm (y-axis), as a factor of the
number of successes (x-axis). We count a success if either
the algorithm found a solution, or it proved that the problem
is unsolvable. Naturally, as the only priority-complete algo-
rithm, this is only possible for PCS. For PPR∗, the runtime
until the first solution was found is used, since it always uses
all the allowed runtime to attempt to improve the solution.

Comparing PCS with the two proposed heuristics, PCS-
H2 solves more problems in less time. For example, in map
warehouse-10-20-10-2-1, PCS-H2 achieves 121 successes,
whereas PCS-H1 only succeeded on 77 problems. As could
be expected, PP and PPR∗ take the same amount of runtime
to find the first solution, but in cases where PP fails to find
a solution, PPR∗ continues to run and often eventually finds
a solution. For example, PPR∗ solved around 10% more in-
stances than PP in maze-32-32-4. Clearly, PCS-H2 had less
successes than PPR∗ on most maps, and often required more
time. However, where many of the instances were unsolv-
able, like maze-128-128-1, a maze map comprised of many
corridors that are one vertex wide, PCS-H2 was able to suc-
ceed much more often. This is because it was able to prove
that many of the instances were unsolvable.
Solution Costs of Different Algorithms: We compare the
solution costs of PP, PPR∗ and PCS in Figure 5. For PCS

88

50 100 150
1

1.14

1.28

1.42

1.56

US

SO
C/

Be
st

 B
ou

nd
empty-8-8

500 1000 1500 2000
1

1.04

1.08

1.12

1.16

US

SO
C/

Be
st

 B
ou

nd

random-64-64-20

500 1000
1

1.06

1.12

1.18

1.24

US

SO
C/

Be
st

 B
ou

nd

room-32-32-4

1000 2000 3000
1

1.04

1.08

1.12

1.16

US
SO

C/
Be

st
 B

ou
nd

room-64-64-8

500 1000 1500 2000
1

1.18

1.36

1.54

1.72

1.9

US

SO
C/

Be
st

 B
ou

nd

maze-32-32-4

5000 10000 15000 20000
1

1.04

1.08

1.12

1.16

US

SO
C/

Be
st

 B
ou

nd

maze-128-128-1

1000 2000 3000 4000
1

1.03

1.06

1.09

1.12

1.15

US

SO
C/

Be
st

 B
ou

nd

warehouse-10-20-10-2-1

2000 4000 6000

1

1.02

1.04

1.06

1.08

US

SO
C/

Be
st

 B
ou

nd

lt_gallowstemplar_n

Figure 5: The cost of solutions, relative to the best lower
bound. ’US’ refers instances proven unsolvable.

heuristics, we use H2, as the previous experiment suggests
it is always better to use it. The x-axis is the best bound
on the cost of each PC-MAPF problem - when the optimal
cost is known (PCS solved the problem), we use that as the
bound, and when it is not known, we use the best known
lower-bound (or optimal cost) for the corresponding MAPF
problem, extracted from an online tracker (Shen et al. 2023).
The MAPF bound is also a lower bound on the priority-
optimal cost. Among different problems on the same map,
a larger bound generally implies more agents, longer paths,
and more interference between agents, and thus implies a
more difficult problem. The y-axis shows the ratio between
the SOC of a solution and the best-known bound on the cost.
If an algorithm failed to solve an instance, it simply has no
marker that corresponds to that instance. Instances that PCS
found to be unsolvable are shown at the top of the plot, la-
belled ’US’.

In comparing PP and PCS, it is clear to see that PP often
finds solutions with a significantly higher cost. For example,

in empty-8-8, on instances solved by both PCS and PP, the
95th percentile of the ratio of their costs was 1.24. PCS was
also able to prove some problem instances were unsolvable.
This was especially prominent on maze-128-128-1, where
most algorithms failed to find solutions, but PCS was able to
prove that 75 of the 175 problems were in fact unsolvable.
PPR∗ provided a balance of solution quality and scalability.
It was able to find solutions with significantly lower SOC
than those found by PP, though often not as low as those
found by PCS. For example, on maze-32-32-4, the 95th per-
centile for the ratio of SOC/bound for PP solutions was 1.19,
whereas the 95th percentile for PPR∗ solutions was only
1.06. PPR∗ was also able to solve many problems that both
PP and PCS failed to.

We also compared the difference between the priority-
optimal cost (PCS) and the optimal cost of the analogous
MAPF problems. Results (omitted for brevity) show the gap
is usually quite small - less than 10% in our experiments. As
could be expected, these differences were smaller in large
and open maps, where agents have many possible optimal
paths. In dense environments, there were larger differences.
Note that in such cases, the MAPF solution is not a feasible
PC-MAPF solution, and the lowered cost is due to agents
not being required to respect the priority constraints.

Conclusion and Future Work
In this work, we studied Priority-Constrained Multi-Agent
Path Finding (PC-MAPF), a problem where agents must be
planned according to a specific priority ordering. Solutions
to PC-MAPF are required by important industrial applica-
tions. Meanwhile, planning agents subject to any priority or-
der is a widely popular method to simplify and tackle MAPF.
Both problems can be solved using a broad family of Pri-
oritised Planning (PP) algorithms. Unfortunately, PP algo-
rithms suffer two notable drawbacks: 1. The quality of the
solutions they return is unbounded sub-optimal, and it is not
clear if solutions can be further improved. 2. PP can produce
deadlock failures, leaving practitioners without explanation
or recourse.

We gave a first analysis characterising the complexity
of PC-MAPF, and showed that it is in NP-hard. We then
presented Priority Constrained Search (PCS), the first PC-
MAPF algorithm with theoretical guarantees on optimality
and completeness. We evaluated PCS and PP on a range of
common MAPF problems, and showed that PCS can suc-
ceed where PP fails. We gave tighter bounds for the quality
of PC-MAPF solutions, and optimally solved many associ-
ated problem instances for the first time. Together, these re-
sults give guidance to practitioners using PP in real appli-
cations. When PP fails, PCS can help explain the reasons
for that failure, and when PP succeeds, PCS can be used to
improve solution quality.

Future work could consider applying speed-up techniques
from the CBS family of algorithms to PCS. Additionally, we
believe that relaxing the termination criteria of PCS can lead
to new types of PP algorithms with different tradeoffs and
guarantees. Another interesting future direction is extending
our results to the more general problem of priority-optimal
planning under a partial order or under any total order.

89

Acknowledgements
This work was performed while Jonathan Morag was on a
research visit to Monash University.

This work was supported by the Israel Science Founda-
tion (ISF) grant #909/23 awarded to Ariel Felner, and by
United States-Israel Binational Science Foundation (BSF)
grant #2021643 awarded to Ariel Felner. This work was
partially funded by BSF grant #2018684 and ISF grant
#1238/23 to Roni Stern. Research at Monash is partially
funded by The Australian Research Council under grant
DP200100025 and by a gift from Amazon.

References
Bennewitz, M.; Burgard, W.; and Thrun, S. 2002. Finding
and optimizing solvable priority schemes for decoupled path
planning techniques for teams of mobile robots. Robotics
and autonomous systems, 41(2-3): 89–99.

Čáp, M.; Novák, P.; Kleiner, A.; and Seleckỳ, M. 2015. Pri-
oritized planning algorithms for trajectory coordination of
multiple mobile robots. IEEE transactions on automation
science and engineering, 12(3): 835–849.
Daniel Kornhauser, P. S., Gary Miller. 1984. Coordinat-
ing pebble motion on graphs, the diameter of permutation
groups, and applications. In FOCS.
Erdmann, M. A.; and Lozano-Pérez, T. 1986. On multiple
moving objects. In Proceedings of the 1986 IEEE Interna-
tional Conference on Robotics and Automation, San Fran-
cisco, California, USA, April 7-10, 1986, 1419–1424. IEEE.
Hu, S.; Harabor, D. D.; Gange, G.; Stuckey, P. J.; and Sturte-
vant, N. R. 2022. Multi-agent path finding with temporal
jump point search. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 32,
169–173.
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P.; and Koenig, S.
2021. Anytime multi-agent path finding via large neighbor-
hood search. In IJCAI.
Li, J.; Harabor, D.; Stuckey, P. J.; Felner, A.; Ma, H.; and
Koenig, S. 2019. Disjoint splitting for multi-agent path find-
ing with conflict-based search. In Proceedings of the inter-
national conference on automated planning and scheduling,
volume 29, 279–283.
Li, J.; Hoang, T. A.; Lin, E.; Vu, H. L.; and Koenig, S.
2023. Intersection Coordination with Priority-Based Search
for Autonomous Vehicles. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI), 11578–11585.
Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S.
2019. Searching with consistent prioritization for multi-
agent path finding. In AAAI, volume 33, 7643–7650.
Phillips, M.; and Likhachev, M. 2011. Sipp: Safe interval
path planning for dynamic environments. In 2011 IEEE in-
ternational conference on robotics and automation, 5628–
5635. IEEE.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence.

Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial intelligence, 195: 470–495.
Shen, B.; Chen, Z.; Cheema, M. A.; Harabor, D. D.; and
Stuckey, P. J. 2023. Tracking Progress in Multi-Agent Path
Finding.
Silver, D. 2005. Cooperative Pathfinding. In AIIDE.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Boyarski, E.; and Bartak, R. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. In SoCS, 151–158.
Van Den Berg, J. P.; and Overmars, M. H. 2005. Prioritized
motion planning for multiple robots. In 2005 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
430–435. IEEE.
Yu, J.; and LaValle, S. 2013. Structure and intractability of
optimal multi-robot path planning on graphs. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 27, 1443–1449.
Zhang, C. 2010. Improving crane safety by agent-based dy-
namic motion planning using UWB real-time location sys-
tem. Ph.D. thesis, Concordia University.
Zhang, C.; and Hammad, A. 2012. Improving lifting motion
planning and re-planning of cranes with consideration for
safety and efficiency. Advanced Engineering Informatics,
26(2): 396–410.

90

